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About Databricks

Founded by creators of Spark and remains largest contributor

Q

Step 3: Top 10 most popular baby names over time

Offers a hosted service:
« Spark on EC2
« Notebooks
 Plotvisualizations

e Cluster management
« Scheduled jobs
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Goals of Project Tungsten

Substantially improve the memory and CPU efficiency of
Spark applications .

Push performance closer to the limits of modern
hardware.
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In this talk

» Motivation: why we’re focusing on compute instead of IO
« How Tungsten optimizes memory + CPU

« Case study: aggregation

« Case study: record sorting

« Performance results

« Roadmap + next steps
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Many big data workloads are now
compute bound

Making Sense of Performance in Data Analytics Frameworks

)
N S D | 15 o Kay Ousterhout”, Ryan Rasti™', Sylvia Ratnasamy”, Scott Shenker™', Byung-Gon Chun
‘UC Berkeley. 'ICSL “VMware, ' Seoul National University

“Network optimizations can only reduce job completion time by
a median of at most 2%.”

“Optimizing or eliminating disk accesses can only reduce job
completion time by a median of at most 19%.”

« We've observed similar characteristics in many Databricks Cloud
customer workloads.
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Why is CPU the new bottleneck?

« Hardware has improved:

- Increasingly large aggregate 10 bandwidth, such as 10Gbps links in
networks

- High bandwidth SSD’s or striped HDD arrays for storage

« Spark’s 10 has been optimized:

- many workloads now avoid significant disk 10 by pruning input data
that is not needed in a given job

- new shuffle and network layer implementations
- Data formats have improved:
- Parquet, binary data formats

« Serialization and hashing are CPU-bound bottlenecks
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How Tungsten improves CPU & memory
efficiency

« Memory Management and Binary Processing: leverage
application semantics to manage memory explicitly and
eliminate the overhead of JVM object model and garbage
collection

« Cache-aware computation: algorithms and data structures to
exploit memory hierarchy

 Code generation: exploit modern compilers and CPUs; allow
efficient operation directly on binary data
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The overheads of Java objects

((abcd”

« Native: 4 bytes with UTF-8 encoding
- Java:

java.lang.String object internals:
OFFSET SIZE  TYPE DESCRIPTION

12 byte object header

20 bytes of overhead + 8 bytes for chars

8 byte hashcode
Instance size: 24 bytes (reported by Instrumentation API)
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Garbage collection challenges

Survivor Space

tenured permanent

Young Generation Old Generation Permanent Generation

« Many big data workloads create objects in ways that are
unfriendly to regular Java GC.

« Guest blog on GC tuning:
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sun.misc.Unsafe

« JVM internal API for directly manipulating memory without
safety checks (hence “unsafe”)

« We use this API to build data structures in both on- and off-heap
memory

Flat data Dats Complex
structures
structures examples

with pointers
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Java object-based row representation

3 fields of type (int, string, string)
with value (123, “data”, “bricks”)

GenericMutableRow

—>

BoxedInteger(123)

Array

String(“data”)

String(“bricks”)

5+ objects; high space overhead; expensive hashCode()
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Tungsten’'s UnsafeRow format

null bit set (1 bit/field) values (8 bytes / field) variable length

Offset to var. length data T

Bit set for tracking null values

Every column appears in the fixed-length values region:
- Small values are inlined

- Forvariable-length values (strings), we store a relative offset into the variable-
length data section

Rows are always 8-byte word aligned (size is multiple of 8 bytes)

Equality comparison and hashing can be performed on raw bytes without
requiring additional interpretation
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Example of an UnsafeRow

(

Offset to var. length data

v

48L

“data”

6

“bricks”

Offset to var. length data

Null tracking bitmap
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How we encode memory addresses

 Off heap: addresses are raw memory pointers.

« On heap: addresses are base object + offset pairs.

« We use our own “page table” abstraction to enable more
compact encoding of on-heap addresses:

v

offset in page

Data page
(Java object)

N—-1
databricks Page table




java.util.HashMap

key ptr value ptr

Ll oo

key

« Huge object overheads

« Poor memory locality

2y  Size estimation is hard
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Tungsten’'s BytesToBytesMap

Memory page

>

key

key

key

array
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« Low space overheads

« Good memory locality, especially for scans




Code generation
Evaluating “SELECT a+a+a”

- Generic evaluation of expression logic (query time in seconds)
IS very expensive on the JVM
- Virtual function calls
- Branches based on expression type

Interpreted Projection

- Object creation due to primitive boxing

- Memory consumption by boxed Code gen
primitive objects

« Generating custom bytecode can
eliminate these overheads

Hand written
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Code generation

« Project Tungsten uses the Janino compiler to reduce code generation time.

» Spark 1.5 will greatly expand the number of expressions that support code
generation:
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Example: aggregation optimizations In
DataFrames and Spark SQL

df.groupBy("department").agg(max("age"), sum("expense"))
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Example: aggregation optimizations Iin
DataFrames and Spark SQL

Input Row ——| Grouping Key —> UnsafeRow
project convert
lprobe

BytesToBytesMap

A 4

Update
Aggregates

Agg. Result

update in place
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Optimized record sorting in Spark SQL +
DataFrames ( )

« AlphaSort-style prefix sort:
- Store prefixes of sort keys inside the sort pointer array
- During sort, compare prefixes to short-circuit and avoid full record comparisons

« Use this to build external sort-merge join to support joins larger than memory

Naive layout pointer record

Cache friendly layout Key prefix | pointer record

databricks




Initial performance results for agg. query
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Initial performance results for agg. query
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Project Tungsten Roadmap

Spark 1.4 Spark 1.5 Spark 1.6

» Binary processing for Optimized code « Vectorized / batched
aggregation in Spark generation processing

SQL/ DataFrames Optimized sorting in

Spark SQL /
DataFrames

o 1
« New Tungsten shuffle

Mmanager

End-to-end processing
« Compression & using binary data
serialization representations

optimizations External aggregation
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Which Spark jobs can benefit from
Tungsten?

« DataFrames
_ Java logs.join(
users,
logs.userld == users.userld,
) \
.groupBy ( ) .agg ({

- Scala

« Spark SQL queries

« Some Spark RDD API programs, via general serialization + compression
optimizations
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How to enable all of Spark 1.4’s
Tungsten optimizations

Warning! These features
are experimental in 1.4!

K.sql.codegen = true
kK.sqgl .unsafe.enabled = true
K.shuffle.manager = tungsten-sort
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Thank you.

Follow our progress on JIRA:
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