
Using Spark @ Conviva

Spark Summit 2013

Summary

!   Who are we?

!   What is the problem we needed to solve?

!   How was Spark essential to the solution?

!   What can Spark enable us to do in the future?

Some context…

!   Quality has a huge impact on user engagement in online
video

What we do

!   Optimize end user online video experience

!   Provide historical and real-time metrics for online video

providers and distributers

!   Maximize quality through

§  Adaptive Bit Rate (ABR)

§  Content Distribution Network (CDN) switching

!   Enable Multi-CDN infrastructure with fine grained traffic
shaping control

!   About four billion streams per month

!   Mostly premium content providers (e.g., HBO, ESPN, BSkyB, CNTV) but

also User Generated Video sites (e.g., Ustream)

!   Live events (e.g., NCAA March Madness, FIFA World Cup, MLB), short

VoDs (e.g., MSNBC), and long VoDs (e.g., HBO, Hulu)

!   Various streaming protocols (e.g., Flash, SmoothStreaming, HLS, HDS), and

devices (e.g., PC, iOS devices, Roku, XBOX, …)

!   Traffic from all major CDNs, including ISP CDNs (e.g., Verizon, AT&T)

What traffic do we see?

The Truth

!   Video delivery over the internet is hard

§  There is a big disconnect between viewers and publishers

The Viewer’s Perspective

ISP	
 &	
 Home	
 Net	

Video	
 Player	
 	

Start	
 of	
 the	

viewer’s	

perspec1ve	

?	

Video	

Source	

Encoders	
 &	

Video	

Servers	

CMS	
 and	

Hos;ng	
 Content	
 Delivery	

Networks	
 (CDN)	

The Provider’s Perspective

?

Video	

Source	

Encoders	
 &	

Video	

Servers	

CMS	
 and	

Hos;ng	
 Content	
 Delivery	

Networks	
 (CDN)	

ISP	
 &	
 Home	
 Net	

Video	
 Player	
 	

Closing the loop

The Truth

!   Video delivery over the internet is hard

§  CDN variability makes it nearly impossible to deliver high quality everywhere with

just one CDN

SIGCOMM ‘12

The Truth

!   Video delivery over the internet is hard

§  CDN variability makes it nearly impossible to deliver high quality all the time with

just one CDN

SIGCOMM ‘12

The Idea

!   Where there is heterogeneity, there is room for
optimization

!   For each viewer we want to decide what CDN to stream
from

!   But it’s difficult to model the internet, and things can
rapidly change over time

!   So we will make this decision based on the real-time data
that we collect

CDN1	
 (buffering	
 ra,o)	

CDN2	
 (buffering	
 ra,o)	

The Idea

Avg.	
 buff	
 ra;o	
 of	
 users	

in	
 Region[1]	
 streaming	

from	
 CDN1	

Avg.	
 buff	
 ra;o	
 of	
 users	

in	
 Region[1]	
 streaming	

from	
 CDN2	

!   For each CDN, partition clients
by City

!   For each partition compute
Buffering Ratio

Se
aL

le
	

Sa
n	

Fr
an
ci
sc
o	

N
ew

	
 Y
or
k	

Lo
nd

on
	

Ho
ng
	
 K
on

g	

The Idea

!   For each partition select best CDN
and send clients to this CDN

CDN1	
 (buffering	
 ra,o)	

CDN2	
 (buffering	
 ra,o)	

Se
aL

le
	

Sa
n	

Fr
an
ci
sc
o	

N
ew

	
 Y
or
k	

Lo
nd

on
	

Ho
ng
	
 K
on

g	

The Idea

!   For each partition select best CDN
and send clients to this CDN

CDN1	
 (buffering	
 ra,o)	

CDN2	
 (buffering	
 ra,o)	

CDN2	
 >>	
 CDN1	

Se
aL

le
	

Sa
n	

Fr
an
ci
sc
o	

N
ew

	
 Y
or
k	

Lo
nd

on
	

Ho
ng
	
 K
on

g	

The Idea

!   For each partition select best CDN
and send clients to this CDN

CDN1	
 (buffering	
 ra,o)	

CDN2	
 (buffering	
 ra,o)	

Se
aL

le
	

Sa
n	

Fr
an
ci
sc
o	

N
ew

	
 Y
or
k	

Lo
nd

on
	

Ho
ng
	
 K
on

g	

Best	
 CDN	
 (buffering	
 ra,o)	

The Idea

CDN1	
 (buffering	
 ra,o)	

CDN2	
 (buffering	
 ra,o)	

!   For each partition select best CDN
and send clients to this CDN

Se
aL

le
	

Sa
n	

Fr
an
ci
sc
o	

N
ew

	
 Y
or
k	

Lo
nd

on
	

Ho
ng
	
 K
on

g	

The Idea

Best	
 CDN	
 (buffering	
 ra,o)	

CDN1	
 (buffering	
 ra,o)	

CDN2	
 (buffering	
 ra,o)	

!   What if there are changes in
performance?
 Se

aL
le
	

Sa
n	

Fr
an
ci
sc
o	

N
ew

	
 Y
or
k	

Lo
nd

on
	

Ho
ng
	
 K
on

g	

The Idea

Best	
 CDN	
 (buffering	
 ra,o)	

CDN1	
 (buffering	
 ra,o)	

CDN2	
 (buffering	
 ra,o)	

!   Use online algorithm respond to
changes in the network.
 Se

aL
le
	

Sa
n	

Fr
an
ci
sc
o	

N
ew

	
 Y
or
k	

Lo
nd

on
	

Ho
ng
	
 K
on

g	

Content	
 owners	
 	

(CMS	
 &	
 Origin)	

CDN	
 1	

CDN	
 2	

CDN	
 3	

Clients	

Coordinator	

Co
n;

nu
ou

s	
 m
ea
su
re
m
en

ts
	

Bu
sin

es
s	
 P

ol
ic
ie
s	

control	

How?

!   Coordinator implementing an optimization algorithm that
dynamically selects a CDN for each client based on

§  Individual client

§  Aggregate statistics

§  Content owner policies

!   All based on real-
time data

What processing framework do we use?

!   Twitter Storm

§  Fault tolerance model affects data accuracy

§  Non-deterministic streaming model

!   Roll our own

§  Too complex

§  No need to reinvent the wheel

!   Spark

§  Easily integrates with existing Hadoop architecture

§  Flexible, simple data model

§  Writing map() is generally easier than writing update()

Spark Usage for Production

Decision	

Maker	

Decision	

Maker	

Decision	

Maker	

!   Compute
performance
metrics in spark
cluster

!   Relay
performance
information to
decision makers

Spark	
 Cluster	

Spark	

Node	

Spark	

Node	

Spark	

Node	

Spark	

Node	
 Spark	

Node	

Storage	
 Layer	

Clients	

Results

75%	

80%	

85%	

90%	

95%	

100%	

0	
 500	
 1000	
 1500	
 2000	
 2500	

Non-­‐buffering	
 views	

Average	
 Bitrate	
 (Kbps)	

Spark’s Role

!   Spark development was incredibly rapid, aided both by its excellent

programming interface and highly active community

!   Expressive:

§  Develop complex on-line ML decision based algorithm in ~1000 lines of
code

§  Easy to prototype various algorithms

!   It has made scalability a far more manageable problem

!   After initial teething problems, we have been running Spark in a

production environment reliably for several months.

Problems we faced

!   Silent crashes…

!   Often difficult to debug, requiring some tribal knowledge

!   Difficult configuration parameters, with sometimes inexplicable

results

!   Fundamental understanding of underlying data model was essential

to writing effective, stable spark programs

Enforcing constraints on optimization

!   Imagine swapping clients until an
optimal solution is reached

Constrained	
 Best	
 CDN	
 	

(buffering	
 ra,o)	

CDN1	
 (buffering	
 ra,o)	

CDN2	
 (buffering	
 ra,o)	

50%	

50%	

Enforcing constraints on top of optimization

!   Solution is found after clients have already joined.

!   Therefore we need to parameterize solution to clients

already seen for online use.

!   Need to compute an LP on real time data

!   Spark Supported it

§  20 LPs

§  Each with 4000 decisions variables and 350 constraints

§  5 seconds.

Tuning

!   Can’t select a CDN based solely on one metric.

§  Select utility functions that best predict engagement

!   Confidence in a decision, or evaluation will depend on
how much data we have collected

§  Need to tune time window

§  Select different attributes for separation

Tuning

!   Need to validate algorithm changes quickly

!   Simulation of algorithm offline, is essential

Spark Usage for Simulation

Spark	

Node	

Spark	

Node	

Spark	

Node	

Spark	

Node	

Spark	

Node	

HDFS	
 with	
 Produc;on	
 traces	

!   Load production traces with
randomized initial decisions

!   Generate decision table (with
artificial delay)

!   Produce simulated decision set

!   Evaluate decisions against

actual traces to estimate
expected quality improvement

In Summary

!   Spark was able to support our initial requirement of fast
fault tolerant performance computation for an on-line
decision maker

!   New complexities like LP calculation ‘just worked’ in the
existing architecture

!   Spark has become an essential tool in our software stack

Thank you!

Questions?

What’s Next?

!   Our pilot Spark application is a success, so what’s next?

!   Many Spark applications in our roadmap

!   Unification of real-time, near-real-time, and offline stacks
using Spark and Streaming Spark

Current Dual-Stack Architecture

Video	
 Player	
 Agents	

Gateway	

Real-­‐1me	
 video	

session	
 states	

Real-­‐1me	
 video	

metrics	

Historical	
 video	

session	
 states	

Historical	
 video	

metrics	

Real-­‐1me	
 stack	
 Offline	
 stack	

1-­‐2	

seconds	

	

ephemeral	
 	

	

In-­‐house	

streaming	

system	

5min,	
 hourly,	

daily,	
 monthly	

	

persistent	

	

Run	
 on	

Hadoop	

Video	
 events	
 Control	
 messages	

It looks good, except

!  The devil is in the details

What Cause Us Headaches?

!   Streaming model is complicated

!   Harder to reason about than batch model: cause more

bugs

!   Non-deterministic: harder to debug

!   Maintain two code bases is costly

!   Write code twice

!   Out-of-sync implementation causes discrepancy

Streaming Spark to The Rescue

!   Streaming Spark is a “streaming” system with a batch
model under the hood

!   Short summary: Spark and Streaming Spark provide unified
batch model, unified API, and unified fault tolerance model

!   For application, write code once, and run in both real-time
and offline mode with different batch sizes

!   Can provide exactly-once semantics

Lines	
 of	
 code	
 for	
 custom	
 stack	
 Lines	
 of	
 code	
 for	
 unified	
 stack	

18K	
 real	
 ;me	
 stack,	
 10K	
 Hadoop	

applica;on	
 code,	
 10k	
 shared	
 code,	

all	
 in	
 Java	

5K	
 shared	
 Spark	
 applica;on	
 code	

in	
 Scala	
 +	
 Java	

Every Design Decision Has A Tradeoff

!   Streaming Spark does a good job optimizing for small batches

!   However, we still see a 2x performance degradation.

!   More work needed on API, e.g., update config file for every batch

!   Better input fault tolerance especially if input is from Kafka

!   Dynamic batch size depending on load

Real-­‐1me	
 Stack	
 Performance	
 for	

custom	
 stack	

Real-­‐1me	
 Stack	
 Performance	
 for	

unified	
 stack	

200K	
 concurrent	
 sessions	
 per	

c3.2xlarge	
 node	

100K	
 concurrent	
 session	
 per	

c3.2xlarge	
 node	

An Alternative Solution From Twitter

!   Twitter Storm, Trident, and SummingBird

!   Storm is the popular streaming framework

!   Trident provides batch processing and exactly-once
semantics

! SummingBird provides write-code-once capability

!   Streaming Spark is designed to do batch processing from
scratch.

!   Twitter systems are probably more battle-tested

Conclusion

!   Simplicity rules and that’s why we like the simple batch
model

!   Streaming Spark and Spark enable us to unify real-time,
near-real-time, and offline stacks under the simple batch
model

!   Extra resource are required, but can be justified by lower
code maintenance cost and faster dev iterations

Thanks!

!   We have many projects planned on Spark platform.

!   Stop by our booth if you are interested.

Questions?

