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Summary

® Who are we"?
® What is the problem we needed to solve?
® How was Spark essential to the solution?

® What can Spark enable us to do in the future?
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Some context...

@ Quality has a huge impact on user engagement in online
video
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What we do

® Optimize end user online video experience

@ Provide historical and real-time metrics for online video
providers and distributers

® Maximize quality through
= Adaptive Bit Rate (ABR)
= Content Distribution Network (CDN) switching

® Enable Multi-CDN infrastructure with fine grained traffic
shaping control
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What traffic do we see?

o About four billion streams per month

o Mostly premium content providers (e.g., HBO, ESPN, BSkyB, CNTV) but
also User Generated Video sites (e.g., Ustream)

o Live events (e.g., NCAA March Madness, FIFA World Cup, MLB), short
VoDs (e.g., MSNBC), and long VoDs (e.g., HBO, Hulu)

o Various streaming protocols (e.g., Flash, SmoothStreaming, HLS, HDS), and
devices (e.g., PC, iOS devices, Roku, XBOX, ...)

o Traffic from all major CDNSs, including ISP CDNs (e.g., Verizon, AT&T)
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The Truth

@ Video delivery over the internet is hard
= There is a big disconnect between viewers and publishers
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The Viewer’s Perspective

Start of the
viewer’s
perspective

Video Player

ISP & Home Net
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The Provider’s Perspective

Video
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Hosting Content Delivery

Networks (CDN)
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Closing the loop
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The Truth

® Video delivery over the internet is hard

CDN variability makes it nearly impossible to deliver high quality everywhere with
just one CDN
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The Truth

@ Video delivery over the internet is hard

CDN variability makes it nearly impossible to deliver high quality all the time with
just one CDN
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The Idea

® Where there is heterogeneity, there is room for
optimization

@ For each viewer we want to decide what CDN to stream
from

@ But it’s difficult to model the internet, and things can
rapidly change over time

@® So we will make this decision based on the real-time data
that we collect
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The Idea

® For each CDN, partition clients N
v 2 4O I

by City

® For each partition compute
Buffering Ratio

Avg. buff ratio of users
in Region[1] streaming
from CDN1

Avg. buff ratio of users
in Region[1] streaming
from CDN2
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The Idea

ew York

® For each partition select best CDON
and send clients to this CDN
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The Idea
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The Idea
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The Idea
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The Idea

® What if there are changes in £E 28
$ & 28 =

performance?
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The Idea
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How?

® Coordinator implementing an optimization algorithm that
dynamically selects a CDN for each client based on
= Individual client
= Aggregate statistics ~ control

= Content owner policies { Coordinator J‘

@ All based on real-
time data

Business Policies

Continuous measurements

Contentﬁbwners
(CMS & Origin) Clients
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What processing framework do we use?

@ Twitter Storm
= [Fault tolerance model affects data accuracy
= Non-deterministic streaming model

@ Roll our own
= Too complex
= No need to reinvent the wheel

® Spark
= Easily integrates with existing Hadoop architecture
= Flexible, simple data model
= Writing map() is generally easier than writing update()
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Spark Cluster
P ® Compute

performance
metrics in spark
cluster

@ Relay
performance
information to
decision makers

Storage Layer
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Results
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Spark’s Role

® Spark development was incredibly rapid, aided both by its excellent
programming interface and highly active community

@ Expressive:

Develop complex on-line ML decision based algorithm in ~1000 lines of
code

Easy to prototype various algorithms
@ It has made scalability a far more manageable problem

@ After initial teething problems, we have been running Spark in a
production environment reliably for several months.
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Problems we faced

@ Silent crashes...
@ Often difficult to debug, requiring some tribal knowledge

@ Difficult configuration parameters, with sometimes inexplicable
results

® Fundamental understanding of underlying data model was essential
to writing effective, stable spark programs
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Enforcing constraints on optimization

® Imagine swapping clients until an
optimal solution is reached
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Enforcing constraints on top of optimization

® Solution is found after clients have already joined.

® Therefore we need to parameterize solution to clients
already seen for online use.

® Need to compute an LP on real time data

® Spark Supported it
= 20 LPs
= Each with 4000 decisions variables and 350 constraints
= 5 seconds.
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Tuning

® Can’t select a CDN based solely on one metric.
= Select utility functions that best predict engagement

® Confidence in a decision, or evaluation will depend on
how much data we have collected

= Need to tune time window
= Select different attributes for separation
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Tuning

® Need to validate algorithm changes quickly

® Simulation of algorithm offline, is essential
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Spark Usage for Simulation HDFS with Production traces

Load production traces with
randomized initial decisions

® Generate decision table (with
artificial delay)

@® Produce simulated decision set

@ Evaluate decisions against
actual traces to estimate
expected quality improvement
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In Summary

® Spark was able to support our initial requirement of fast
fault tolerant performance computation for an on-line
decision maker

® New complexities like LP calculation ‘just worked’ in the
existing architecture

® Spark has become an essential tool in our software stack
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Thank you!
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Questions?
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What’s Next?

@ Qur pilot Spark application is a success, so what’s next?
® Many Spark applications in our roadmap

@ Unification of real-time, near-real-time, and offline stacks
using Spark and Streaming Spark
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Video Player Agents

Video events Control messages

1-2 Real-time video
seconds session states
ephemeral

In-house Real-tlm(? video
streaming metrics
system

Real-time stack

Gateway
Historical video
session states
Historical video
metrics
Offline stack

5min, hourly,
daily, monthly

persistent

Run on
Hadoop



It looks good, except

® The devil is In the detalils
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What Cause Us Headaches?

® Streaming model is complicated

@ Harder to reason about than batch model; cause more
bugs

® Non-deterministic: harder to debug

® Maintain two code bases is costly

@ Write code twice

® Qut-of-sync implementation causes discrepancy
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Streaming Spark to The Rescue

® Streaming Spark is a “streaming” system with a batch
model under the hood

® Short summary: Spark and Streaming Spark provide unified
batch model, unified API, and unified fault tolerance model

@ For application, write code once, and run in both real-time
and offline mode with different batch sizes

® Can provide exactly-once semantics

Lines of code for custom stack Lines of code for unified stack

18K real time stack, 10K Hadoop 5K shared Spark application code
application code, 10k shared code, in Scala + Java

all in Java
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Every Design Decision Has A Tradeoff

® Streaming Spark does a good job optimizing for small batches

@ However, we still see a 2x performance degradation.

Real-time Stack Performance for Real-time Stack Performance for
custom stack unified stack

200K concurrent sessions per 100K concurrent session per
c3.2xlarge node c3.2xlarge node

@ More work needed on API, e.g., update config file for every batch
@ Better input fault tolerance especially if input is from Kafka

@ Dynamic batch size depending on load
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An Alternative Solution From Twitter

® Twitter Storm, Trident, and SummingBird
® Storm is the popular streaming framework

@ Trident provides batch processing and exactly-once
semantics

® SummingBird provides write-code-once capability

® Streaming Spark is designed to do batch processing from
scratch.

@ Twitter systems are probably more battle-tested
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Conclusion

® Simplicity rules and that’s why we like the simple batch
model

® Streaming Spark and Spark enable us to unify real-time,
near-real-time, and offline stacks under the simple batch
model

@ Extra resource are required, but can be justified by lower
code maintenance cost and faster dev iterations
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Thanks!

® We have many projects planned on Spark platform.

® Stop by our booth if you are interested.
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Questions?
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