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AMPLab: Collaborative Big Data Research

Launched: January 201 |, 6 year planned duration lab
Personnel: ~60 Students, Postdocs, Faculty and Staff

Expertise: Systems, Networking, Databases and Machine Learning
In-House Apps: Crowdsourcing, Mobile Sensing, Cancer Genomics
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AMPLab: Integrating Diverse
Resources

e Machine Learning, Statistical Methods
e Prediction, Business Intelligence

e Clusters and Clouds
e Warehouse Scale Computing

e Crowdsourcing, Human Computation
e Data Scientists, Analysts




Big Data Landscape — Our Corner

Database Landscape Map — December 2012
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Berkeley Data Analytics Stack

Shark .
o (SQL) BlinkDB GraphX MLBase
Alpha or
Soon

Spark

e Streaming

Released
BSD/Apache

3rd Party Tachyon
Open Source
HDFS / Hadoop Storage
Apache Mesos YARN Resource Manager

Apache Spark




OurView of the Big Data Challenge

Something’s
gotta give...

assive
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and
Growing

Answer
Quality



Speed/Accuracy Trade-off
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inkDB

A data analysis (warehouse) system that ...
— builds on Shark and Spark

— returns fast, approximate answers with error bars
by executing queries on small samples of data

— Is compatible with Apache Hive (storage, serdes,
UDFs, types, metadata) and supports Hive's SQL-
ike query structure with minor modifications

Agarwal et al., BlinkDB: Queries with Bounded Errors and Bounded Response Times
on Very Large Data. ACM EuroSys 2013, Best Paper Award



Sampling Vs. No Sampling
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Sampling Vs. No Sampling
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People Resources

Hybrid Human-Machine rowdsaL Resuls
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Supporting Data Scientists
* Interactive Analytics
* Visual Analytics
* C(ollaboration

Franklin et al., CrowdDB: Answering Queries with Crowdsourcing, SIGMOD 2011
Wang et al., CrowdER: Crowdsourcing Entity Resolution, VLDB 2012

Trushkowsky et al., Crowdsourcing Enumeration Queries, ICDE 2013 Best Paper Award '*



Less 1s More!?
Data Cleaning + Sampling
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J. Wang et al., Work in Progress



Working with the Crowd
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Incentives

Fatigue, Fraud, & other Failure Modes
Latency & Prediction
Work Conditions
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Interface Impacts Answer Quality
Task Structuring
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~ The 3E's of Big Data:
-xtreme Elasticity Everywhere

e Approximate Answers
e ML Libraries and Ensemble Methods
* Active Learning

e Cloud Computing — esp. Spot Instances
Multi-tenancy
e Relaxed (eventual) consistency/ Multi-version methods

e Dynamic Task and Microtask Marketplaces
e Visual analytics
e Manipulative interfaces and mixed mode operation



The Research Challenge

AMP Integration +

Extreme Elasticity +
o [radeofts +

More Sophisticated Analytics

= Extreme Complexity




Can we lake a
Declarative Approach!?

4+ Can reduce complexity through automation
+ End Users tell the system what they want, not how to get it

SQL Result MQL Model




Goals of MLbase

[ MLbase J

) 4

1. Easy scalable ML development (ML Developers)

Systems Insights

2. Easy/user-friendly ML at scale (End Users)

Along the way, we gain insight into data intensive
computing



A Declarative Approach

+ End Users tell the system what they want, not how to get it

vary =

var (fr

, summary) = doClassify(X, y)
NS



MLBase — Query Compilation

(1) ML Query
var X = load("als_clinical",2 to 10)
var y = load("als_clinical", 1)
var (fn-model, summary) = doClassify(X, y)
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(2) Generic Logical Plan
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(3) Optimized Plan
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Query Optimizer: A Search Problem

0 Predicted Accuracy of Best Model

+ System is responsible for .
searching through model . -”r 5min
space
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initial
release:
Spring
2014

Released ‘/// \"\‘\‘
July 2013 EEEEEE



OtherThmgs We're Working On

GraphX Unifying Graph Parallel & Data Parallel Analytics

. OLTP and Serving Workloads

MDCC: Mutli Data Center Consistency
* HAT: Highly-Available Transactions
* PBS: Probabllistically Bounded Staleness
* PLANET: Predictive Latency-Aware Networked Transactions

* Fast Matrix Manipulation Libraries
* (Cold Storage, Partitioning, Distributed Caching
* Machine Learning Pipelines, GPUs,



t's Been a Busy 3 Years

MESOS quﬁl(\z

Lightning-Fast Cluster Computing

CrowdDb



Be Sure to Join us for the Next 3

lab

amplab.cs.berkeley.edu

@amplab



