
The State of Spark

And Where We’re Going Next

Matei Zaharia

Community Growth

Project History

Spark started as research project in 2009

Open sourced in 2010

» 1st version was 1600 LOC, could run Wikipedia demo

Growing community since

Entered Apache Incubator in June 2013

Development Community

With over 100 developers and 25 companies,
one of the most active communities in big data

Comparison: Storm (48), Giraph (52), Drill (18), Tez (12)

Past 6 months: more active devs than Hadoop MapReduce!

Development Community

Healthy across the whole ecosystem

Release Growth

Spark 0.6:

- Java API, Maven,
standalone mode

- 17 contributors

Sept ‘13
Feb ‘13
Oct ‘12

Spark 0.7:

- Python API,
Spark Streaming

- 31 contributors

Spark 0.8:

- YARN, MLlib,
monitoring UI

- 67 contributors

YARN support (Yahoo!)

Columnar compression in Shark (Yahoo!)

Fair scheduling (Intel)

Metrics reporting (Intel, Quantifind)

New RDD operators (Bizo, ClearStory)

Scala 2.10 support (Imaginea)

Some Community Contributions

Conferences

0

50

100

150

200

250

300

350

400

450

500

AMP Camp 1
(Aug 2012)

AMP Camp 2
(Aug 2013)

Spark Summit
(Nov 2013)

At
te

nd
ee

s

Projects Built on Spark

Spark

Spark
Streaming

(real-time)

GraphX

(graph)

…

Shark"
(SQL)

MLbase

(machine
learning)

BlinkDB

What’s Next?

Our View

While big data tools have advanced a lot, they
are still far too difficult to tune and use

Goal: design big data systems that are as
powerful & seamless as those for small data

Current Priorities

Standard libraries

Deployment

Out-of-the-box usability

Enterprise use
 +

Standard Libraries

While writing K-means in 30 lines is great, it’s
even better to call it from a library!

Spark’s MLlib and GraphX will be standard
libraries supported by core developers

» MLlib in Spark 0.8 with 7 algorithms

» GraphX coming soon

» Both operate directly on RDDs

Standard Libraries

val	
 rdd:	
 RDD[Array[Double]]	
 =	
 ...	

val	
 model	
 =	
 KMeans.train(rdd,	
 k	
 =	
 10)	

	

	

val	
 graph	
 =	
 Graph(vertexRDD,	
 edgeRDD)	

val	
 ranks	
 =	
 PageRank.run(graph,	
 iters	
 =	
 10)	

Standard Libraries

Beyond these libraries, Databricks is investing
heavily in higher-level projects

Spark Streaming:"
easier 24/7 operation and optimizations coming in 0.9

Shark:"
calling Spark libs (e.g. MLlib), optimizer, Hive 0.11 & 0.12

Goal: a complete and interoperable stack

Deployment

Want Spark to easily run anywhere

Spark 0.8: much improved YARN, EC2 support

Spark 0.8.1: support for YARN 2.2

SIMR: launch Spark in MapReduce clusters as
a Hadoop job (no installation needed!)

» For experimenting; see talk by Ahir

Monitoring and metrics (0.8)

Better support for large # of tasks (0.8.1)

High availability for standalone mode (0.8.1)

External hashing & sorting (0.9)

Ease of Use

Long-term: remove need to tune beyond defaults

Next Releases

Spark 0.8.1 (this month)

» YARN 2.2, standalone mode HA, optimized shuffle,

broadcast & result fetching

Spark 0.9 (Jan 2014)

» Scala 2.10 support, configuration system, Spark

Streaming improvements

What Makes Spark Unique?

Big Data Systems Today

MapReduce

Pregel

Dremel

GraphLab

Storm

Giraph

Drill
 Tez

Impala

S4
 …

Specialized systems

(iterative, interactive and"

streaming apps)

General batch"
processing

Spark’s Approach

Instead of specializing, generalize MapReduce"
to support new apps in same engine

Two changes (general task DAG & data sharing)
are enough to express previous models!

Unification has big benefits

» For the engine

» For users

Spark

St
re

am
ing

G
ra

ph
X

…

Sh
ar

k

M
Lb

as
e

Code Size

0

20000

40000

60000

80000

100000

120000

140000

Hadoop
MapReduce

Storm
(Streaming)

Impala (SQL)
 Giraph
(Graph)

Spark

non-test, non-example source lines

Code Size

0

20000

40000

60000

80000

100000

120000

140000

Hadoop
MapReduce

Storm
(Streaming)

Impala (SQL)
 Giraph
(Graph)

Spark

non-test, non-example source lines

Streaming

Code Size

0

20000

40000

60000

80000

100000

120000

140000

Hadoop
MapReduce

Storm
(Streaming)

Impala (SQL)
 Giraph
(Graph)

Spark

non-test, non-example source lines

Streaming

Shark*

* also calls into Hive

Code Size

0

20000

40000

60000

80000

100000

120000

140000

Hadoop
MapReduce

Storm
(Streaming)

Impala (SQL)
 Giraph
(Graph)

Spark

non-test, non-example source lines

Streaming

GraphX

Shark*

* also calls into Hive

Performance

Hi
ve

Im
pa

la
(d

isk
)

Im
pa

la
(m

em
)

Sh
ar

k
(d

isk
)

Sh
ar

k
(m

em
)

0

5

10

15

20

25

30

35

40

45

Re
sp

on
se

 T
im

e
(s)

SQL

Ha
do

op

G
ira

ph

G
ra

ph
X

0

5

10

15

20

25

30

Re
sp

on
se

 T
im

e
(m

in)

Graph

St
or

m

Sp
ar

k

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

B/
s/

no
de

)

Streaming

What it Means for Users

Separate frameworks:

…

HDFS
read

HDFS
write
ET

L
 HDFS
read

HDFS
write
tra

in
 HDFS
read

HDFS
write
qu

er
y

HDFS

HDFS
read
 ET

L

tra

in

qu

er
y

Spark:

Interactive"
analysis

Combining Processing Types

val	
 points	
 =	
 sc.runSql[Double,	
 Double](

	
 	
 “select	
 latitude,	
 longitude	
 from	
 historic_tweets”)	

	

val	
 model	
 =	
 KMeans.train(points,	
 10)	

	

sc.twitterStream(...)	

	
 	
 .map(t	
 =>	
 (model.closestCenter(t.location),	
 1))	

	
 	
 .reduceByWindow(“5s”,	
 _	
 +	
 _)	

From Scala:

Combining Processing Types

GENERATE	
 KMeans(tweet_locations)	
 AS	
 TABLE	
 tweet_clusters	

	

	

//	
 Scala	
 table	
 generating	
 function	
 (TGF):	

object	
 KMeans	
 {	

	
 	
 @Schema(spec	
 =	
 “x	
 double,	
 y	
 double,	
 cluster	
 int”)	

	
 	
 def	
 apply(points:	
 RDD[(Double,	
 Double)])	
 =	
 {	

	
 	
 	
 	
 ...	

	
 	
 }	

}	

	

From SQL (in Shark 0.8.1):

Conclusion

Next challenge in big data will be complex
and low-latency applications

Spark offers a unified engine to tackle and
combine these apps

Best strength is the community: enjoy Spark
Summit!

Contributors

Aaron Davidson

Alexander Pivovarov

Ali Ghodsi

Ameet Talwalkar

Andre Shumacher

Andrew Ash

Andrew Psaltis

Andrew Xia

Andrey Kouznetsov

Andy Feng

Andy Konwinski

Ankur Dave

Antonio Lupher

Benjamin Hindman

Bill Zhao

Charles Reiss

Chris Mattmann

Christoph Grothaus

Christopher Nguyen

Chu Tong

Cliff Engle

Cody Koeninger

David McCauley

Denny Britz

Dmitriy Lyubimov

Edison Tung

Eric Zhang

Erik van Oosten

Ethan Jewett

Evan Chan

Evan Sparks

Ewen Cheslack-Postava

Fabrizio Milo

Fernand Pajot

Frank Dai

Gavin Li

Ginger Smith

Giovanni Delussu

Grace Huang

Haitao Yao

Haoyuan Li

Harold Lim

Harvey Feng

Henry Milner

Henry Saputra

Hiral Patel

Holden Karau

Ian Buss

Imran Rashid

Ismael Juma

James Phillpotts

Jason Dai

Jerry Shao

Jey Kottalam

Joseph E. Gonzalez

Josh Rosen

Justin Ma

Kalpit Shah

Karen Feng

Karthik Tunga

Kay Ousterhout

Kody Koeniger

Konstantin Boudnik

Lee Moon Soo

Lian Cheng

Liang-Chi Hsieh

Marc Mercer

Marek Kolodziej

Mark Hamstra

Matei Zaharia

Matthew Taylor

Michael Heuer

Mike Potts

Mikhail Bautin

Mingfei Shi

Mosharaf Chowdhury

Mridul Muralidharan

Nathan Howell

Neal Wiggins

Nick Pentreath

Olivier Grisel

Patrick Wendell

Paul Cavallaro

Paul Ruan

Peter Sankauskas

Pierre Borckmans

Prabeesh K.

Prashant Sharma

Ram Sriharsha

Ravi Pandya

Ray Racine

Reynold Xin

Richard Benkovsky

Richard McKinley

Rohit Rai

Roman Tkalenko

Ryan LeCompte

S. Kumar

Sean McNamara

Shane Huang

Shivaram Venkataraman

Stephen Haberman

Tathagata Das

Thomas Dudziak

Thomas Graves

Timothy Hunter

Tyson Hamilton

Vadim Chekan

Wu Zeming

Xinghao Pan

