Deploying and
Administering Spark

Patrick Wendell
Databricks

Spork = databricks’

Outline

Spark components
Cluster managers
Hardware & configuration
Linking with Spark

Monitoring and measuring

= databricks’

Outline

Spark components
Cluster managers
Hardware & configuration
Linking with Spark

Monitoring and measuring

= databricks’

Spark application

Driver program

Java program that creates a
SparkContext

Executors

Worker processes that
execute tasks and store data

= databricks’

Cluster manager

Cluster manager grants executors
to a Spark application

Driver Program

SparkContext

”

Worker Node

Cluster Manager

Executor

Cache

Task

Task

4

Worker Node

h 4

Executor

Cache

Task

Task

= databricks’

Driver program

Driver program decides when to
launch tasks on which executor

Worker Node

Executor | Cache

Task Task
7'y

Driver Program

SparkContext Cluster Manager

Worker Node

h 4

Executor | Cache

Needs full network Task || Task
connectivity to workers

= databricks’

Types of Applications

Long lived/shared applications
Shark May do mutli-user
Spark Streaming scheduling within

allocation from

JOb Server (Ooya|a) cluster manger

Short lived applications
Standalone apps
Shell sessions

= databricks’

Outline

Spark components
Cluster managers
Hardware & configuration
Linking with Spark

Monitoring and measuring

= databricks’

Cluster Managers

Several ways to deploy Spark

1. Standalone mode (on-site)

2. Standalone mode (EC2)

3. YARN

4. Mesos

5. SIMR [not covered in this talk]

= databricks’

Standalone Mode

Bundled with Spark

Great for quick “dedicated” Spark
cluster

H/A mode for long running
applications (0.8.1+)

= databricks’

Standalone Mode

1. (Optional) describe amount of
resources in conf/spark-env.sh

- SPARK_WORKER_CORES

- SPARK_ WORKER_MEMORY
2. List slaves in conf/slaves
3. Copy configuration to slaves

4. Start/stop using
/bin/stop-all and ./bin/start-all

= databricks’

Standalone Mode

Some support for inter-application
scheduling

Set spark.cores.max to limit # of cores
each application can use

= databricks’

EC2 Deployment

Launcher bundled with Spark
Create cluster in 5 minutes

Sizes cluster for any EC2 instance
type and # of nodes

Used widely by Spark team for
internal testing

= databricks’

EC2 Deployment

/spark-ec2
-t [instance type]
-k [key-name]
-I [path-to-key-file]
-s [num-slaves]
-r [ec2-region]
--spot-price=[spot-price]

= databricks’

EC2 Deployment

Creates:

Spark Sandalone cluster at
<ecZ2-master>:8080

HDFS cluster at
< ec2-master >:50070

MapReduce cluster at
< ec2-master >:50030

= databricks’

Apache Mesos

General-purpose cluster manager that
can run Spark, Hadoop MR, MPI, etc

Simply pass mesos://[<master-url> to
SparkContext

Optional: set spark.executor.uri to a pre-
built Spark package in HDFS, created by
make-distribution.sh

= databricks’

Mesos Run Modes

Fine-grained (default):

e Apps get static memory allocations, but share CPU
dynamically on each node

Coarse-grained:
e Apps get static CPU and memory allocations

e Better predictability and latency, possibly at cost of
utilization

= databricks’

Hadoop YARN

In Spark 0.8.0:

e Runs standalone apps only, launching driver inside
YARN cluster

e YARN 0.23 10 2.0.x

Coming in 0.8.1:

e |[nteractive shell
e YARN 2.2.x support

e Support for hosting Spark JAR in HDFS
== databricks”

YARN Steps

1. Build Spark assembly JAR
2. Package your app into a JAR

3. Use the yarn.Client class

SPARK JAR=<SPARK ASSEMBLY_ JAR> ./spark-
class org.apache.spark.deploy.yarn.Client \
--jar <YOUR_APP_JAR> --class <MAIN_CLASS> \
--args <MAIN_ARGUMENTS> \
--num-workers <N>\
--master-memory <MASTER_MEM>\
--worker-memory <WORKER_MEM> \
--worker-cores <CORES PER WORKER>

= databricks’

More Info

http://spark.incubator.apache.org/docs/
latest/cluster-overview.html

Detailed docs about each of standalone
mode, Mesos, YARN, EC2

= databricks’

Outline

Cluster components
Deployment options
Hardware & configuration
Linking with Spark

Monitoring and measuring

= databricks’

Where to run Spark?

If using HDFS, run on same
nodes or within LAN

1. Have dedicated (usually
“beefy”) nodes for Spark

2. Colocate Spark and
MapReduce on shared nodes

= databricks’

Local Disks

Spark uses disk for writing shuffle
data and paging out RDD’s

|ldeally have several disks per
node in JBOD configuration

Set spark.local.dir with comma-
separated disk locations

= databricks’

Memory

Recommend 8GB heap and up
Generally, more is better

For massive (>200GB) heaps you
may want to increase # of

executors per node (see
SPARK WORKER_INSTANCES)

= databricks’

Network/CPU

For in-memory workloads,
network and CPU are often the
bottleneck

|deally use 10Gb Ethernet

Works well on machines with
multiple cores (since parallel)

= databricks’

Environment-related
configs

spark.executor.memory

How much memory you will ask
for from cluster manager

spark.local.dir

Where spark stores shuffle files

= databricks’

Outline

Cluster components
Deployment options
Hardware & configuration
Linking with Spark

Monitoring and measuring

= databricks’

Typical Spark Application

sc = new SparkContext(<cluster-
manager>...)

Created using

sc.addJar(“/uber-app-jar.jar’) maven or sbt

assembly
sc.textFile(XX)
...reduceBy
...saveAS

= databricks’

Linking with Spark

Add an ivy/maven dependency in your
project on spark-core artifact

If using HDFS, add dependency on
hadoop-client for your version

e.g. 1.2.0, 2.0.0-cdh4.3.1
For YARN, also add spark-yarn

= databricks’

Hadoop Versions

Distribution Release Maven Version Code
CDH 4 X.X 2.0.0-mr1-chd4.X.X
4. X.X (YARN mode) 2.0.0-chd4.X.X
3uX 0.20.2-cdh3uX
HDP 1.3 1.2.0
1.2 1.1.2
1.1 1.0.3

See Spark docs for details:

http://spark.incubator.apache.org/docs/latest/hadoop-third-party-distributions.htmi

= databricks’

Outline

Cluster components
Deployment options
Hardware & configuration
Linking with Spark

Monitoring and measuring

= databricks’

Monitoring

Cluster Manager Ul
Executor Logs
Spark Driver Logs
Application Web U
Spark Metrics

= databricks’

Cluster Manager Ul

Standalone mode: <master>:8080

Mesos, YARN have their own Uls

| 800 Spark Master at spark://n * [

€« C' 9 localhost:8080

spoff(‘f Spark Master at spark://mbp-2.local:7077

URL: spark://mbp-2.local:7077

Workers: 3

Cores: 24 Total, 24 Used

Memory: 45.0 GB Total, 1536.0 MB Used
Applications: 1 Running, 0 Completed

Workers
Id Address State Cores Memory
worker-20131202231645-192.168.1.106-56789 192.168.1.106:7077 ALIVE 8 (8 Used) 15.0 GB (512.0 MB Used)
worker-20131202231657-192.168.1.106-56801 182.168.1.106:7077 ALIVE 8 (8 Used) 15.0 GB (512.0 MB Used)
worker-20131202231705-192.168.1.106-56806 182.168.1.106:7077 ALIVE 8 (8 Used) 15.0 GB (512.0 MB Used)

Running Applications

ID Name Cores Memory per Node Submitted Time User State Duration

app-20131202231712-0000 Spark shell 24 512.0 MB 2013/12/02 23:17:12 matei RUNNING 2s

= databricks’

Executor Logs

Stored by cluster manager on each worker
Default location in standalone mode:

/path/to/spark/work

= databricks’

Executor Logs

® O O 10— bash — 79x15 =
bash bash

Last login: Mon Dec 2 21:19:15 on ttys003
@ : /scratch/rxin/incubator-spark/work/app-20131202211816-0000/0
> 1ls

stderr stdout
@ : /scratch/rxin/incubator-spark/work/app-20131202211816-0000/0
> less stderr

® O O 0 — less — 79x15 e

bash less
13/12/02 21:21: Executor: Running task ID 68

13/12/02 :21: Executor: Serialized size of result for 68 is 785
13/12/02 :21: Executor: Sending result for 68 directly to driver
13/12/02 :21: Executor: Finished task ID 68
13/12/02 :21: CoarseGrainedExecutorBackend: Got assigned task 73
13/12/02 :21: Executor: Running task ID 73
13/12/02 :21: Executor: Serialized size of result for 73 is 785
13/12/02 :21: Executor: Sending result for 73 directly to driver
13/12/02 :21: Executor: Finished task ID 73
13/12/02 21:21: CoarseGrainedExecutorBackend: Got assigned task 78
13/12/02 :21: Executor: Running task ID 78
13/12/02 :21: Executor: Serialized size of result for 78 is 785
13/12/02 :21: Executor: Sending result for 78 directly to driver
13/12/02 :21: Executor: Finished task ID 78

= databricks"

Spark Driver Logs

Spark initializes a log4j when created

Include log4.properties file on the classpath

See example in conf/
log4|j.properties.template

= databricks’

Application Web Ul

http://spark-application-host:4040

(or use spark.ui.port to configure the port)

For executor / task / stage / memory status,
etc

Executors Page

® 00 /| | Spark shell - Executors (6)
4

€« C | localhost:4040/executors/

i

w @ &

SPQﬁA(Z Stages Storage Environment Executors

Executors (6)

Memory: 0.0 B Used (2002.3 MB Total)

Disk: 0.0 B Used

Executor ID ~
0
<driver>

1

2
3
4

localhost:4040

Address

rxin-mbp.hsd1.ca.comcast.net:57604
rxin-mbp.hsd1.ca.comcast.net:57554
rxin-mbp.hsd1.ca.comcast.net:57607
rxin-mbp.hsd1.ca.comcast.net:57606
rxin-mbp.hsd1.ca.comcast.net:57600

rxin-mbp.hsd1.ca.comcast.net:57597

RDD blocks

o O o o o o

Memory used

0.0 B/ 333.7 MB
0.0 B/ 333.7 MB
0.0 B/333.7 MB
0.0 B/ 333.7 MB
0.0 B/ 333.7 MB
0.0 B/333.7 MB

Disk used
0.0B
0.0B
0.0B
0.0B
0.0B
0.0B

Active tasks

0
0
0
0
0
0

Failed tasks

o O o o o o

Spark shell application Ul

Complete tasks

2
0
2
0
0
0

Total tasks

o O o N o N

Environment Page

BL]

® 00 | | Spark shell - Environment %\
& C | localhost:4040/environment/ oL B O
J'7
Spork* Stages Storage Environment Executors Spark shell application Ul
Environment

Runtime Information

Name Value
Java Home /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home
Java Version 1.6.0_65 (Apple Inc.)
Scala Home
Scala Version version 2.9.3

Spark Properties
Name Value
spark.driver.host rxin-mbp.hsd1.ca.comcast.net
spark.driver.port 57553
spark.fileserver.uri http://192.168.11.55:57556
spark.hostPort rxin-mbp.hsd1.ca.comcast.net:57553
spark.httpBroadcast.uri http://192.168.11.55:57555

spark.repl.class.uri http://192.168.11.55:57552

Stage Information

® OO /|| Spark shell - Spark Stages x

€& C' | localhost:4040/stages/

o B

SPQﬁ‘(\Z Stages Storage Environment Executors

Spark Stages

Total Duration: 3.8 m
Scheduling Mode: FIFO
Active Stages: 0
Completed Stages: 2
Failed Stages: 0

Active Stages (0)

Stage Id Description Submitted Duration
Completed Stages (2)
Stage Id Description Submitted

0 count at <console>:13 2013/12/02 21:07:55

1 reduceByKey at <console>:13 2013/12/02 21:07:55

Failed Stages (0)

Stage Id Description Submitted Duration

Spark shell application Ul

Tasks: Succeeded/Total Shuffle Read Shuffle Write
Duration Tasks: Succeeded/Total Shuffle Read Shuffle Write
83 ms 2/2 754.0B
345 ms 2/2 1506.0 B
Tasks: Succeeded/Total Shuffle Read Shuffle Write

Task Breakdown

® 00 /| | Spark shell - Details for St x

.

L) C' |] localhost:4040/stages/stage/?id=3

D~ s

Spoi-i(\z Stages Storage Environment Executors

Details for Stage 3

CPU time: 449 ms
Shuffle write: 14.7 KB

Summary Metrics for 100 Completed Tasks

Metric Min

Duration 1ms

Shuffle Write 150.0 B
Tasks

Task Index TaskID Status

SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

© oo o N o

SUCCESS

(o) NN &) BN S \S BN}

10 SUCCESS

- 44 olLiINAAroo

Locality Level

PROCESS_LOCAL
PROCESS_LOCAL
PROCESS_LOCAL
PROCESS_LOCAL
PROCESS_LOCAL
PROCESS_LOCAL
PROCESS_LOCAL

nPAArFOO | ANAL

25th percentile
2ms

151.0B

Executor

rxin-mbp.hsd1.ca.comcast.net
rxin-mbp.hsd1.ca.comcast.net
rxin-mbp.hsd1.ca.comcast.net
rxin-mbp.hsd1.ca.comcast.net
rxin-mbp.hsd1.ca.comcast.net
rxin-mbp.hsd1.ca.comcast.net

rxin-mbp.hsd1.ca.comcast.net

Median
2ms

151.0B

Launch Time
2013/12/02 21
2013/12/02 21
2013/12/02 21
2013/12/02 21
2013/12/02 21
2013/12/02 21
2013/12/02 21

AN4Nn/4ninn N4

112:32
112:32
112:32
112:32
112:32
112:32
112:32

ANn.AN

75th percentile
2ms

151.0B

Duration GC Time
16 ms

16 ms

67 ms

55 ms

60 ms

2ms

2ms

A

Spark shell application Ul

Max

67 ms

151.0B
Write Time Shuffle Write Errors
0 ms 151.0B
0ms 1561.0B
0ms 151.0B
0ms 151.0B
0 ms 1561.0B
0ms 151.0B
0ms 151.0B

N o

4c4 NP

App Ul Features

Stages show where each operation
originated in code

All tables sortable by task length, locations,
etc

Metrics

Configurable metrics based on Coda Hale's
Metrics library

Many Spark components can report metrics
(driver, executor, application)

Outputs: REST, CSV, Ganglia, JMX, JSON
Servlet

Metrics

More detalils:
http://spark.incubator.apache.org/docs/
latest/monitoring.html

More Information

Official docs:
http://spark.incubator.apache.org/docs/latest

Look for Apache Spark parcel in CDH

