
@rweald

Productionalizing
Spark Streaming

Spark Summit 2013
Ryan Weald

@rweald

@rweald

What We’re Going to Cover

•What we do and Why we choose Spark

•Fault tolerance for long lived streaming jobs

•Common patterns and functional abstractions

•Testing before we “do it live”

@rweald

Special focus on
common patterns and

their solutions

@rweald

What is Sharethrough?

Advertising for the Modern Internet

FunctionForm

@rweald

What is Sharethrough?

@rweald

Why Spark Streaming?

@rweald

Why Spark Streaming

•Liked theoretical foundation of mini-batch

•Scala codebase + functional API

•Young project with opportunities to contribute

•Batch model for iterative ML algorithms

@rweald

Great...
Now productionalize it

@rweald

Fault Tolerance

@rweald

Keys to Fault Tolerance

1.Receiver fault tolerance

2.Monitoring job progress

@rweald

Receiver Fault Tolerance

•Use Actors with supervisors

•Use self healing connection pools

@rweald

Use Actors

class RabbitMQStreamReceiver (uri:String, exchangeName: String,
routingKey: String) extends Actor with Receiver with Logging {	
!
 implicit val system = ActorSystem()	
 override def preStart() = {	
 //Your code to setup connections and actors	
 	
 //Include inner class to process messages	
 }	
!
 def receive: Receive = {	
 case _ => logInfo("unknown message")	
 }	
}

@rweald

Track All Outputs

•Low watermarks - Google MillWheel

•Database updated_at

•Expected output file size alerting

@rweald

Common Patterns
&

Functional
Programming

@rweald

Map -> Aggregate ->Store

Common Job Pattern

@rweald

Mapping Data

inputData.map { rawRequest => 	
 val params = QueryParams.parse(rawRequest)	
 (params.getOrElse("beaconType", "unknown"), 1L)	
}

@rweald

Aggregation

@rweald

Basic Aggregation

//beacons is DStream[String, Long]	
//example Seq(("click", 1L), ("click", 1L))	
val sum: (Long, Long) => Long = _ + _	
beacons.reduceByKey(sum)

@rweald

What Happens when
we want to sum
multiple things?

@rweald

Long Basic Aggregation

val inputData = Seq(
 ("user_1",(1L, 1L, 1L)), 	
 ("user_1",(2L, 2L, 2L))	
)	
def sum(l: (Long, Long, Long), 	
 r: (Long, Long, Long)) = {	
 (l._1 + r._1, l._2 + r._2, l._3 + r._3)	
}	
inputData.reduceByKey(sum)

@rweald

Now Sum 4 Ints
instead

!

(ﾉಥ益ಥ）ﾉ ┻━┻

@rweald

Monoids to the Rescue

@rweald

WTF is a Monoid?

trait Monoid[T] {	
 def zero: T	
 def plus(r: T, l: T): T	
}

* Just need to make sure plus is associative.
(1+ 5) + 2 == (2 + 1) + 5

@rweald

Monoid Based Aggregation

object LongMonoid extends Monoid[(Long, Long, Long)]
{	
 def zero = (0, 0, 0)	
 def plus(r: (Long, Long, Long), 	
 l: (Long, Long, Long)) = {	
 (l._1 + r._1, l._2 + r._2, l._3 + r._3)	
 }	
}	
!
inputData.reduceByKey(LongMonid.plus(_, _))

@rweald

Twitter Algebird
!

http://github.com/twitter/algebird

http://github.com/twitter/algebird

@rweald

Algebird Based Aggregation

import com.twitter.algebird._	
val aggregator = implicitly[Monoid[(Long,Long, Long)]]	
!
inputData.reduceByKey(aggregator.plus(_, _))

@rweald

How many unique
users per publisher?

@rweald

Too big for memory
based naive Map

@rweald

HyperLogLog FTW

@rweald

HLL Aggregation

import com.twitter.algebird._	
val aggregator = new HyperLogLogMonoid(12)	
inputData.reduceByKey(aggregator.plus(_, _))

@rweald

Monoids == Reusable
Aggregation

@rweald

Common Job Pattern

Map -> Aggregate ->Store

@rweald

Store

@rweald

How do we store the
results?

@rweald

Storage API Requirements

•Incremental updates (preferably associative)

•Pluggable to support “big data” stores

•Allow for testing jobs

@rweald

Storage API

trait MergeableStore[K, V] {	
 def get(key: K): V	
 def put(kv: (K,V)): V	
 /*	
 * Should follow same associative property	
 * as our Monoid from earlier	
 */	
 def merge(kv: (K,V)): V	
}

@rweald

Twitter Storehaus
!

http://github.com/twitter/storehaus

http://github.com/twitter/algebird

@rweald

Storing Spark Results

def saveResults(result: DStream[String, Long], 	
 store: RedisStore[String, Long]) = {	
 result.foreach { rdd =>	
 rdd.foreach { element =>	
 val (keys, value) = element	
 store.merge(keys, impressions)	
 }	
 } 	
}

@rweald

Everyone can benefit

@rweald

Potential API additions?

class PairDStreamFunctions[K, V] {	
 def aggregateByKey(aggregator: Monoid[V])	
 def store(store: MergeableStore[K, V]) 	
}

@rweald

Twitter Summingbird
!

http://github.com/twitter/summingbird

*https://github.com/twitter/summingbird/issues/387

http://github.com/twitter/algebird
https://github.com/twitter/summingbird/issues/387

@rweald

Testing Your Jobs

@rweald

Testing best Practices

•Try and avoid full integration tests

•Use in-memory stores for testing

•Keep logic outside of Spark

•Use Summingbird in memory platform???

@rweald

Ryan Weald
@rweald

Thank You

