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Community Growth




Project History

Spark started as research project in 2009

Open sourced in 2010

» 1st version was 1600 LOC, could run Wikipedia demo


Growing community since

Entered Apache Incubator in June 2013




Development Community

With over 100 developers and 25 companies, 
one of the most active communities in big data


Comparison: Storm (48), Giraph (52), Drill (18), Tez (12)


Past 6 months: more active devs than Hadoop MapReduce!




Development Community

Healthy across the whole ecosystem




Release Growth


Spark 0.6:

- Java API, Maven, 
standalone mode


- 17 contributors


Sept ‘13
Feb ‘13
Oct ‘12


Spark 0.7:

- Python API, 
Spark Streaming


- 31 contributors


Spark 0.8:

- YARN, MLlib, 
monitoring UI


- 67 contributors






YARN support (Yahoo!)

Columnar compression in Shark (Yahoo!)

Fair scheduling (Intel)

Metrics reporting (Intel, Quantifind)

New RDD operators (Bizo, ClearStory)

Scala 2.10 support (Imaginea)


Some Community Contributions
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Projects Built on Spark


Spark


Spark 
Streaming


(real-time)


GraphX

(graph)


…

Shark"
(SQL)


MLbase

(machine 
learning)


BlinkDB




What’s Next?




Our View

While big data tools have advanced a lot, they 
are still far too difficult to tune and use

Goal: design big data systems that are as 
powerful & seamless as those for small data




Current Priorities

Standard libraries


Deployment


Out-of-the-box usability


Enterprise use
 +




Standard Libraries

While writing K-means in 30 lines is great, it’s 
even better to call it from a library!

Spark’s MLlib and GraphX will be standard 
libraries supported by core developers

» MLlib in Spark 0.8 with 7 algorithms

» GraphX coming soon

» Both operate directly on RDDs




Standard Libraries

val	
  rdd:	
  RDD[Array[Double]]	
  =	
  ...	
  
val	
  model	
  =	
  KMeans.train(rdd,	
  k	
  =	
  10)	
  
	
  
	
  
val	
  graph	
  =	
  Graph(vertexRDD,	
  edgeRDD)	
  
val	
  ranks	
  =	
  PageRank.run(graph,	
  iters	
  =	
  10)	
  



Standard Libraries

Beyond these libraries, Databricks is investing 
heavily in higher-level projects

Spark Streaming:"
easier 24/7 operation and optimizations coming in 0.9


Shark:"
calling Spark libs (e.g. MLlib), optimizer, Hive 0.11 & 0.12


Goal: a complete and interoperable stack




Deployment

Want Spark to easily run anywhere

Spark 0.8: much improved YARN, EC2 support

Spark 0.8.1: support for YARN 2.2


SIMR: launch Spark in MapReduce clusters as 
a Hadoop job (no installation needed!)

» For experimenting; see talk by Ahir




Monitoring and metrics (0.8)

Better support for large # of tasks (0.8.1)

High availability for standalone mode (0.8.1)


External hashing & sorting (0.9)


Ease of Use


Long-term: remove need to tune beyond defaults




Next Releases

Spark 0.8.1 (this month)

» YARN 2.2, standalone mode HA, optimized shuffle, 

broadcast & result fetching


Spark 0.9 (Jan 2014)

» Scala 2.10 support, configuration system, Spark 

Streaming improvements




What Makes Spark Unique?




Big Data Systems Today


MapReduce


Pregel


Dremel


GraphLab

Storm


Giraph


Drill
 Tez


Impala


S4
 …


Specialized systems

(iterative, interactive and"

streaming apps)


General batch"
processing




Spark’s Approach

Instead of specializing, generalize MapReduce"
to support new apps in same engine

Two changes (general task DAG & data sharing) 
are enough to express previous models!

Unification has big benefits

» For the engine

» For users
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Performance
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What it Means for Users

Separate frameworks:
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Spark:




Interactive"
analysis




Combining Processing Types


val	
  points	
  =	
  sc.runSql[Double,	
  Double](	
  
	
  	
  “select	
  latitude,	
  longitude	
  from	
  historic_tweets”)	
  
	
  
val	
  model	
  =	
  KMeans.train(points,	
  10)	
  
	
  
sc.twitterStream(...)	
  
	
  	
  .map(t	
  =>	
  (model.closestCenter(t.location),	
  1))	
  
	
  	
  .reduceByWindow(“5s”,	
  _	
  +	
  _)	
  

From Scala:




Combining Processing Types


GENERATE	
  KMeans(tweet_locations)	
  AS	
  TABLE	
  tweet_clusters	
  
	
  
	
  
//	
  Scala	
  table	
  generating	
  function	
  (TGF):	
  
object	
  KMeans	
  {	
  
	
  	
  @Schema(spec	
  =	
  “x	
  double,	
  y	
  double,	
  cluster	
  int”)	
  
	
  	
  def	
  apply(points:	
  RDD[(Double,	
  Double)])	
  =	
  {	
  
	
  	
  	
  	
  ...	
  
	
  	
  }	
  
}	
  

	
  

From SQL (in Shark 0.8.1):




Conclusion

Next challenge in big data will be complex 
and low-latency applications

Spark offers a unified engine to tackle and 
combine these apps

Best strength is the community: enjoy Spark 
Summit!
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