
A Sample OFBiz application
implementing remote access via RMI
and SOAP

Table of contents

1 About this document.. 2

2 Introduction.. 2

3 Defining the data model... 2

4 Populating the database tables with Seed Data.. 6

5 Creating Business Logic...7

6 Creating the Web Application..11

7 Accessing the services of OFBiz via RMI... 11

8 Accessing the services of OFBiz via SOAP...13

9 Testing the service of OFBiz that wraps a remote Web Service................................15

1. About this document

Copyright (c) 2006 by Vincenzo Di Lorenzo (vinci.dilorenzo@libero.it)

This material may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

.....

That means: you can use, reproduce, distribute in whole or in part without any kind of
limitations.

document version: 1.1

released in date : 1 September 2006

2. Introduction

This tutorial describes how to build a complete application using OFBiz and how to
access this application directly via RMI and SOAP over HTTP. It is entirely based on
Hello3 tutorial from Open Source Strategies Inc. you may found at this url
http://www.opensourcestrategies.com/ofbiz/hello_world3.php, it reproduces some parts
of it, modifies some other ones or extends them when necessary.

Before starting you should have downloaded:

• The extended hello3 application (deploy it under <ofbiz_base>/hot-deploy after
having unzipped it)

• The script bshcontainer.bsh (deploy under <ofbiz_base>)
• The test client RMI (deploy where you want)
• The test client SOAP (deploy where you want)
• The new OFBiz class SOAPClientEngine modified in order to make the invocation of

a remote Web Service working (you should replace the old one and compile OFBiz)

It could be necessary to adjust the scripts used to compile in order to set the proper
classpaths.

Warning:
You are supposed to know at least the basics of OFBiz before reading this tutorial. Some of them could be found as well
on the Open Source Strategies web site. In addition some information about Web Services and RMI could be useful.

3. Defining the data model

The first step is to define the data model. We want to track persons and their hobbies and

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 2/15

???
http://www.opensourcestrategies.com/ofbiz/hello_world3.php
../../files_to_download/hello3_extended.zip
../../files_to_download/bshcontainer.bsh
../../files_to_download/testRMI.zip
../../files_to_download/testSOAP.zip
../../files_to_download/SOAPClientEngine.java

lookup all the hobbies of a person (or, alternatively, all the people who share a hobby.)
The data model thus calls for person, hobby, and person-hobby linkage. With a relational
database, you would define two tables, one for a person and one for a hobby, and link
them together with a third table. The third table would allow you to associate as many
hobbies as you would want with a person, and vice versa. You would define foreign-keys
to constrain the third table so only actual persons and hobbies are present.

The following picture shows the ER diagram for such tables.

ER diagram

Note that you do not need to create those tables in your database manually, OFBiz will
take care of that automatically, this will be clarified later.

OFBiz works similarly. You would define two entities, which we will call HelloPerson
and HelloHobby, and a linking entity, HelloPersonHobby, and establish a relationship
between them. The relationship serve as foreign-key constraints but also allow you to go
from one entity to another without having to remember yourself what their respective
keys are (or change your code when keys change.)

To define data models, go to the entitydef/ directory inside your application (hello3/ in
this case) and locate the files entitymodel.xml and entitygroup.xml inside your
entitydef/ directory. Let's have a look at entitymodel.xml first:

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 3/15

snippet from entitymodel.xml
Just a few words about the entity definition.

HelloPerson and HelloHobby each has a primary key, and HelloPersonHobby has two
primary key fields, which it uses to link HelloPerson and HelloHobby. It is considered
good practice to give your relations a foreign key name to make debugging easier and
avoid accidental collision of foreign key names OFBiz generates for you.

There is an implicit rule linking database objects (such as table names and column names)
with entity definition (entity names and field names). In particular:

entity element rule example

entity name similar to Java class names: all
words starting with capital
letters including the first one.
The corresponding database
table name is lowercase and
uses the separator "_"

the entity name "HelloPerson"
is mapped to a database table
with name "hello_person".

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 4/15

(underscore).

entity fields similar to Java methods: all
words starting with capital
letters except for the first one.
The corresponding database
field name is lowercase and
uses the separator "_"
(underscore).

the field name "helloPersonId"
is mapped to a database field
with name "hello_person_id".

The data type is defined by the attribute "type" in the tag "field". This data type is abstract
and should be translated into a real data type that is database specific. This translation is
done in particular in the files fieldtype<database_name>.xml contained in the directory
<ofbiz_base>/framework/entity/fieldtype.

Now the file entitygroup.xml

snippet from entitigroup.xml
The main issue with this file id the "group" attribute. It is important in order to identify
the database to be used. Have a look at the file entityengine.xml you may find under
<ofbiz_base>/framework/entity/config, you will see that each dispatcher (OFBiz object
used to access a data source) has a corresponding group-name attribute that should match
the one defined in entitygroup.xml. This group-name points to a real data source
configured in the same file entityengine.xml. Once the data source is identified per each
entity by using this mechanism, it is also possible to select the right data types through the
entity definition and the translation rules for the fieldtypes. (described above).

Now start OFBiz. You will see the following lines in your console.log (Linux) or roll past
you on your console (Windows), telling you that your entities were loaded:
....
2391 [UtilXml.java:263:DEBUG] XML Read 0.0s:

D:/ofbiz_work/hot-deploy/hello3/entitydef/entitymodel.xml
....
2719 [UtilXml.java:263:DEBUG] XML Read 0.0s:

D:/ofbiz_work/hot-deploy/hello3/entitydef/entitygroup.xml
....

When you go into Web Tools application, you will see the entities:

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 5/15

entities in Web Tools
The tables have been automatically created on your database by OFBiz, including the
foreign keys.

4. Populating the database tables with Seed Data

Now let's populate the person_hobby table with some seed data. In most OFBiz
applications, we would create a data/ directory inside our application and create an XML
file for our seed data. Let's see our HobbiesData.xml:

snippet from HobbiesData.xml seed file
The content of the file is auto-explaining.

Now you are ready to load your seed data. Go to the Web Tools application's "Main"
screen, and you will see links for "XML Import". Click on "XML Import" and on the next
screen, it will prompt you for the name of your file, relative to your ofbiz/ directory. I
usually don't click on any of the optional check boxes and just "Import". If you are

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 6/15

successful, the same screen will come back and tell you at the bottom how many values
were added.

Note:
More details about this phase on the tutorial by Open Source Strategies.

5. Creating Business Logic

Now that we have the data model defined, we can of course write a simple application
with a delegator to access the entities directly. Standard practice for OFBiz applications,
however, calls for creating a separate layer for the business logic and for creating,
updating, and removing entries. The delegator is used directly for looking up values,
although more complex lookups are also coded as a service.

Creating services is a two step process:

1. define the service generically in an XML file, which tells the OFBiz service engine
what parameters your service takes, where to find it (class and method or location of a
script) and if the external access should be enabled

2. implement the service in Java, the OFBiz minilang, or another scripting language

Service definitions are usually inside a servicedef/ directory in your application and
consists of one or more services.xml files. Here is our services.xml file:

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 7/15

content of services.xml
Three services are defined here, here are some explanations:

• createHelloPerson: this service is implemented through a Java class (engine="java"),
the class and the method to call are defined via the attributes
location="org.ofbiz.hello3.Hello3Services" and invoke="createHelloPerson". The
service can be also accessed externally, via RMI or SOAP for instance, since
export="true". The service has one output parameter called "helloPersonId" of type
String that is mandatory. The automatic mapping of all the input parameters to the
fields of the entity "HelloPerson" has been adopted, all output parameters are
optional.

• searchHelloPerson: this service is implemented through a Java class (engine="java"),
the class and the method to call are defined via the attributes
location="org.ofbiz.hello3.Hello3Services" and invoke="searchHelloPerson". The
service can be also accessed externally since export="true". The service has one input
parameter called "helloPersonId" of type String that is optional. The service has three
output parameters called "helloPersonIdOut", "firstName" and "lastName", two of
them are optional. Note that the automatic mapping of all the output parameters has
been disabled since I've had some problems when accessing externally via SOAP
wrapper.

• BabelFishService: this service is implemented through a SOAP engine
(engine="soap"), it wraps the remote Web Service BabelFish (invoke="BabelFish")
available over the Internet and reachable at the endpoint
location="http://services.xmethods.net:80/perl/soaplite.cgi". You can get the WSDL
at this url "http://www.xmethods.net/sd/2001/BabelFishService.wsdl". In this way
you can access this service as you can do with all other OFBiz services, all the
implementation details about the SOAP connection and remote invocation are done
by OFBiz automatically. More details on ithis service in a dedicated section of this
document : "Testing the service of OFBiz that wraps a remote Web Service".

Note:
There is also another service developed via minilang (createHelloPersonHobby) that is not documented here, see the
tutorial by Open Source Strategies to get details on it.

You would also need to reference the service resource in your ofbiz-component.xml as
well. In addition, you must create <classpath> directives in ofbiz-component.xml to tell it
where to load up the apps. Have a look at the config file.

Now to create the services. A Java service goes inside a src/ directory in your application
and is written in a standard fashion: A public class with public static methods which take
two parameters, a DispatchContext for getting objects like delegators, dispatchers, locale,
and security, and a Map called context which are your input parameters and returns a map
of results:

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 8/15

implementation of the service createHelloPerson
The service creates a new record in the entity HelloPerson, the primary key is
auto-generate via a sequence, all other fields are directly taken from the input parameters.
Take your time to learn how to interact with entities, load input parameters from the
context and return output values.

The next picture shows the implementation of the service searchHelloPerson:

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 9/15

implementation of the service searchHelloPerson
The service queries the entity HelloPerson trying to get a record where the primary key
field is equal to the input parameter "helloPersonId". If that is successful, then it returns
also the firstName and lastName, otherwise only the helloPersonIdOut is returned.

Java services will also need to be compiled, with knowledge of the proper classpaths for
other OFBiz apps. This involves using ant and a build.xml build script, which you can
usually copy over from another application. Simply launch ant from the directory hello3
to compile the application.

Finally, to test it, re-start OFBiz to load all the new definitions in ofbiz-component.xml
and services.xml. Then, open a beanshell window (that is connect via telnet to the port
9990 on you host) and test our service:

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 10/15

trying to test our services
Here, beanshell calls the service dispatcher to run the service, and they were successful,
so the right values are created. Note that you need to start the script bshcontainer.bsh to
have a dispatcher, a delegator and the utility UtilMisc. In the example above, the services
are invoked through the method runSync of the dispatcher object.

6. Creating the Web Application

This is fully covered in the tutorial by Open Source Strategies, look at this if you are
interested.

7. Accessing the services of OFBiz via RMI

The services described in the services.xml file are accessible form external tools (i.e.
outside OFBiz) since they have been set with export="true". In order to access them via
RMI, it is initially necessary to modify the files rmi-containers.xml and
ofbiz-containers.xml of your OFBiz installation (but perhaps only the second file has to
be changed).

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 11/15

disabling SSL in rmi dispatcher
The modification is necessary since the certificate server side is expired (at least in my
OFBiz distribution) and I do not want to generate a new one, it is only a test application.
Now everything is ready and we just have to write a test client java class.

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 12/15

code snippet of the test client class
The code is very simple, after having received the remote handler for the rmi dispatcher,
it is just needed to invoke the runSync method on it, exactly as it was done during the
tests via bsh shell.

Note:
It seems that there is a problem with the RMI dispatcher if you are running OFBiz within eclipse development
environment. In case of a trouble simply do not use it.

8. Accessing the services of OFBiz via SOAP

The services described in the services.xml file are accessible form external tools (i.e.
outside OFBiz) since they have been set with export="true". You can access them via
SOAP as well, for example if you want to get the wdsl descriptor of the service
"searchHelloPerson" , just point to the following URL:
"http://127.0.0.1:8080/webtools/control/SOAPService/searchHelloPerson?WSDL" with
your web browser.

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 13/15

Here is a test client:

code snippet of the test client class
Some comments...

• The port I am using (18080) is not the default one (8080), this is due to the fact that I
trace the TCP traffic via the TCP monitor bundled with axis.

• Naming the parameters is normally not needed with axis, the input parameters are
automatically named arg0, arg1, arg2 and so on. But these default names are not
known by the service implemented in OFBiz, therefore the service invocation isn't
successful since the validation phase could not be passed. The method addParameter
is used to name the parameters (it just necessary to name all input parameters)
according to the service definition.

• In case there are more than one output parameters, the first one is got as returned
value from the call.invoke(..) and the other ones via the call.getOutputParameters()
method. This is quite strange for me but it is exactly how axis 1.4 works and it seems
not to be a bug.

• It is possible to retrieve the output parameters either by name or by position. The code
snippet shown above displays only the first method, the code of the extended hello3
application uses both methods.

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 14/15

9. Testing the service of OFBiz that wraps a remote Web Service

It's time to test the OFBiz service "BabelFishService". As defined in services.xml, it is a
service accessible like any other service of OFBiz, but its business logic is remote, in
particular it is implemented as a Web Service published over the Internet.

The service is very simple, it has two input parameters, a translation string that defines
the origin and the destination language for the translation and a sourcedata that is the
string to translate. The returned parameter contains the translated string.

Before testing the service you should do two things:

• If you access the Internet through a proxy, you should tell Axis the address of the
proxy, the port used by it and the addresses that you do not want to pass through the
proxy. This means that you should modify the OFBiz startup command (startofbiz.bat
in Windows), you should have something like this:

"%JAVA_HOME%\bin\java" -Dhttp.proxyHost=myproxy.mydomain.com
-Dhttp.proxyPort=8080
-Dhttp.nonProxyHosts=localhost -Xms256M -Xmx512M -jar ofbiz.jar >

logs\console.log
• Then you should modify the class org.ofbiz.service.engine.SOAPClientEngine in

order to avoid to use the method call.setOperation (well, at least this is what i've done
to make it working, even if maybe it is not the best way to proceed). The modified
class SOAPClientEngine is in the files attached to this document.

make a telnet connection to your host on the port 9990 and invoke the service:
BeanShell 1.3a1 - by Pat Niemeyer (pat@pat.net)
bsh % source("bshcontainer.bsh");
bsh % result =
dispatcher.runSync("BabelFishService",UtilMisc.toMap("translationmode",
"en_fr","sourcedate","I am"));
bsh % print(result);
[return=je suis]
bsh %

A Sample OFBiz application implementing remote access via RMI and SOAP

Page 15/15

	1 About this document
	2 Introduction
	3 Defining the data model
	4 Populating the database tables with Seed Data
	5 Creating Business Logic
	6 Creating the Web Application
	7 Accessing the services of OFBiz via RMI
	8 Accessing the services of OFBiz via SOAP
	9 Testing the service of OFBiz that wraps a remote Web Service

