
Deep Dive into Project
Tungsten: Bringing Spark
Closer to Bare Metal
Josh Rosen (@jshrsn)
June 16, 2015

About Databricks

Offers a hosted service:
•  Spark on EC2
•  Notebooks
•  Plot visualizations
•  Cluster management
•  Scheduled jobs

2

Founded by creators of Spark and remains largest contributor

Goals of Project Tungsten

Substantially improve the memory and CPU efficiency of
Spark applications .

Push performance closer to the limits of modern
hardware.

3

In this talk

4

• Motivation: why we’re focusing on compute instead of IO
• How Tungsten optimizes memory + CPU
• Case study: aggregation
• Case study: record sorting
• Performance results
• Roadmap + next steps

Many big data workloads are now
compute bound

5

NSDI’15:

•  “Network optimizations can only reduce job completion time by
a median of at most 2%.”

•  “Optimizing or eliminating disk accesses can only reduce job
completion time by a median of at most 19%.”

•  We’ve observed similar characteristics in many Databricks Cloud
customer workloads.

Why is CPU the new bottleneck?

6

•  Hardware has improved:
–  Increasingly large aggregate IO bandwidth, such as 10Gbps links in

networks
–  High bandwidth SSD’s or striped HDD arrays for storage

•  Spark’s IO has been optimized:
–  many workloads now avoid significant disk IO by pruning input data

that is not needed in a given job
–  new shuffle and network layer implementations

•  Data formats have improved:
–  Parquet, binary data formats

•  Serialization and hashing are CPU-bound bottlenecks

How Tungsten improves CPU & memory
efficiency
 •  Memory Management and Binary Processing: leverage

application semantics to manage memory explicitly and
eliminate the overhead of JVM object model and garbage
collection

•  Cache-aware computation: algorithms and data structures to
exploit memory hierarchy

•  Code generation: exploit modern compilers and CPUs; allow
efficient operation directly on binary data

7

8

The overheads of Java objects

“abcd”

9

•  Native: 4 bytes with UTF-8 encoding
•  Java: 48 bytes

java.lang.String object internals:	
OFFSET SIZE TYPE DESCRIPTION VALUE	
 0 4 (object header) ...	
 4 4 (object header) ...	
 8 4 (object header) ...	
 12 4 char[] String.value []	
 16 4 int String.hash 0	
 20 4 int String.hash32 0	
Instance size: 24 bytes (reported by Instrumentation API)	

12 byte object header

8 byte hashcode
20 bytes of overhead + 8 bytes for chars

Garbage collection challenges

•  Many big data workloads create objects in ways that are
unfriendly to regular Java GC.

•  Guest blog on GC tuning: tinyurl.com/db-gc-tuning

10

eden	
 S0	
 S1	
 tenured	
 permanent	

Permanent Generation Old Generation Young Generation

Survivor Space

sun.misc.Unsafe

11

•  JVM internal API for directly manipulating memory without
safety checks (hence “unsafe”)

•  We use this API to build data structures in both on- and off-heap
memory

Data	

structures	

with	
 pointers	

Flat	
 data	

structures	

Complex	

examples	

Java object-based row representation

12

3 fields of type (int, string, string)
with value (123, “data”, “bricks”)

GenericMutableRow	

Array	
 String(“data”)	

String(“bricks”)	

5+ objects; high space overhead; expensive hashCode()

BoxedInteger(123)	

Tungsten’s UnsafeRow format

13

•  Bit set for tracking null values
•  Every column appears in the fixed-length values region:

–  Small values are inlined
–  For variable-length values (strings), we store a relative offset into the variable-

length data section
•  Rows are always 8-byte word aligned (size is multiple of 8 bytes)
•  Equality comparison and hashing can be performed on raw bytes without

requiring additional interpretation

null	
 bit	
 set	
 (1	
 bit/field)	

	

values	
 (8	
 bytes	
 /	
 field)	

	

	

variable	
 length	

	

Offset to var. length data

6 “bricks”

Example of an UnsafeRow

14

0x0 123 32L 48L 4 “data”

(123, “data”, “bricks”)

Null tracking bitmap

Offset to var. length data

Offset to var. length data Field lengths

How we encode memory addresses

15

•  Off heap: addresses are raw memory pointers.
•  On heap: addresses are base object + offset pairs.
•  We use our own “page table” abstraction to enable more

compact encoding of on-heap addresses:

0	

1	

…	

N	
 –	
 1	

Page table

Data	
 page	

(Java	
 object)	

page	
 offset	
 in	
 page	

16

java.util.HashMap

…	

key	
 ptr	
 value	
 ptr	
 next	

key	
 value	

array

•  Huge object overheads

•  Poor memory locality

•  Size estimation is hard

Memory	
 page	

hc	

17

Tungsten’s BytesToBytesMap

ptr	

…	

array

•  Low space overheads

•  Good memory locality, especially for scans

key	
 value	
 key	
 value	

key	
 value	
 key	
 value	

key	
 value	
 key	
 value	

Code generation
•  Generic evaluation of expression logic

is very expensive on the JVM
–  Virtual function calls
–  Branches based on expression type
–  Object creation due to primitive boxing
–  Memory consumption by boxed

primitive objects
•  Generating custom bytecode can

eliminate these overheads

18

9.33

9.36

36.65

Hand written

Code gen

Interpreted Projection

Evaluating “SELECT a + a + a”
(query time in seconds)

Code generation
•  Project Tungsten uses the Janino compiler to reduce code generation time.
•  Spark 1.5 will greatly expand the number of expressions that support code

generation:
–  SPARK-8159

19

Example: aggregation optimizations in
DataFrames and Spark SQL

20

df.groupBy("department").agg(max("age"), sum("expense"))	

Example: aggregation optimizations in
DataFrames and Spark SQL

21

Input	
 Row	
 Grouping	
 Key	
 UnsafeRow	

project convert

BytesToBytesMap	
 scan

Update	

Aggregates	

Agg.	
 Result	

update in place

probe

SPARK-7080

Optimized record sorting in Spark SQL +
DataFrames (SPARK-7082)

22

pointer	

•  AlphaSort-style prefix sort:
–  Store prefixes of sort keys inside the sort pointer array
–  During sort, compare prefixes to short-circuit and avoid full record comparisons

•  Use this to build external sort-merge join to support joins larger than memory

record	

Key	
 prefix	
 pointer	
 record	

Naïve layout

Cache friendly layout

Initial performance results for agg. query

23

0

200

400

600

800

1000

1200

1x 2x 4x 8x 16x

Run time
(seconds)

Data set size (relative)

Default

Code Gen

Tungsten onheap

Tungsten offheap

Initial performance results for agg. query

24

0

50

100

150

200

1x 2x 4x 8x 16x

Average GC
time per

node
(seconds)

Data set size (relative)

Default

Code Gen

Tungsten onheap

Tungsten offheap

Project Tungsten Roadmap

25

Spark	
 1.4	
 Spark	
 1.5	
 Spark	
 1.6	

•  Binary processing for
aggregation in Spark
SQL / DataFrames

•  New Tungsten shuffle
manager

•  Compression &
serialization
optimizations

•  Optimized code
generation

•  Optimized sorting in
Spark SQL /
DataFrames

•  End-to-end processing
using binary data
representations

•  External aggregation

•  Vectorized / batched
processing

•  ???

Which Spark jobs can benefit from
Tungsten?

26

•  DataFrames
–  Java
–  Scala
–  Python
–  R

•  Spark SQL queries
•  Some Spark RDD API programs, via general serialization + compression

optimizations

logs.join(!
"users, !
"logs.userId == users.userId, !
""left_outer") \ !

.groupBy("userId").agg({"*": "count"}) !

How to enable all of Spark 1.4’s
Tungsten optimizations

27

spark.sql.codegen = true	
spark.sql.unsafe.enabled = true	
spark.shuffle.manager = tungsten-sort	

Warning!	
 These	
 features	

are	
 experimental	
 in	
 1.4!	

Thank you.
Follow our progress on JIRA: SPARK-7075

