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Project Overview 

Research & open source projects initiated by AMPLab 

in UC Berkeley 

 

Intel closely collaborating with AMPLab & the community 

on open source development 

• Apache incubation since June 2013 

• The “most active cluster data processing engine 

after Hadoop MapReduce” 

 

Intel partnering with several big websites  

• Building next-gen big data analytics using the Spark stack 

• Real-time analytical processing (RTAP) 

• E.g., Alibaba , Baidu iQiyi, Youku, etc. 

 

BDAS: Berkeley Data Analytics Stack 
(Ref: https://amplab.cs.berkeley.edu/software/) 
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Next-Gen Big Data Analytics 

Volume 

• Massive scale & exponential growth 

Variety 

• Multi-structured, diverse sources & inconsistent schemas 

Value 

• Simple (SQL) – descriptive analytics 

• Complex (non-SQL) – predictive analytics 

Velocity 

• Interactive – the speed of thought 

• Streaming/online – drinking from the firehose 
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Real-Time Analytical Processing (RTAP) 
 

A vision for next-gen big data analytics 

• Data captured & processed in a (semi) streaming/online fashion 

• Real-time & history data combined and mined interactively and/or iteratively 

– Complex OLAP / BI in interactive fashion 

– Iterative, complex machine learning & graph analysis 

• Predominantly memory-based computation 

 

 Messaging / 
Queue 

Stream 
Processing 

In-Memory 
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Ad-hoc, 
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Online Analysis  
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Processing 

Engine 
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Real-World Use Case #1 
(Semi) Real-Time Log Aggregation & Analysis 
 
Logs continuously collected & streamed in 

• Through queuing/messaging systems 

Incoming logs processed in a (semi) streaming fashion 

• Aggregations for different time periods, demographics, etc. 

• Join logs and history tables when necessary 

Aggregation results then consumed in a (semi) streaming fashion 

• Monitoring, alerting, etc. 
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(Semi) Real-Time Log Aggregation: Mini-
Batch Jobs 

Server 

Mesos 

Kafka Spark 

Log Collector 
Kafka 
Client 

Server 

Mesos 

Kafka Spark 

Server 

Mesos 

Kafka Spark 

Log Collector 
Kafka 
Client 

… 

… 

RDBMS 

Architecture 

• Log collected and published to Kafka continuously 

– Kafka cluster collocated with Spark Cluster 

• Independent Spark applications launched at regular interval  

– A series of mini-batch apps running in “fine-grained” mode on Mesos 

– Process newly received data in Kafka (e.g., aggregation by keys)  & write results out 

In production in the user’s environment today 

• 10s of seconds latency 
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(Semi) Real-Time Log Aggregation: Mini-
Batch Jobs 

Design decisions 

• Kafka and Spark servers collocated 

– A distinct Spark task for each Kafka partition, usually reading from local file system cache 

• Individual Spark applications launched periodically 

– Apps logging current (Kafka partition) offsets in ZooKeeper 

– Data of failed batch simply discarded (other strategies possible) 

• Spark running in “fine-grained” mode on Mesos 

– Allow the next batch to start even if the current one is late 

Performance 

• Input (log collection) bottlenecked by network bandwidth (1GbE) 

• Processing (log aggregation) bottlenecked by CPUs 

– Easily scaled to several seconds 
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(Semi) Real-Time Log Aggregation: Spark 
Streaming 

Kafka 
Cluster 

Log  
Collectors 

Spark 
Cluster RDBMS 

Implications 

• Better streaming framework support 

– Complex (e.g., stateful) analysis, fault-tolerance, etc. 

• Kafka & Spark not collocated 

– DStream retrieves logs in background (over network) and caches blocks in memory 

• Memory tuning to reduce GC is critical 

– spark.cleaner.ttl (throughput * spark.cleaner.ttl < spark mem free size) 

– Storage level (MEMORY_ONLY_SER2) 

• Lowe latency (several seconds) 

– No startup overhead (reusing SparkContext) 
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Real-World Use Case #2 
Complex, Interactive OLAP / BI 

Significant speedup of ad-hoc, complex OLAP / BI 

• Spark/Shark cluster runs alongside Hadoop/Hive clusters 

• Directly query on Hadoop/Hive data (interactively) 

• No ETL, no storage overhead, etc. 

In-memory, real-time queries  

• Data of interest loaded into memory 
create table XYZ tblproperties ("shark.cache" = "true") as select ...  

• Typically frontended by lightweight UIs  

– Data visualization and exploration (e.g., drill down / up) 
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Time Series Analysis: Unique Event Occurrence 

Computing unique event occurrence across the time range 

• Input time series 
  <TimeStamp, ObjectId, EventId, ...> 

– E.g., watch of a particular video by a specific user 

– E.g., transactions of a particular stock by a specific account 

• Output:  

    <ObjectId, TimeRange, Unique Event#, Unique Event(≥2)#, …, Unique Event(≥n)#> 

– E.g., accumulated unique event# for each day in a week (staring from Monday) 

 

 

 

• Implementation 

– 2-level aggregation using Spark  

• Specialized partitioning, general execution graph, in-memory cached data 

– Speedup from 20+ hours to several minutes 

1 2 … 7 

… 
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Time Series Analysis: Unique Event Occurrence 

TimeStamp ObjectId EventId … 

Input time series 

Day 
(1, 2, … ,7) 

ObjectId EventId 1 ObjectId EventId Count 
Day 

(1, 2, … ,7) 

Aggregation 

(shuffle) 

Partitioned by (ObjectId, EventId) 

Potentially cached in mem 
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Time Series Analysis: Unique Event Occurrence 

TimeStamp ObjectId EventId … 

Input time series 

Day 
(1, 2, … ,7) 

ObjectId EventId 1 ObjectId EventId Count 

TimeRage 
[1, D] 

Unique Event# 

Day 
(1, 2, … ,7) 

Unique Event(≥2)# Unique Event(≥n)# … 

TimeRage 
[1, D] 

Accumulated  
Count 

TimeRage 
[1, D] 

1 ObjectId 
1 (if  count ≥2) 

0 otherwise 
… 

1 (if  count ≥n) 
0 otherwise 

Aggregation 

(shuffle) 

Partitioned by (ObjectId, EventId) 

ObjectId EventId 

ObjectId 

Potentially cached in mem 

Aggregation 

(shuffle) 

Partitioned by ObjectId 
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Real-World Use Case #3 
Complex Machine Learning & Graph Analysis 

Algorithm: complex math operations 

• Mostly matrix based 

– Multiplication, factorization, etc. 

• Sometime graph-based 

– E.g., sparse matrix 

Iterative computations 

• Matrix (graph) cached in memory across iterations 
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Graph Analysis: N-Degree Association 

N-degree association in the graph 

• Computing associations between two 

vertices that are n-hop away 

• E.g., friends of friend 

 

Graph-parallel implementation 

• Bagel (Pregel on Spark) and GraphX 

– Memory optimizations for efficient graph 

caching critical 

• Speedup from 20+ minutes to <2 minutes 

 

 

Weight1(u, v) = edge(u, v)   ∈ (0, 1) 

Weightn(u, v) =  Weightn−1(u, x)∗Weight1(x, v) 𝑥→𝑣  
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Graph Analysis: N-Degree Association 

v w 

u 

State[w] = list of Weight(x, w) 

(for current top K weights to vertex w) 

 State[v] = list of Weight(x, v) 

(for current top K weights to vertex v) 

 

State[u] = list of Weight(x, u) 

(for current top K weights to vertex u) 
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Graph Analysis: N-Degree Association 

Weight(u, x) = D(x, u) 𝐷 𝑥,𝑢 𝑖𝑛 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠  
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Contributions by Intel 

Netty based shuffle for Spark 

FairScheduler for Spark 

Spark job log files 

Metrics system for Spark 

Configurations system for Spark 

Spark shell on YARN 

Spark (standalone mode) integration with security Hadoop 

Byte code generation for Shark 

Co-partitioned join in Shark 

. . .  
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Summary 

The Spark stack: lightning-fast analytics over Hadoop data 

• Active communities and early adopters evolving 

– Apache incubator project 

• A growing stack: SQL, streaming, graph-parallel, machine learning, … 

Work with us on next-gen big data analytics using the Spark stack 

• Interactive and in-memory OLAP / BI 

• Complex machine learning & graph analysis 

• Near real-time, streaming processing 

• And many more! 
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Notices and Disclaimers 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® 
PRODUCTS.  EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH 
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS 
OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING 
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, 
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL 
PROPERTY RIGHT. 

Intel may make changes to specifications, product descriptions, and plans at any time, without 
notice. Designers must not rely on the absence or characteristics of any features or instructions 
marked "reserved" or "undefined".  Intel reserves these for future definition and shall have no 
responsibility whatsoever for conflicts or incompatibilities arising from future changes to 
them.  The information here is subject to change without notice.  Do not finalize a design with 
this information. 
 
The products described in this document may contain design defects or errors known as errata 
which may cause the product to deviate from published specifications.  Current characterized 
errata are available on request. 
 
Contact your local Intel sales office or your distributor to obtain the latest specifications and 
before placing your product order. 

All dates provided are subject to change without notice. 

Intel and Intel logoare trademarks of Intel Corporation in the U.S. and other countries. 

*Other names and brands may be claimed as the property of others. 

Copyright © 2013, Intel Corporation. All rights reserved. 

 




