
Real-Time Analytical Processing (RTAP)

Using the Spark Stack

Jason Dai
jason.dai@intel.com

Intel Software and Services Group

Project Overview

Research & open source projects initiated by AMPLab

in UC Berkeley

Intel closely collaborating with AMPLab & the community

on open source development

• Apache incubation since June 2013

• The “most active cluster data processing engine

after Hadoop MapReduce”

Intel partnering with several big websites

• Building next-gen big data analytics using the Spark stack

• Real-time analytical processing (RTAP)

• E.g., Alibaba , Baidu iQiyi, Youku, etc.

BDAS: Berkeley Data Analytics Stack
(Ref: https://amplab.cs.berkeley.edu/software/)

2

https://amplab.cs.berkeley.edu/software/
https://amplab.cs.berkeley.edu/software/

Next-Gen Big Data Analytics

Volume

• Massive scale & exponential growth

Variety

• Multi-structured, diverse sources & inconsistent schemas

Value

• Simple (SQL) – descriptive analytics

• Complex (non-SQL) – predictive analytics

Velocity

• Interactive – the speed of thought

• Streaming/online – drinking from the firehose

3

Next-Gen Big Data Analytics

Volume

• Massive scale & exponential growth

Variety

• Multi-structured, diverse sources & inconsistent schemas

Value

• Simple (SQL) – descriptive analytics

• Complex (non-SQL) – predictive analytics

Velocity

• Interactive – the speed of thought

• Streaming/online – drinking from the firehose

The Spark stack

4

Real-Time Analytical Processing (RTAP)

A vision for next-gen big data analytics

• Data captured & processed in a (semi) streaming/online fashion

• Real-time & history data combined and mined interactively and/or iteratively

– Complex OLAP / BI in interactive fashion

– Iterative, complex machine learning & graph analysis

• Predominantly memory-based computation

 Messaging /
Queue

Stream
Processing

In-Memory

Store
Ad-hoc,

interactive
OLAP / BI

Online Analysis
/ Dashboard Events /

Logs

Low Latency
Processing

Engine
Persistent Storage

NoSQL

Data

Warehouse

Iterative, complex
machine learning &

graph analysis

5

Real-World Use Case #1
(Semi) Real-Time Log Aggregation & Analysis

Logs continuously collected & streamed in

• Through queuing/messaging systems

Incoming logs processed in a (semi) streaming fashion

• Aggregations for different time periods, demographics, etc.

• Join logs and history tables when necessary

Aggregation results then consumed in a (semi) streaming fashion

• Monitoring, alerting, etc.

6

(Semi) Real-Time Log Aggregation: Mini-
Batch Jobs

Server

Mesos

Kafka Spark

Log Collector
Kafka
Client

Server

Mesos

Kafka Spark

Server

Mesos

Kafka Spark

Log Collector
Kafka
Client

…

…

RDBMS

Architecture

• Log collected and published to Kafka continuously

– Kafka cluster collocated with Spark Cluster

• Independent Spark applications launched at regular interval

– A series of mini-batch apps running in “fine-grained” mode on Mesos

– Process newly received data in Kafka (e.g., aggregation by keys) & write results out

In production in the user’s environment today

• 10s of seconds latency

7 For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

(Semi) Real-Time Log Aggregation: Mini-
Batch Jobs

Design decisions

• Kafka and Spark servers collocated

– A distinct Spark task for each Kafka partition, usually reading from local file system cache

• Individual Spark applications launched periodically

– Apps logging current (Kafka partition) offsets in ZooKeeper

– Data of failed batch simply discarded (other strategies possible)

• Spark running in “fine-grained” mode on Mesos

– Allow the next batch to start even if the current one is late

Performance

• Input (log collection) bottlenecked by network bandwidth (1GbE)

• Processing (log aggregation) bottlenecked by CPUs

– Easily scaled to several seconds

8 For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

(Semi) Real-Time Log Aggregation: Spark
Streaming

Kafka
Cluster

Log
Collectors

Spark
Cluster RDBMS

Implications

• Better streaming framework support

– Complex (e.g., stateful) analysis, fault-tolerance, etc.

• Kafka & Spark not collocated

– DStream retrieves logs in background (over network) and caches blocks in memory

• Memory tuning to reduce GC is critical

– spark.cleaner.ttl (throughput * spark.cleaner.ttl < spark mem free size)

– Storage level (MEMORY_ONLY_SER2)

• Lowe latency (several seconds)

– No startup overhead (reusing SparkContext)

9 For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Real-World Use Case #2
Complex, Interactive OLAP / BI

Significant speedup of ad-hoc, complex OLAP / BI

• Spark/Shark cluster runs alongside Hadoop/Hive clusters

• Directly query on Hadoop/Hive data (interactively)

• No ETL, no storage overhead, etc.

In-memory, real-time queries

• Data of interest loaded into memory
create table XYZ tblproperties ("shark.cache" = "true") as select ...

• Typically frontended by lightweight UIs

– Data visualization and exploration (e.g., drill down / up)

10

Time Series Analysis: Unique Event Occurrence

Computing unique event occurrence across the time range

• Input time series
 <TimeStamp, ObjectId, EventId, ...>

– E.g., watch of a particular video by a specific user

– E.g., transactions of a particular stock by a specific account

• Output:

 <ObjectId, TimeRange, Unique Event#, Unique Event(≥2)#, …, Unique Event(≥n)#>

– E.g., accumulated unique event# for each day in a week (staring from Monday)

• Implementation

– 2-level aggregation using Spark

• Specialized partitioning, general execution graph, in-memory cached data

– Speedup from 20+ hours to several minutes

1 2 … 7

…

11 For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Time Series Analysis: Unique Event Occurrence

TimeStamp ObjectId EventId …

Input time series

Day
(1, 2, … ,7)

ObjectId EventId 1 ObjectId EventId Count
Day

(1, 2, … ,7)

Aggregation

(shuffle)

Partitioned by (ObjectId, EventId)

Potentially cached in mem

12

Time Series Analysis: Unique Event Occurrence

TimeStamp ObjectId EventId …

Input time series

Day
(1, 2, … ,7)

ObjectId EventId 1 ObjectId EventId Count

TimeRage
[1, D]

Unique Event#

Day
(1, 2, … ,7)

Unique Event(≥2)# Unique Event(≥n)# …

TimeRage
[1, D]

Accumulated
Count

TimeRage
[1, D]

1 ObjectId
1 (if count ≥2)

0 otherwise
…

1 (if count ≥n)
0 otherwise

Aggregation

(shuffle)

Partitioned by (ObjectId, EventId)

ObjectId EventId

ObjectId

Potentially cached in mem

Aggregation

(shuffle)

Partitioned by ObjectId

13

Real-World Use Case #3
Complex Machine Learning & Graph Analysis

Algorithm: complex math operations

• Mostly matrix based

– Multiplication, factorization, etc.

• Sometime graph-based

– E.g., sparse matrix

Iterative computations

• Matrix (graph) cached in memory across iterations

14

Graph Analysis: N-Degree Association

N-degree association in the graph

• Computing associations between two

vertices that are n-hop away

• E.g., friends of friend

Graph-parallel implementation

• Bagel (Pregel on Spark) and GraphX

– Memory optimizations for efficient graph

caching critical

• Speedup from 20+ minutes to <2 minutes

Weight1(u, v) = edge(u, v) ∈ (0, 1)

Weightn(u, v) = Weightn−1(u, x)∗Weight1(x, v) 𝑥→𝑣

15 For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Graph Analysis: N-Degree Association

v w

u

State[w] = list of Weight(x, w)

(for current top K weights to vertex w)

 State[v] = list of Weight(x, v)

(for current top K weights to vertex v)

State[u] = list of Weight(x, u)

(for current top K weights to vertex u)

16

Graph Analysis: N-Degree Association

v w

u

State[w] = list of Weight(x, w)

(for current top K weights to vertex w)

 State[v] = list of Weight(x, v)

(for current top K weights to vertex v)

v w

u

Messages = {D(x, u) =

 Weight(x, w) * edge(w, u)}

(for weight(x, w) in State[w])

Messages = {D(x, u) =

 Weight(x, v) * edge(w, u)}

(for weight(x, v) in State[v])

State[u] = list of Weight(x, u)

(for current top K weights to vertex u)

17

Graph Analysis: N-Degree Association

Weight(u, x) = D(x, u) 𝐷 𝑥,𝑢 𝑖𝑛 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

State[u] = list of Weight(x, u)

(for current top K weights to vertex w)

v w

u

State[w] = list of Weight(x, w)

(for current top K weights to vertex w)

 State[v] = list of Weight(x, v)

(for current top K weights to vertex v)

v w

u

Messages = {D(x, u) =

 Weight(x, w) * edge(w, u)}

(for weight(x, w) in State[w])

Messages = {D(x, u) =

 Weight(x, v) * edge(w, u)}

(for weight(x, v) in State[v])

v w

u

State[u] = list of Weight(x, u)

(for current top K weights to vertex u)

18

Graph Analysis: N-Degree Association

Weight(u, x) = D(x, u) 𝐷 𝑥,𝑢 𝑖𝑛 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

State[u] = list of Weight(x, u)

(for current top K weights to vertex w)

v w

u

State[w] = list of Weight(x, w)

(for current top K weights to vertex w)

 State[v] = list of Weight(x, v)

(for current top K weights to vertex v)

v w

u

Messages = {D(x, u) =

 Weight(x, w) * edge(w, u)}

(for weight(x, w) in State[w])

Messages = {D(x, u) =

 Weight(x, v) * edge(w, u)}

(for weight(x, v) in State[v])

v w

u

State[u] = list of Weight(x, u)

(for current top K weights to vertex u)

19

Contributions by Intel

Netty based shuffle for Spark

FairScheduler for Spark

Spark job log files

Metrics system for Spark

Configurations system for Spark

Spark shell on YARN

Spark (standalone mode) integration with security Hadoop

Byte code generation for Shark

Co-partitioned join in Shark

. . .

 20

Summary

The Spark stack: lightning-fast analytics over Hadoop data

• Active communities and early adopters evolving

– Apache incubator project

• A growing stack: SQL, streaming, graph-parallel, machine learning, …

Work with us on next-gen big data analytics using the Spark stack

• Interactive and in-memory OLAP / BI

• Complex machine learning & graph analysis

• Near real-time, streaming processing

• And many more!

21

22

Notices and Disclaimers

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Intel may make changes to specifications, product descriptions, and plans at any time, without
notice. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them. The information here is subject to change without notice. Do not finalize a design with
this information.

The products described in this document may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order.

All dates provided are subject to change without notice.

Intel and Intel logoare trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013, Intel Corporation. All rights reserved.

