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What We’re Going to Cover

•What we do and Why we choose Spark 

•Fault tolerance for long lived streaming jobs 

•Common patterns and functional abstractions 

•Testing before we “do it live”
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Special focus on 
common patterns and 

their solutions
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What is Sharethrough?

Advertising for the Modern Internet

FunctionForm
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What is Sharethrough?
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Why Spark Streaming?
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Why Spark Streaming

•Liked theoretical foundation of mini-batch 

•Scala codebase + functional API 

•Young project with opportunities to contribute 

•Batch model for iterative ML algorithms
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Great... 
Now productionalize it



@rweald

Fault Tolerance
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Keys to Fault Tolerance

1.Receiver fault tolerance 

2.Monitoring job progress
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Receiver Fault Tolerance

•Use Actors with supervisors 

•Use self healing connection pools
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Use Actors

class RabbitMQStreamReceiver (uri:String, exchangeName: String, 
routingKey: String) extends Actor with Receiver with Logging {	
!
  implicit val system = ActorSystem()	
  override def preStart() = {	
    //Your code to setup connections and actors	
    	
    //Include inner class to process messages	
  }	
!
  def receive: Receive = {	
    case _      => logInfo("unknown message")	
  }	
}
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Track All Outputs

•Low watermarks - Google MillWheel 

•Database updated_at 

•Expected output file size alerting
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Common Patterns 
& 

Functional 
Programming
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Map -> Aggregate ->Store

Common Job Pattern
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Mapping Data

inputData.map { rawRequest => 	
  val params = QueryParams.parse(rawRequest)	
  (params.getOrElse("beaconType", "unknown"), 1L)	
}
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Aggregation
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Basic Aggregation

//beacons is DStream[String, Long]	
//example Seq(("click", 1L), ("click", 1L))	
val sum: (Long, Long) => Long = _ + _	
beacons.reduceByKey(sum)
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What Happens when 
we want to sum 
multiple things?
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Long Basic Aggregation

val inputData = Seq(	
  ("user_1",(1L, 1L, 1L)), 	
  ("user_1",(2L, 2L, 2L))	
)	
def sum(l: (Long, Long, Long), 	
        r: (Long, Long, Long)) = {	
  (l._1 + r._1, l._2 + r._2, l._3 + r._3)	
}	
inputData.reduceByKey(sum)
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Now Sum 4 Ints 
instead 

!

(ﾉಥ益ಥ）ﾉ ┻━┻
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Monoids to the Rescue
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WTF is a Monoid?

trait Monoid[T] {	
  def zero: T	
  def plus(r: T, l: T): T	
}

* Just need to make sure plus is associative. 
(1+ 5) + 2 == (2 + 1) + 5
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Monoid Based Aggregation

object LongMonoid extends Monoid[(Long, Long, Long)] 
{	
  def zero = (0, 0, 0)	
  def plus(r: (Long, Long, Long), 	
           l: (Long, Long, Long)) = {	
    (l._1 + r._1, l._2 + r._2, l._3 + r._3)	
  }	
}	
!
inputData.reduceByKey(LongMonid.plus(_, _))
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Twitter Algebird 
!

http://github.com/twitter/algebird

http://github.com/twitter/algebird
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Algebird Based Aggregation

import com.twitter.algebird._	
val aggregator = implicitly[Monoid[(Long,Long, Long)]]	
!
inputData.reduceByKey(aggregator.plus(_, _))
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How many unique 
users per publisher?
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Too big for memory 
based naive Map
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HyperLogLog FTW
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HLL Aggregation

import com.twitter.algebird._	
val aggregator = new HyperLogLogMonoid(12)	
inputData.reduceByKey(aggregator.plus(_, _))
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Monoids == Reusable 
Aggregation
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Common Job Pattern

Map -> Aggregate ->Store
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Store
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How do we store the 
results?
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Storage API Requirements

•Incremental updates (preferably associative)  

•Pluggable to support “big data” stores 

•Allow for testing jobs
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Storage API

trait MergeableStore[K, V] {	
  def get(key: K): V	
  def put(kv: (K,V)): V	
  /*	
   * Should follow same associative property	
   * as our Monoid from earlier	
   */	
  def merge(kv: (K,V)): V	
}
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Twitter Storehaus 
!

http://github.com/twitter/storehaus

http://github.com/twitter/algebird
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Storing Spark Results

def saveResults(result: DStream[String, Long], 	
  store: RedisStore[String, Long]) = {	
    result.foreach { rdd =>	
      rdd.foreach { element =>	
        val (keys, value) = element	
        store.merge(keys, impressions)	
      }	
    }    	
}



@rweald

Everyone can benefit
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Potential API additions?

class PairDStreamFunctions[K, V] {	
  def aggregateByKey(aggregator: Monoid[V])	
  def store(store: MergeableStore[K, V])  	
}
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Twitter Summingbird 
!

http://github.com/twitter/summingbird

*https://github.com/twitter/summingbird/issues/387

http://github.com/twitter/algebird
https://github.com/twitter/summingbird/issues/387
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Testing Your Jobs
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Testing best Practices

•Try and avoid full integration tests 

•Use in-memory stores for testing 

•Keep logic outside of Spark 

•Use Summingbird in memory platform???
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Ryan Weald 
@rweald

Thank You


