Productionalizing
Spark Streaming

Spark Summit 2013
Ryan Weald
@rweald

@rweald

What We're Going to Cover

eWhat we do and Why we choose Spark
eFault tolerance for long lived streaming jobs
e Common patterns and functional abstractions

e Testing before we “do it live”

@rweald

Special focus on
common patterns and
their solutions

What is Sharethrough?

Advertising for the Modern Internet

Form Function

@rweald

What is Sharethrough?

| I = Jo
' Sharethrough President
| I Featured on Bloomberg
Two D peeces of news prompte

.....

Memorable Quotes from The
Native Advertising Summit

WiIth Over 300 MIeNndees and sDeRvers

the top soCl plforms, AAVertisng agencies

MOCHANNKK ISIP 2. 005285 ALY

g *& We Power Native Advertising

i The future of advertising will be about
thoughtiully integrating brand content on
sies pecple love to go to
o POMNLORLD BY SHARLTHBOUGH

2k Report: Native Gaining Steam
rFon Native adwertising has emerged as a solution
y 4 10 the Conmvergence Detween quakt) et

HAWY

N “a.' Real Issues Make for Really
od /-2 € 2 A4] Good Content
bUFC’{l (,A/” CLICK ME m Check out the three “issues ™ videos below

All ire incredily well Crafted, and they really

@rweald

Why Spark Streaming?

Why Spark Streaming

elLiked theoretical foundation of mini-batch
eScala codebase + functional API
eYoung project with opportunities to contribute

eBatch model for iterative ML algorithms

@rweald

Great...
Now productionalize it

Fault Tolerance

Keys to Fault Tolerance

1.Receiver fault tolerance

2.Monitoring job progress

Receiver Fault Tolerance

e Use Actors with supervisors

eUse self healing connection pools

@rweald

Use Actors

class RabbitMQStreamReceiver (uri:String, exchangeName: String,
routingKey: String) extends Actor with Receiver with Logging {

implicit val system = ActorSystem()
override def preStart() = {

//Your code to setup connections and actors

//Include 1inner class to process messages

¥
def receive: Recelve = {
case _ => logInfo("unknown message")
¥
¥

@rweald

Track All Outputs

e ow watermarks - Google MillWheel
e Database updated_at

e Expected output file size alerting

@rweald

Common Patterns
&
Functional
Programming

Common Job Pattern

Map -> Aggregate ->Store

Mapping Data

1hputData.map { rawRequest =>
val params = QueryParams.parse(rawRequest)
(params.getOrElse("beaconType”, "unknown"), 1L)

¥

@rweald

Aggregation

Basic Aggregation

//beacons 1s DStream[String, Long]
//example Seqg(("click™, 1L), ("click", 1L))
val sum: (Long, Long) => Long = _ +
beacons.reduceByKey(sum)

@rweald

What Happens when
we want to sum
multiple things?

Long Basic Aggregation

val inputData = Seq(
("user_1",(C1L, 1L, 1L)),
("user_1",(2L, 2L, 2L))
)
def sum(l: (Long, Long, Long),
r: (Long, Long, Long)) = {
(L..1 +r..1, 1.2 +r..2, 1._.3 +r._3)

5
1nhputData.reduceByKey(sum)

@rweald

Now Sum 4 Ints
iInstead

(/sirg) / 1—L

Monoids to the Rescue

WTF is a Monoid?

trait Monoid[T] {

def zero: T

def plusCr: T, L: T): T
$

* Just need to make sure plus is associative.
(1+5)+2==(2+1)+5

@rweald

Monoid Based Aggregation

object LongMonoid extends Monoid[(Long, Long, Long)]
{
def zero = (0, 0, 0)
def plus(r: (Long, Long, Long),
1: (Long, Long, Long)) =
(L..1 +r..1, 1.2 +r._2, 1.3

¥
¥

{
+r._3)

inputData.reduceByKey(LongMonid.plus(_, _))

@rweald

Twitter Algebird

http://github.com/twitter/algebird

http://github.com/twitter/algebird

Algebird Based Aggregation

import com.twitter.algebird._
val aggregator = implicitly[Monoid[(Long,Long, Long)]]

inputData. reduceByKey(aggregator.plus(_, _))

@rweald

How many unique
users per publisher?

Too big for memory
based naive Map

HyperLogLog FIW

HLL Aggregation

import com.twitter.algebird._
val aggregator = new HyperLoglLogMonoid(12)
1nputData.reduceByKey(Caggregator.plus(_, _))

@rweald

Monoids == Reusable
Aggregation

Common Job Pattern

Map -> Aggregate ->Store

Store

How do we store the
results?

Storage API Requirements

eIncremental updates (preferably associative)
ePluggable to support “big data” stores

e Allow for testing jobs

@rweald

Storage API

trait MergeableStore[K, V] {
def get(key: K): V
def putCkv: (K,V)): V
/*
* Should follow same associative property
* as our Monoid from earlier
*/
def mergeCkv: (K,V)): V
¥

@rweald

Twitter Storehaus

http://github.com/twitter/storehaus

http://github.com/twitter/algebird

Storing Spark Results

def saveResults(result: DStream[String, Long],
store: RedisStore[String, Long]l) = {
result.foreach { rdd =>
rdd.foreach { element =>
val (keys, value) = element
store.merge(keys, impressions)

¥
¥

@rweald

Everyone can benefit

Potential API additions?

class PairDStreamFunctions[K, V] {
def aggregateByKey(aggregator: Monoid[V])
def store(store: MergeableStore[K, V])

¥

@rweald

Twitter Summingbird

http://github.com/twitter/summingbird

*https://github.com/twitter/summingbird/issues/387

@rweald

http://github.com/twitter/algebird
https://github.com/twitter/summingbird/issues/387

Testing Your Jobs

Testing best Practices

eTry and avoid full integration tests
eUse in-memory stores for testing
e Keep logic outside of Spark

eUse Summingbird in memory platform???

@rweald

Thank You

Ryan Weald
@rweald

