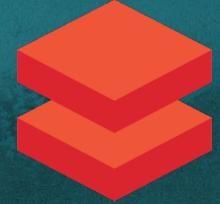


Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal

Josh Rosen ([@jshrsn](https://twitter.com/jshrsn))

June 16, 2015

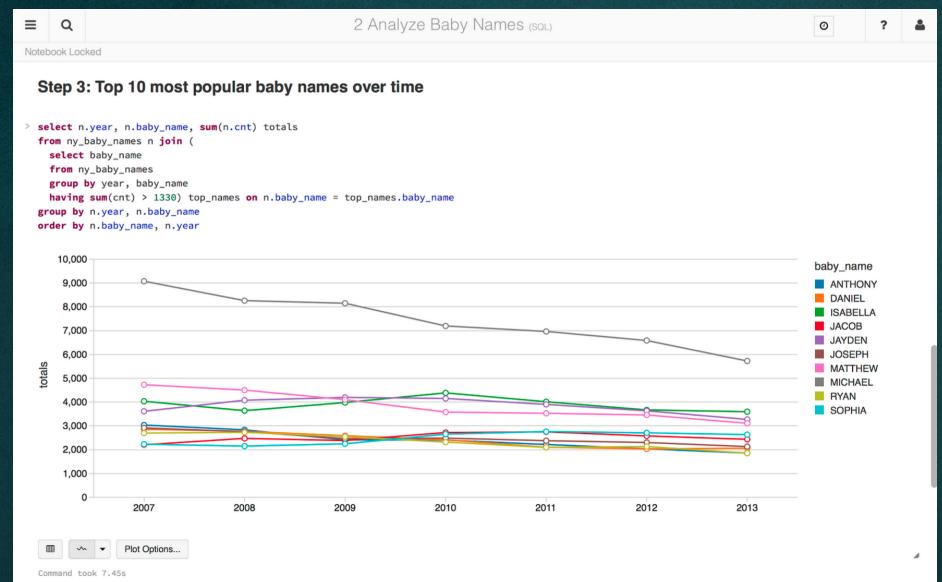
About Databricks



Founded by creators of Spark and remains largest contributor

Offers a hosted service:

- Spark on EC2
- Notebooks
- Plot visualizations
- Cluster management
- Scheduled jobs



Goals of Project Tungsten

Substantially improve the **memory and CPU** efficiency of Spark applications.

Push performance closer to the limits of modern hardware.

In this talk

- Motivation: why we're focusing on compute instead of IO
- How Tungsten optimizes memory + CPU
- Case study: aggregation
- Case study: record sorting
- Performance results
- Roadmap + next steps

Many big data workloads are now compute bound

NSDI'15:

Making Sense of Performance in Data Analytics Frameworks

Kay Ousterhout*, Ryan Rasti*[†][○], Sylvia Ratnasamy*, Scott Shenker*[†], Byung-Gon Chun[‡]
*UC Berkeley, [†]ICSI, [○]VMware, [‡]Seoul National University

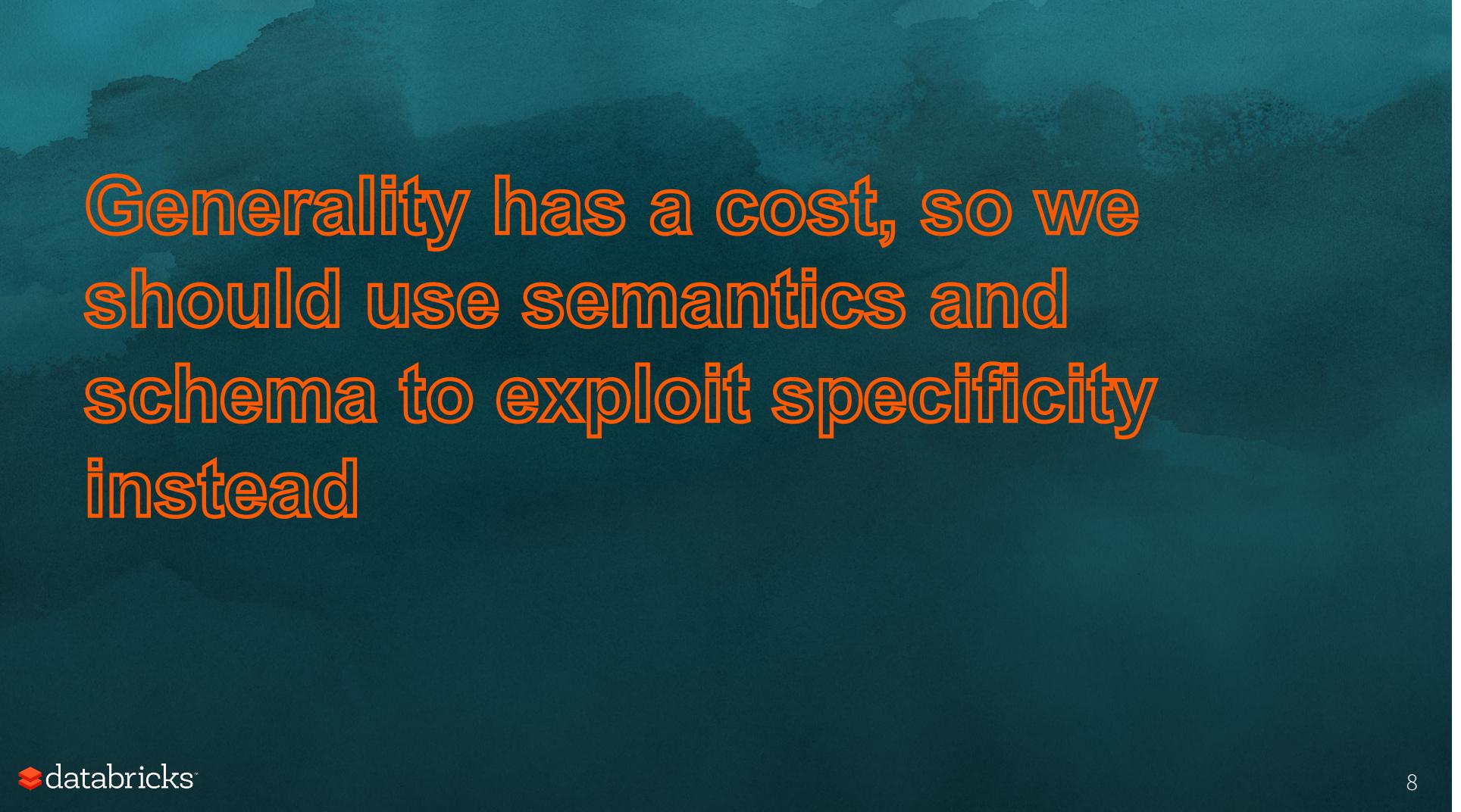
- “Network optimizations can only reduce job completion time by a median of at most 2%.”
- “Optimizing or eliminating disk accesses can only reduce job completion time by a median of at most 19%.”
- We’ve observed similar characteristics in many Databricks Cloud customer workloads.

Why is CPU the new bottleneck?

- **Hardware has improved:**
 - Increasingly large aggregate IO bandwidth, such as 10Gbps links in networks
 - High bandwidth SSD's or striped HDD arrays for storage
- **Spark's IO has been optimized:**
 - many workloads now avoid significant disk IO by pruning input data that is not needed in a given job
 - new shuffle and network layer implementations
- **Data formats have improved:**
 - Parquet, binary data formats
- **Serialization and hashing are CPU-bound bottlenecks**

How Tungsten improves CPU & memory efficiency

- **Memory Management and Binary Processing:** leverage application semantics to manage memory explicitly and eliminate the overhead of JVM object model and garbage collection
- **Cache-aware computation:** algorithms and data structures to exploit memory hierarchy
- **Code generation:** exploit modern compilers and CPUs; allow efficient operation directly on binary data



Generality has a cost, so we
should use semantics and
schema to exploit specificity
instead

The overheads of Java objects

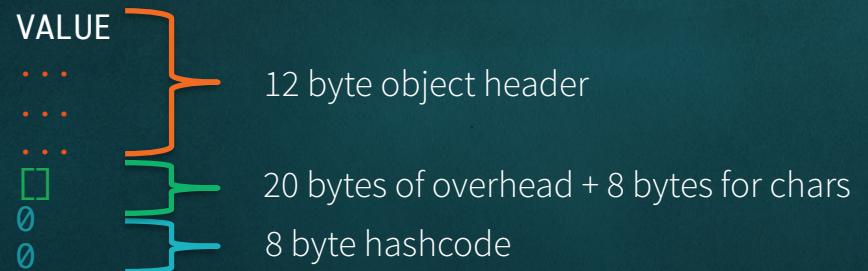
“abcd”

- Native: 4 bytes with UTF-8 encoding
- Java: **48 bytes**

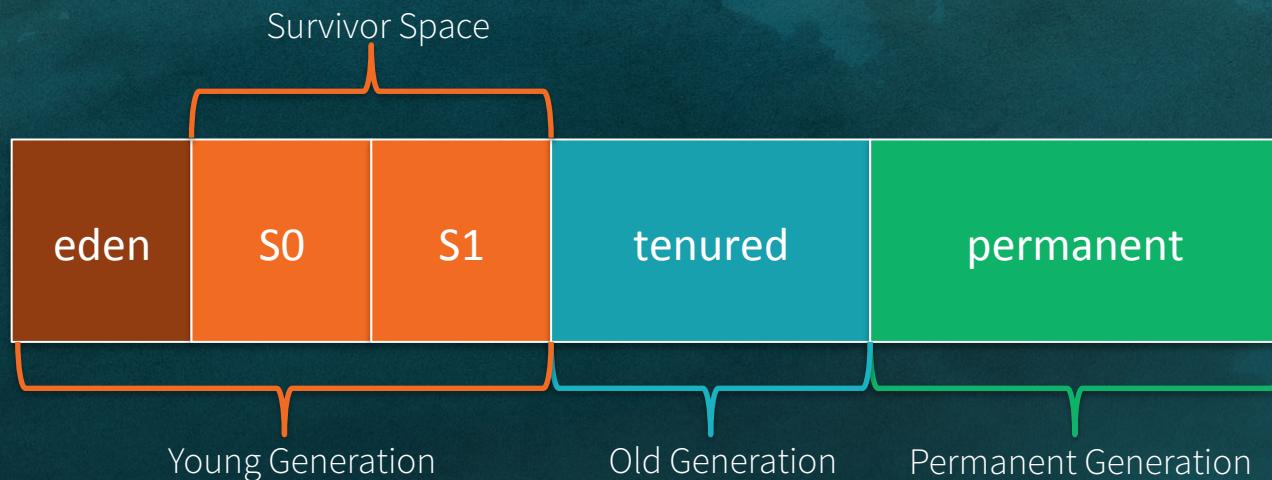
java.lang.String object internals:

OFFSET	SIZE	TYPE	DESCRIPTION
0	4		(object header)
4	4		(object header)
8	4		(object header)
12	4	char[]	String.value
16	4	int	String.hash
20	4	int	String.hash32

Instance size: 24 bytes (reported by Instrumentation API)



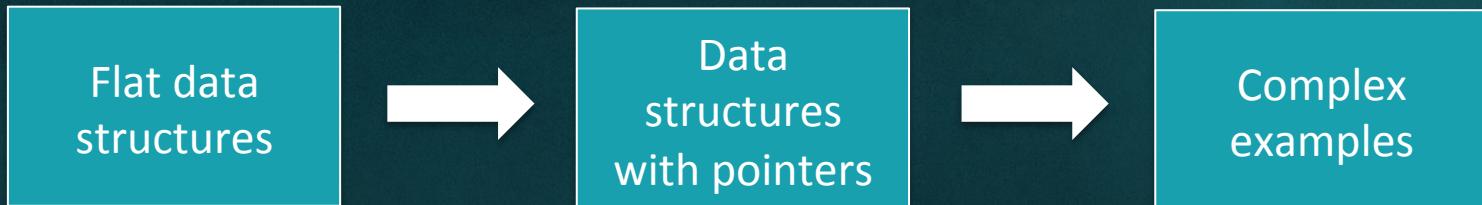
Garbage collection challenges



- Many big data workloads create objects in ways that are unfriendly to regular Java GC.
- Guest blog on GC tuning: tinyurl.com/db-gc-tuning

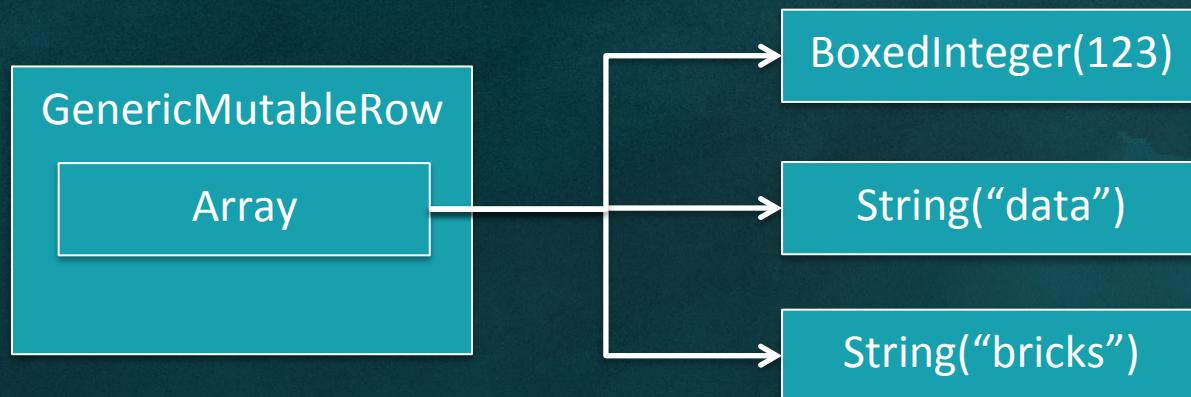
sun.misc.Unsafe

- JVM internal API for directly manipulating memory without safety checks (hence “unsafe”)
- We use this API to build data structures in both on- and off-heap memory



Java object-based row representation

3 fields of type (int, string, string)
with value (123, “data”, “bricks”)

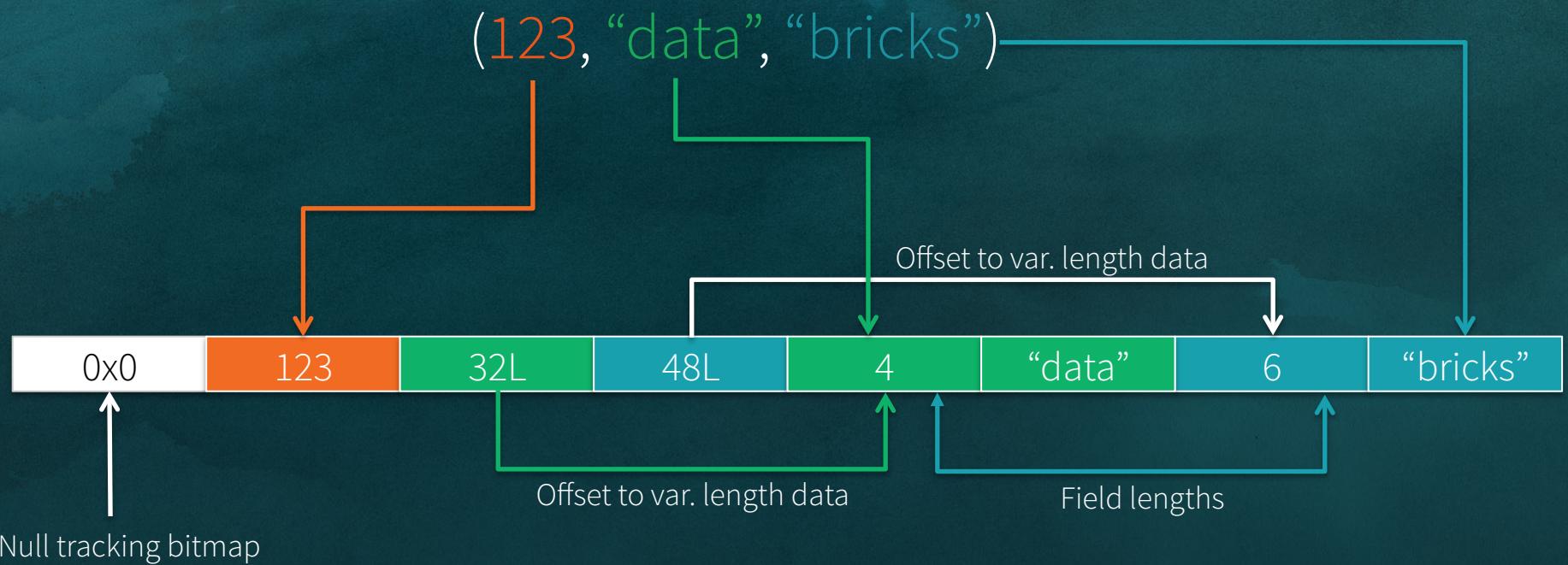


5+ objects; high space overhead; expensive hashCode()

Tungsten's UnsafeRow format

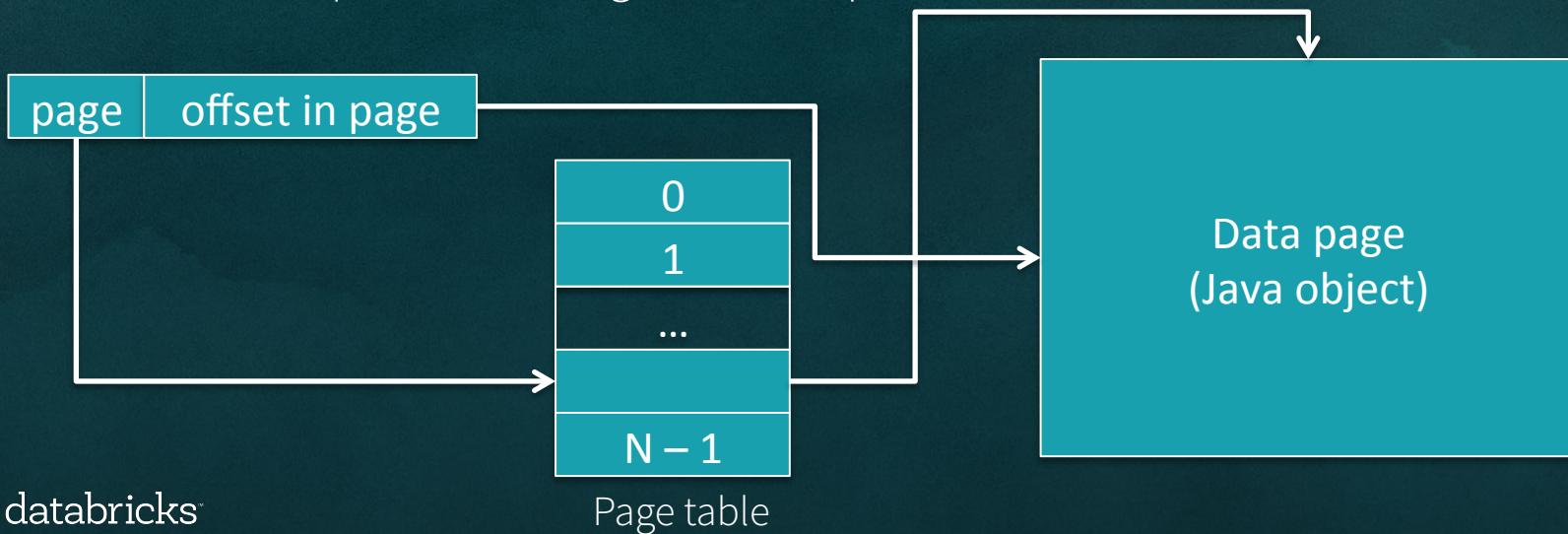
- Bit set for tracking null values
- Every column appears in the fixed-length values region:
 - Small values are inlined
 - For variable-length values (strings), we store a relative offset into the variable-length data section
- Rows are always 8-byte word aligned (size is multiple of 8 bytes)
- Equality comparison and hashing can be performed on raw bytes without requiring additional interpretation

Example of an UnsafeRow

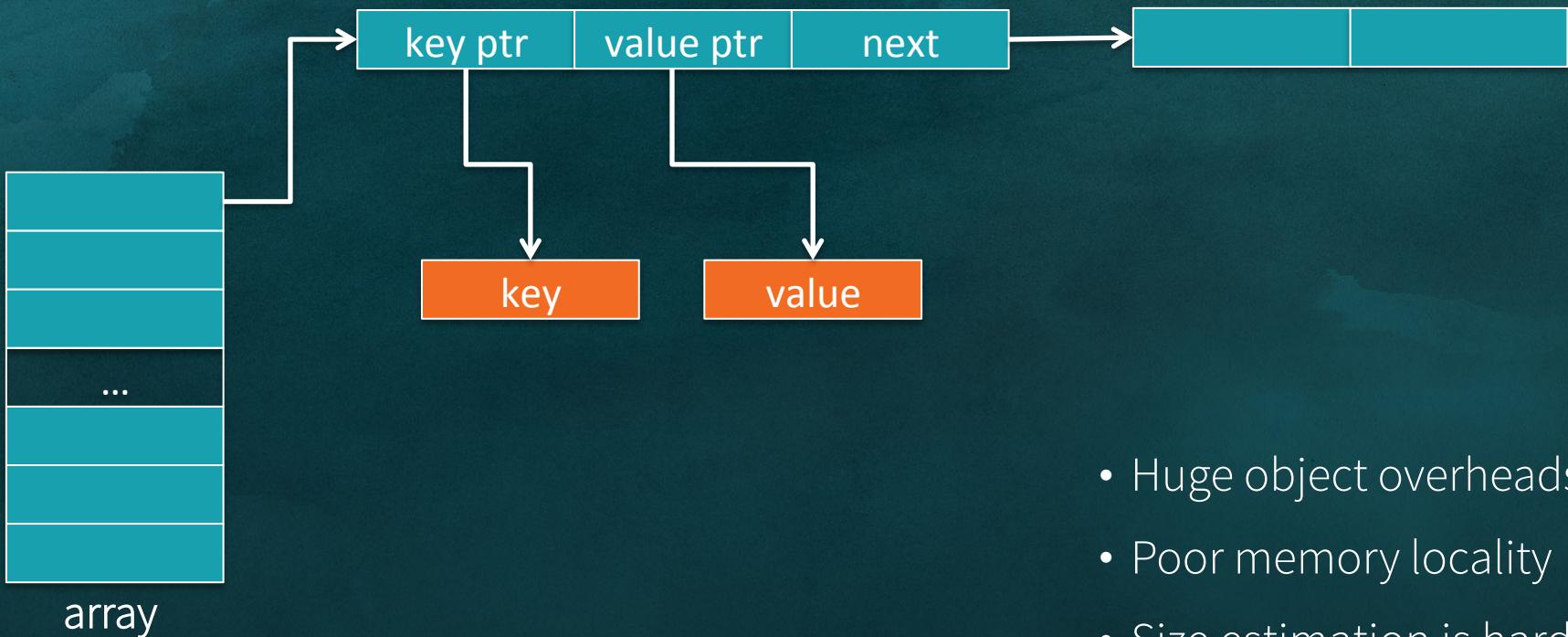


How we encode memory addresses

- Off heap: addresses are raw memory pointers.
- On heap: addresses are base object + offset pairs.
- We use our own “page table” abstraction to enable more compact encoding of on-heap addresses:

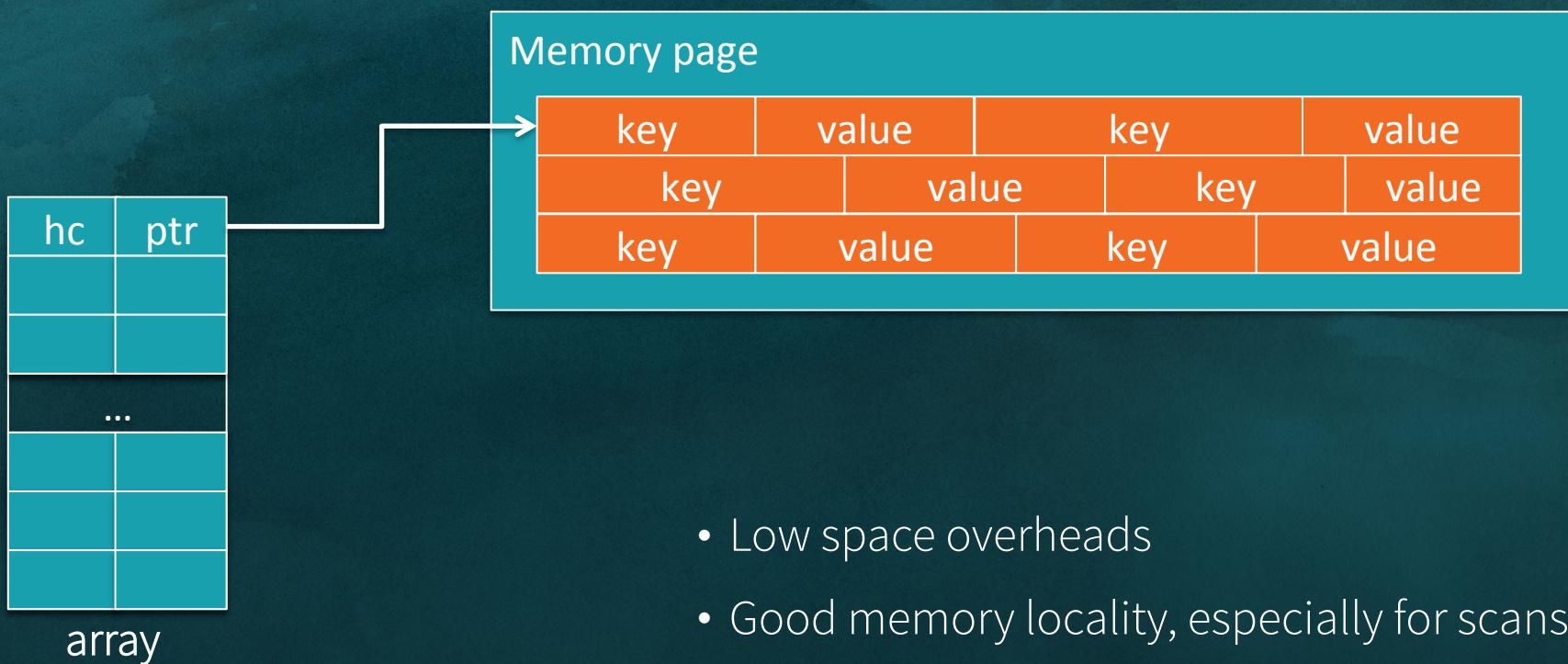


java.util.HashMap



- Huge object overheads
- Poor memory locality
- Size estimation is hard

Tungsten's BytesToBytesMap

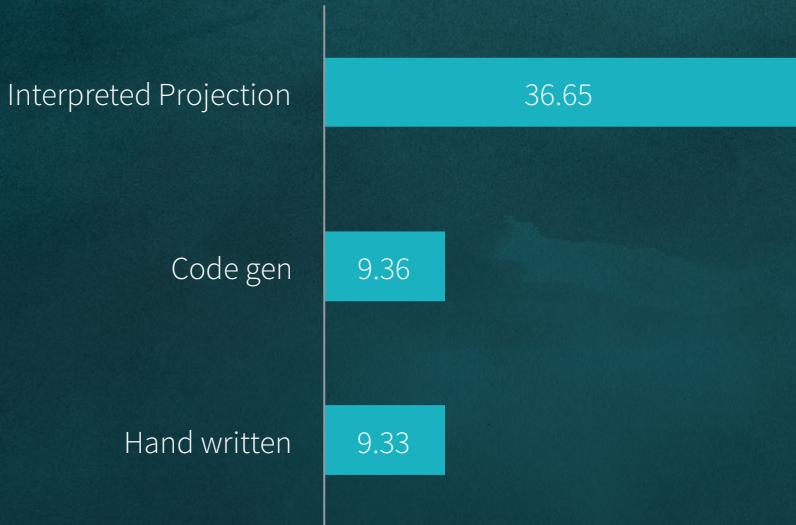


- Low space overheads
- Good memory locality, especially for scans

Code generation

- Generic evaluation of expression logic is very expensive on the JVM
 - Virtual function calls
 - Branches based on expression type
 - Object creation due to primitive boxing
 - Memory consumption by boxed primitive objects
- Generating custom bytecode can eliminate these overheads

Evaluating “SELECT a + a + a”
(query time in seconds)



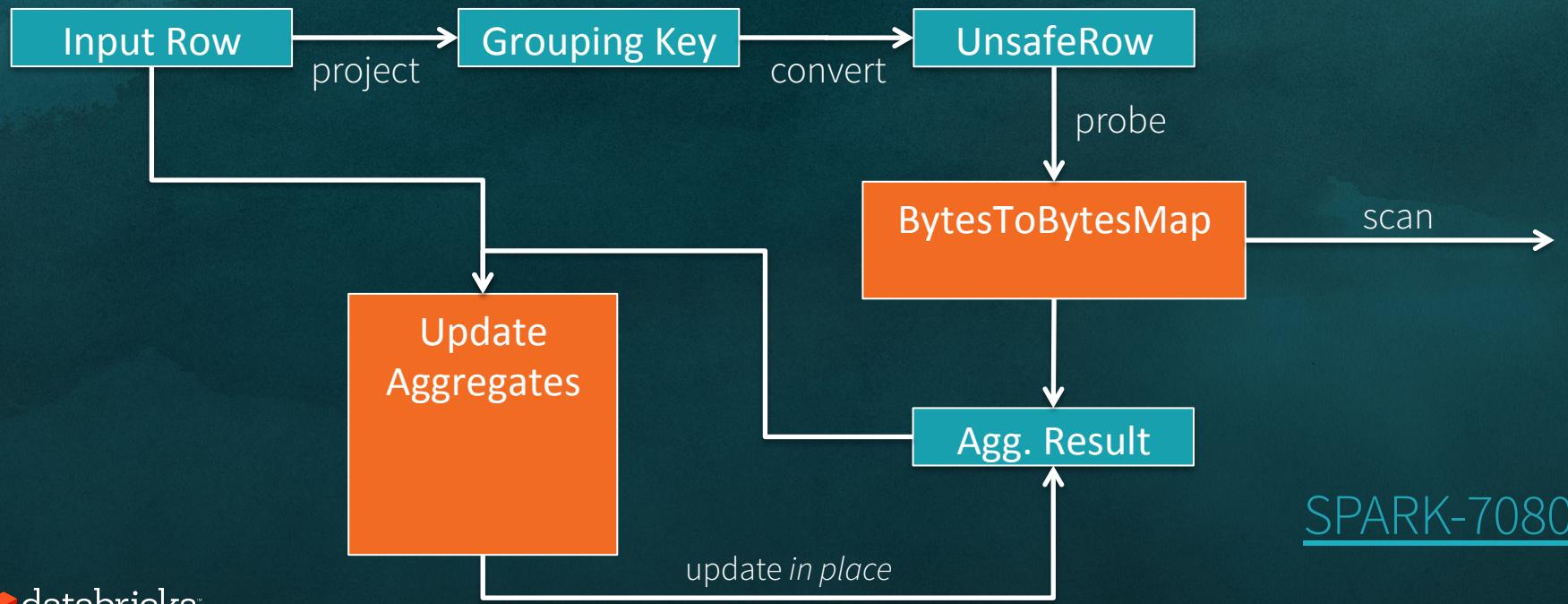
Code generation

- Project Tungsten uses the Janino compiler to reduce code generation time.
- Spark 1.5 will greatly expand the number of expressions that support code generation:
 - [SPARK-8159](#)

Example: aggregation optimizations in DataFrames and Spark SQL

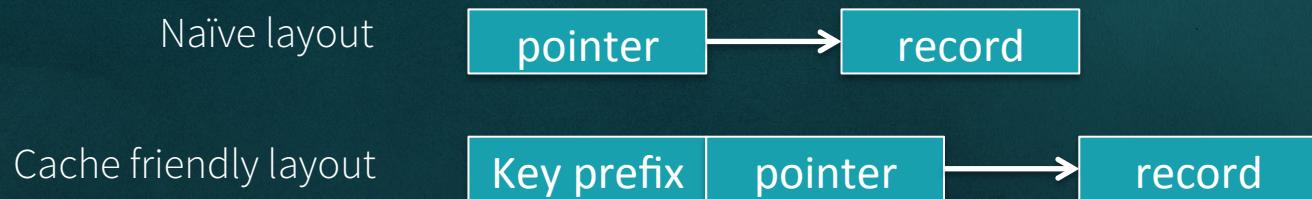
```
df.groupBy("department").agg(max("age"), sum("expense"))
```

Example: aggregation optimizations in DataFrames and Spark SQL

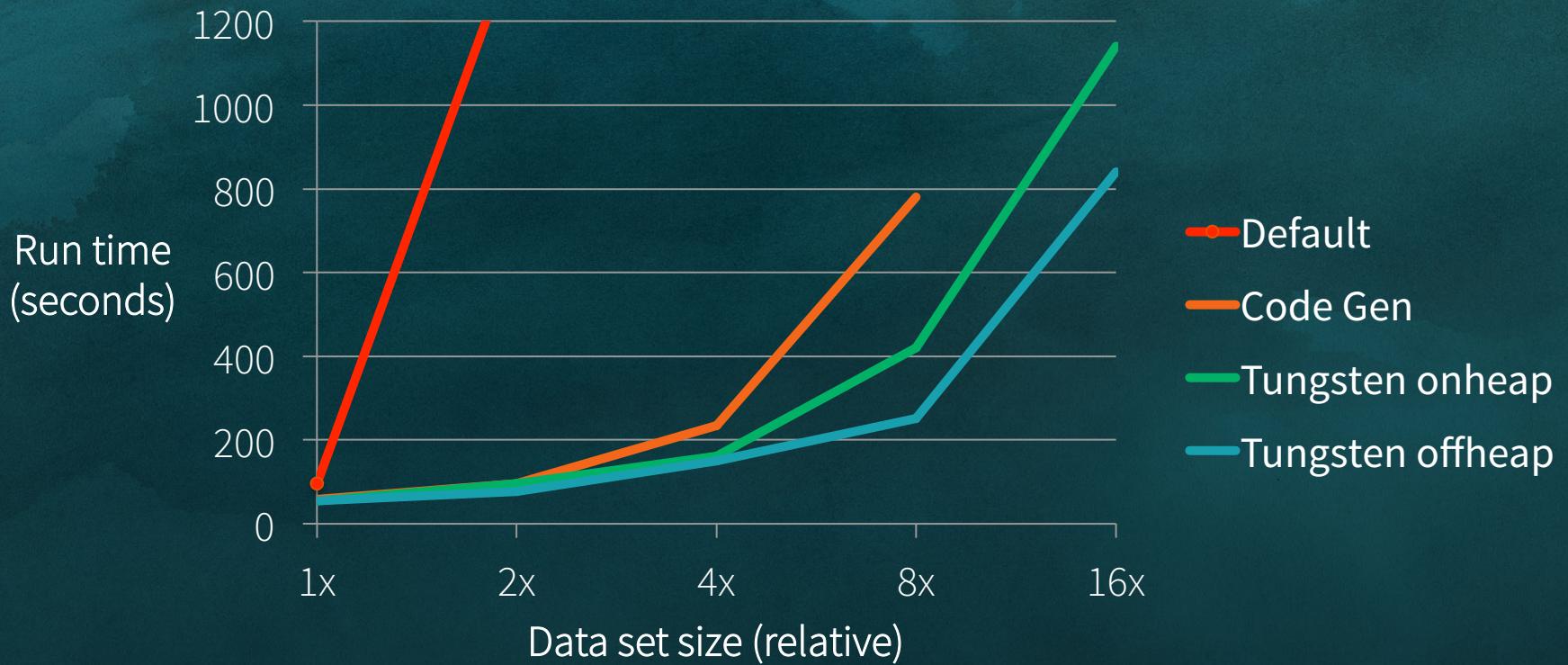


Optimized record sorting in Spark SQL + DataFrames ([SPARK-7082](#))

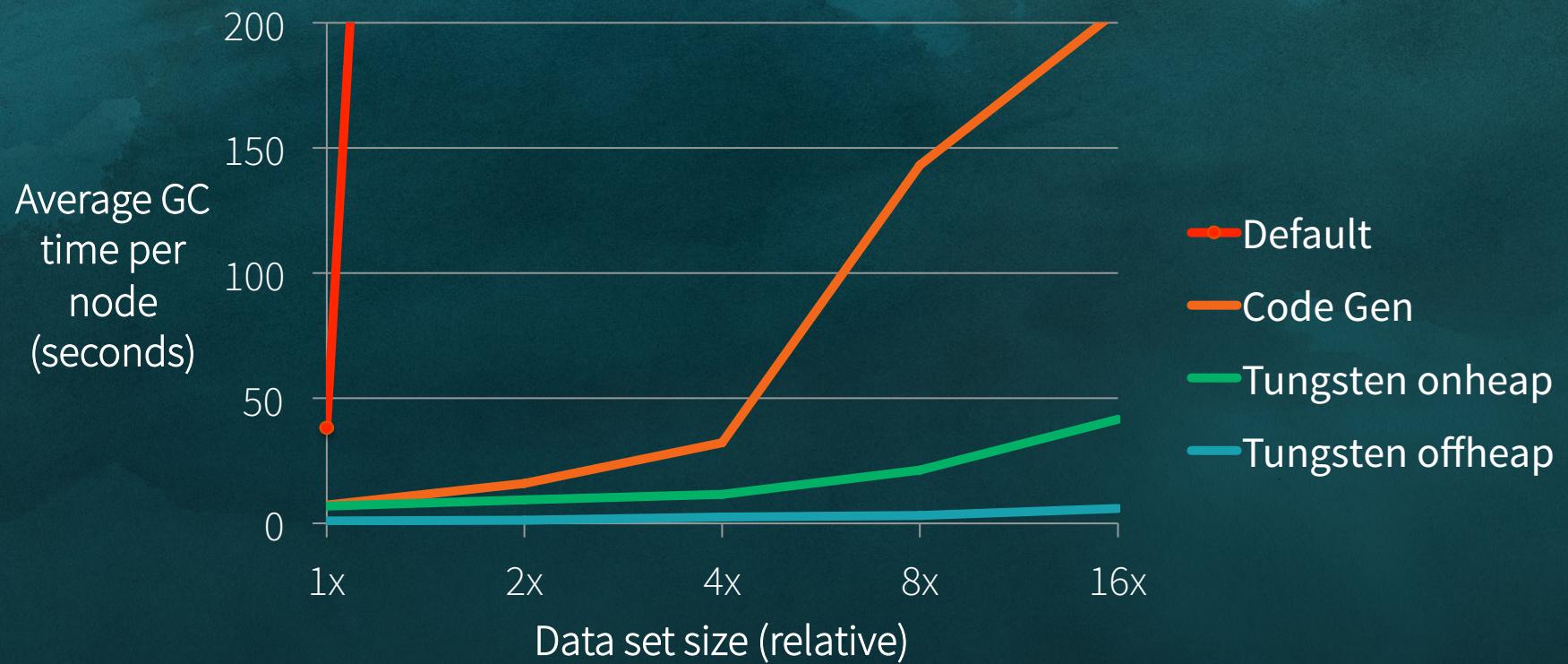
- AlphaSort-style prefix sort:
 - Store prefixes of sort keys inside the sort pointer array
 - During sort, compare prefixes to short-circuit and avoid full record comparisons
- Use this to build external sort-merge join to support joins larger than memory



Initial performance results for agg. query



Initial performance results for agg. query



Project Tungsten Roadmap

Spark 1.4

- Binary processing for aggregation in Spark SQL / DataFrames
- New Tungsten shuffle manager
- Compression & serialization optimizations

Spark 1.5

- Optimized code generation
- Optimized sorting in Spark SQL / DataFrames
- End-to-end processing using binary data representations
- External aggregation

Spark 1.6

- Vectorized / batched processing
- ???

Which Spark jobs can benefit from Tungsten?

- **DataFrames**
 - Java
 - Scala
 - Python
 - R
- **Spark SQL queries**
- **Some Spark RDD API programs**, via general serialization + compression optimizations

```
logs.join(  
  users,  
  logs.userId == users.userId,  
  "left_outer") \  
  .groupBy("userId").agg({"*": "count"})
```

How to enable all of Spark 1.4's Tungsten optimizations

Warning! These features are experimental in 1.4!

```
spark.sqlcodegen = true  
spark.sql.unsafe.enabled = true  
spark.shuffle.manager = tungsten-sort
```

Thank you.

Follow our progress on JIRA: [SPARK-7075](#)

