
Patrick Wendell
Databricks

Deploying and
Administering Spark

Outline
Spark components

Cluster managers

Hardware & configuration

Linking with Spark

Monitoring and measuring

Outline
Spark components

Cluster managers

Hardware & configuration

Linking with Spark

Monitoring and measuring

Spark application
Driver program

 Java program that creates a
 SparkContext

Executors

 Worker processes that
 execute tasks and store data

Cluster manager
Cluster manager grants executors
to a Spark application

Driver program
Driver program decides when to
launch tasks on which executor

Needs full network
connectivity to workers

Types of Applications
Long lived/shared applications
 Shark
 Spark Streaming
 Job Server (Ooyala)

Short lived applications
 Standalone apps
 Shell sessions

May do mutli-user
scheduling within
allocation from
cluster manger

Outline
Spark components

Cluster managers

Hardware & configuration

Linking with Spark

Monitoring and measuring

Cluster Managers
Several ways to deploy Spark

1.  Standalone mode (on-site)

2.  Standalone mode (EC2)

3.  YARN

4.  Mesos

5.  SIMR [not covered in this talk]

Standalone Mode
Bundled with Spark

Great for quick “dedicated” Spark
cluster

H/A mode for long running
applications (0.8.1+)

Standalone Mode
1. (Optional) describe amount of
resources in conf/spark-env.sh

 - SPARK_WORKER_CORES

 - SPARK_WORKER_MEMORY

2. List slaves in conf/slaves

3. Copy configuration to slaves

4. Start/stop using
./bin/stop-all and ./bin/start-all

Standalone Mode
Some support for inter-application
scheduling

Set spark.cores.max to limit # of cores
each application can use

EC2 Deployment
Launcher bundled with Spark

Create cluster in 5 minutes

Sizes cluster for any EC2 instance
type and # of nodes

Used widely by Spark team for
internal testing

EC2 Deployment
./spark-ec2
 -t [instance type]
 -k [key-name]
 -i [path-to-key-file]
 -s [num-slaves]
 -r [ec2-region]
 --spot-price=[spot-price]

EC2 Deployment
Creates:

Spark Sandalone cluster at
<ec2-master>:8080

HDFS cluster at
< ec2-master >:50070

MapReduce cluster at
< ec2-master >:50030

Apache Mesos
General-purpose cluster manager that
can run Spark, Hadoop MR, MPI, etc

Simply pass mesos://<master-url> to
SparkContext

Optional: set spark.executor.uri to a pre-
built Spark package in HDFS, created by
make-distribution.sh

Fine-grained (default):
●  Apps get static memory allocations, but share CPU

dynamically on each node

Coarse-grained:
●  Apps get static CPU and memory allocations

●  Better predictability and latency, possibly at cost of
utilization

Mesos Run Modes

In Spark 0.8.0:
●  Runs standalone apps only, launching driver inside

YARN cluster

●  YARN 0.23 to 2.0.x

Coming in 0.8.1:
●  Interactive shell

●  YARN 2.2.x support

●  Support for hosting Spark JAR in HDFS

Hadoop YARN

1. Build Spark assembly JAR

2. Package your app into a JAR

3. Use the yarn.Client class
SPARK_JAR=<SPARK_ASSEMBLY_JAR> ./spark-
class org.apache.spark.deploy.yarn.Client \
 --jar <YOUR_APP_JAR> --class <MAIN_CLASS> \
 --args <MAIN_ARGUMENTS> \
 --num-workers <N> \
 --master-memory <MASTER_MEM> \
 --worker-memory <WORKER_MEM> \
 --worker-cores <CORES_PER_WORKER>

YARN Steps

http://spark.incubator.apache.org/docs/
latest/cluster-overview.html

Detailed docs about each of standalone
mode, Mesos, YARN, EC2

More Info

Outline
Cluster components

Deployment options

Hardware & configuration

Linking with Spark

Monitoring and measuring

Where to run Spark?
If using HDFS, run on same
nodes or within LAN

1.  Have dedicated (usually
“beefy”) nodes for Spark

2.  Colocate Spark and
MapReduce on shared nodes

Local Disks
Spark uses disk for writing shuffle
data and paging out RDD’s

Ideally have several disks per
node in JBOD configuration

Set spark.local.dir with comma-
separated disk locations

Memory
Recommend 8GB heap and up

Generally, more is better

For massive (>200GB) heaps you
may want to increase # of
executors per node (see
SPARK_WORKER_INSTANCES)

Network/CPU
For in-memory workloads,
network and CPU are often the
bottleneck

Ideally use 10Gb Ethernet

Works well on machines with
multiple cores (since parallel)

Environment-related
configs
spark.executor.memory

 How much memory you will ask
for from cluster manager

spark.local.dir

 Where spark stores shuffle files

Outline
Cluster components

Deployment options

Hardware & configuration

Linking with Spark

Monitoring and measuring

Typical Spark Application

sc = new SparkContext(<cluster-
manager>…)

sc.addJar(“/uber-app-jar.jar”)

sc.textFile(XX)
 …reduceBy
 …saveAS

Created using
maven or sbt
assembly

Linking with Spark
Add an ivy/maven dependency in your
project on spark-core artifact

If using HDFS, add dependency on
hadoop-client for your version

 e.g. 1.2.0, 2.0.0-cdh4.3.1

For YARN, also add spark-yarn

Hadoop Versions

Distribution Release Maven Version Code

CDH 4.X.X 2.0.0-mr1-chd4.X.X

4.X.X (YARN mode) 2.0.0-chd4.X.X

3uX 0.20.2-cdh3uX

HDP 1.3 1.2.0

1.2 1.1.2

1.1 1.0.3

See Spark docs for details:
http://spark.incubator.apache.org/docs/latest/hadoop-third-party-distributions.html

Outline
Cluster components

Deployment options

Hardware & configuration

Linking with Spark

Monitoring and measuring

Monitoring
Cluster Manager UI

Executor Logs

Spark Driver Logs

Application Web UI

Spark Metrics

Cluster Manager UI
Standalone mode: <master>:8080

Mesos, YARN have their own UIs

Executor Logs
Stored by cluster manager on each worker

Default location in standalone mode:

/path/to/spark/work

Executor Logs

Spark Driver Logs
Spark initializes a log4j when created

Include log4j.properties file on the classpath

See example in conf/
log4j.properties.template

Application Web UI
http://spark-application-host:4040

(or use spark.ui.port to configure the port)

For executor / task / stage / memory status,
etc

Executors Page

Environment Page

Stage Information

Task Breakdown

App UI Features
Stages show where each operation
originated in code

All tables sortable by task length, locations,
etc

Metrics
Configurable metrics based on Coda Hale’s
Metrics library

Many Spark components can report metrics
(driver, executor, application)

Outputs: REST, CSV, Ganglia, JMX, JSON
Servlet

Metrics
More details:
http://spark.incubator.apache.org/docs/
latest/monitoring.html

More Information
Official docs:
http://spark.incubator.apache.org/docs/latest

Look for Apache Spark parcel in CDH

