The State of Spark

And Where We’re Going Next

Matei Zaharia ‘AZ
2 dobricks T SPOIK

Community Growth

Project History

Spark started as research project in 2009

Open sourced in 2010
» 18t version was 1600 LOC, could run Wikipedia demo

Growing community since

Entered Apache Incubator in June 2013

Development Community

With over 100 developers and 25 companies,
one of the most active communities in big data

apache / incubator-spark *
nirrored from git://git.apache.org/incubator-spark.git
Mirror of Apache Spark
4,624 38 17 103
||

Comparison: Storm (48), Giraph (52), Drill (18), Tez (12)

Past 6 months: more active devs than Hadoop MapReduce!

Development Community

Healthy across the whole ecosystem

amplab / shark

Hive on Spark http://shark.cs.berkeley.edu/

1,029 10 5 28 contnbutors

Release Growth

Spark 0.6:
- Java API, Maven,
standalone mode

- 17 contributors

Spark 0.7:

- Python AP,
Spark Streaming

- 31 contributors

Oct ‘12

Spark 0.8:

- YARN, MLIib,
monitoring Ul

- 6/ contributors

Feb ‘13

Sept ‘13

Some Community Contributions

YARN support (Yahoo!)

Columnar compression in Shark (Yahoo!)
Fair scheduling (Intel)

Metrics reporting (Intel, Quantifind)

New RDD operators (Bizo, ClearStory)

Scala 2.10 support (Imaginea)

Conferences

Attendees

500

450

400

350

300

250

200

150
100 -
50 -

O -

i

AMP Camp 1
(Aug 2012)

AMP Camp 2
(Aug 2013)

Spark Summit
(Nov 2013)

Projects Built on Spark

- Spark ML base

Streaming (machine

(real-time) learning)

What’s Next?

Our View

While big data tools have advanced a lot, they
are still far too difficult to tune and use

Goal: design big data systems that are as
powerful & seamless as those for small data

Current Priorities

Standard libraries
Deployment

Out-of-the-box usability

Enterprise use ==databricks” + cloudera

Standard Libraries

While writing K-means in 30 lines Is great, it's
even better to call it from a library!

Spark’s MLlib and GraphX will be standard

libraries supported by core developers
» MLlib in Spark 0.8 with 7 algorithms
» GraphX coming soon
» Both operate directly on RDDs

Standard Libraries

val rdd: RDD[Array[Double]] = ...
val model = KMeans.train(rdd, k = 10)

Graph(vertexRDD, edgeRDD)
PageRank.run(graph, iters = 10)

val graph
val ranks

Standard Libraries

Beyond these libraries, Databricks is investing
heavily in higher-level projects

Spark Streaming:

easier 24/7 operation and optimizations coming in 0.9

Shark:
calling Spark libs (e.g. MLIib), optimizer, Hive 0.11 & 0.12

Goal: a complete and interoperable stack

Deployment

Want Spark to easily run anywhere
Spark 0.8: much improved YARN, EC2 support
Spark 0.8.1: support for YARN 2.2

SIMR: launch Spark in MapReduce clusters as

a Hadoop job (no installation needed!)
» For experimenting; see talk by Ahir

Ease of Use

Monitoring and metrics (0.8)

Better support for large # of tasks (0.8.1)

High availability for standalone mode (0.8.1)
External hashing & sorting (0.9)

Long-term: remove need to tune beyond defaults

Next Releases

Spark 0.8.1 (this month)
» YARN 2.2, standalone mode HA, optimized shuffle,
broadcast & result fetching

Spark 0.9 (Jan 2014)

» Scala 2.10 support, configuration system, Spark
Streaming improvements

What Makes Spark Unique®

Big Data Systems Today

Pregel Giraph

Dremel Pl 4,

MapReduce
Impala GraphlLab
Storm
S4
General batch Specialized systems
processing (iterative, interactive and

streaming apps)

Spark’s Approach

Instead of specializing, generalize MapReduce
to support new apps in same engine

Two changes (general task DAG & data sharing)
are enough to express previous models!

Unification has big benefits
» For the engine
» For users

Shark
Streaming
GraphX
MLbase

Code Size

140000

120000

100000 -

80000 -

60000 -

40000 -
20000 -

O i
Hadoop Storm Impala (SQL) Giraph Spark
MapReduce (Streaming) (Graph)

non-test, non-example source lines

Code Size

140000

120000

100000 -

80000 -

60000 -

40000 -
™ Streaming

20000 -

O i
Hadoop Storm Impala (SQL) Giraph Spark
MapReduce (Streaming) (Graph)

non-test, non-example source lines

Code Size

140000

120000

100000

80000

60000
—> Shark™®

40000
™ Streaming

20000

o)
Hadoop Storm Impala (SQL) Giraph Spark
MapReduce (Streaming) (Graph)

non-test, non-example source lines * also calls into Hive

Code Size

140000

120000

100000

80000 -

/ﬁraphx
—> Shark”
™ Streaming

60000 -

40000 -
20000 -

O -

Hadoop Storm Impala (SQL) Giraph Spark
MapReduce (Streaming) (Graph)

non-test, non-example source lines * also calls into Hive

Performance

35

xydeln
ydeu

Graph

M

1S

Streaming

_
_
o O o o - Lo
—

0

™ A (Q\ —

(epouy/s/ginN) indybnoay

What it Means for Users

Separate frameworks:

HDFS |:l HDFS
read W write

HDFS

HDFS & HDFS
-
O

-
© :
= write

write read

Spark:

e @ puthon Interactive

_— $Scala analysis
\ i HDFS

HDFS - .

© 5
— O

read W

Combining Processing Types

From Scala:

val points = sc.runSql[Double, Double](
“select latitude, longitude from historic_tweets”)

val model = KMeans.train(points, 10)
sc.twitterStream(...)

.map(t => (model.closestCenter(t.location), 1))
.reduceByWindow(“5s”, +)

Combining Processing Types

From SQL (in Shark 0.8.1):

GENERATE KMeans(tweet locations) AS TABLE tweet clusters

// Scala table generating function (TGF):

object KMeans {
@Schema(spec = “x double, y double, cluster int”)
def apply(points: RDD[(Double, Double)]) = {

}...
¥

Conclusion

Next challenge in big data will be complex
and low-latency applications

Spark offers a unified engine to tackle and
combine these apps

Best strength is the community: enjoy Spark
Summit!

Contributors

Aaron Davidson
Alexander Pivovarov
Ali Ghodsi

Ameet Talwalkar
Andre Shumacher
Andrew Ash
Andrew Psaltis
Andrew Xia

Andrey Kouznetsov
Andy Feng

Andy Konwinski
Ankur Dave
Antonio Lupher
Benjamin Hindman
Bill Zhao

Charles Reiss

Chris Mattmann
Christoph Grothaus
Christopher Nguyen
Chu Tong

Cliff Engle

Cody Koeninger
David McCauley
Denny Britz

Dmitriy Lyubimov
Edison Tung

Eric Zhang

Erik van Oosten

Ethan Jewett
Evan Chan

Evan Sparks
Ewen Cheslack-Postava
Fabrizio Milo
Fernand Pajot
Frank Dai

Gavin Li

Ginger Smith
Giovanni Delussu
Grace Huang
Haitao Yao
Haoyuan Li
Harold Lim
Harvey Feng
Henry Milner
Henry Saputra
Hiral Patel
Holden Karau
lan Buss

Imran Rashid
Ismael Juma
James Phillpotts
Jason Dai

Jerry Shao

Jey Kottalam
Joseph E. Gonzalez
Josh Rosen

Justin Ma

Kalpit Shah

Karen Feng

Karthik Tunga

Kay Ousterhout
Kody Koeniger
Konstantin Boudnik
Lee Moon Soo

Lian Cheng
Liang-Chi Hsieh
Marc Mercer

Marek Kolodziej
Mark Hamstra
Matei Zaharia
Matthew Taylor
Michael Heuer
Mike Potts

Mikhail Bautin
Mingfei Shi
Mosharaf Chowdhury
Mridul Muralidharan
Nathan Howell
Neal Wiggins

Nick Pentreath
Olivier Grisel
Patrick Wendell
Paul Cavallaro

Paul Ruan

Peter Sankauskas
Pierre Borckmans
Prabeesh K.
Prashant Sharma
Ram Sriharsha
Ravi Pandya

Ray Racine
Reynold Xin
Richard Benkovsky
Richard McKinley
Rohit Rai

Roman Tkalenko
Ryan LeCompte

S. Kumar

Sean McNamara
Shane Huang
Shivaram Venkataraman
Stephen Haberman
Tathagata Das
Thomas Dudziak
Thomas Graves
Timothy Hunter
Tyson Hamilton
Vadim Chekan

Wu Zeming
Xinghao Pan

