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About Databricks 

Offers a hosted service: 
•  Spark on EC2 
•  Notebooks 
•  Plot visualizations 
•  Cluster management 
•  Scheduled jobs 
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Founded by creators of Spark and remains largest contributor 



Goals of Project Tungsten 

 
Substantially improve the memory and CPU efficiency of 
Spark applications . 
 
Push performance closer to the limits of modern 
hardware. 
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In this talk 
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• Motivation: why we’re focusing on compute instead of IO 
• How Tungsten optimizes memory + CPU 
• Case study: aggregation 
• Case study: record sorting 
• Performance results 
• Roadmap + next steps 



Many big data workloads are now 
compute bound 
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NSDI’15: 

•  “Network optimizations can only reduce job completion time by 
a median of at most 2%.” 

•  “Optimizing or eliminating disk accesses can only reduce job 
completion time by a median of at most 19%.” 

•  We’ve observed similar characteristics in many Databricks Cloud 
customer workloads. 



Why is CPU the new bottleneck? 
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•  Hardware has improved: 
–  Increasingly large aggregate IO bandwidth, such as 10Gbps links in 

networks 
–  High bandwidth SSD’s or striped HDD arrays for storage 

•  Spark’s IO has been optimized: 
–  many workloads now avoid significant disk IO by pruning input data 

that is not needed in a given job 
–  new shuffle and network layer implementations 

•  Data formats have improved: 
–  Parquet, binary data formats 

•  Serialization and hashing are CPU-bound bottlenecks 



How Tungsten improves CPU & memory 
efficiency 
 •  Memory Management and Binary Processing: leverage 

application semantics to manage memory explicitly and 
eliminate the overhead of JVM object model and garbage 
collection 

•  Cache-aware computation: algorithms and data structures to 
exploit memory hierarchy 

•  Code generation: exploit modern compilers and CPUs; allow 
efficient operation directly on binary data 
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The overheads of Java objects 

“abcd” 
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•  Native: 4 bytes with UTF-8 encoding 
•  Java: 48 bytes 

java.lang.String object internals:	
OFFSET  SIZE   TYPE DESCRIPTION                    VALUE	
     0     4        (object header)                ...	
     4     4        (object header)                ...	
     8     4        (object header)                ...	
    12     4 char[] String.value                   []	
    16     4    int String.hash                    0	
    20     4    int String.hash32                  0	
Instance size: 24 bytes (reported by Instrumentation API)	

12 byte object header 

8 byte hashcode 
20 bytes of overhead + 8 bytes for chars 



Garbage collection challenges 

•  Many big data workloads create objects in ways that are 
unfriendly to regular Java GC. 

•  Guest blog on GC tuning: tinyurl.com/db-gc-tuning 
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sun.misc.Unsafe 
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•  JVM internal API for directly manipulating memory without 
safety checks (hence “unsafe”) 

•  We use this API to build data structures in both on- and off-heap 
memory 

Data	
  
structures	
  

with	
  pointers	
  

Flat	
  data	
  
structures	
  

Complex	
  
examples	
  



Java object-based row representation 
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3 fields of type (int, string, string) 
with value (123, “data”, “bricks”)  

GenericMutableRow	
  

Array	
   String(“data”)	
  

String(“bricks”)	
  

5+ objects; high space overhead; expensive hashCode() 

BoxedInteger(123)	
  



Tungsten’s UnsafeRow format 
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•  Bit set for tracking null values 
•  Every column appears in the fixed-length values region: 

–  Small values are inlined 
–  For variable-length values (strings), we store a relative offset into the variable-

length data section 
•  Rows are always 8-byte word aligned (size is multiple of 8 bytes) 
•  Equality comparison and hashing can be performed on raw bytes without 

requiring additional interpretation 

null	
  bit	
  set	
  (1	
  bit/field)	
  
	
  

values	
  (8	
  bytes	
  /	
  field)	
  
	
  

	
  
variable	
  length	
  

	
  
Offset to var. length data 



6 “bricks” 

Example of an UnsafeRow 
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0x0 123 32L 48L 4 “data” 

(123, “data”, “bricks”)  

Null tracking bitmap 

Offset to var. length data 

Offset to var. length data Field lengths 



How we encode memory addresses 
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•  Off heap: addresses are raw memory pointers. 
•  On heap: addresses are base object + offset pairs. 
•  We use our own “page table” abstraction to enable more 

compact encoding of on-heap addresses: 

0	
  
1	
  
…	
  

N	
  –	
  1	
  
Page table 

Data	
  page	
  
(Java	
  object)	
  

page	
   offset	
  in	
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java.util.HashMap 

…	
  

key	
  ptr	
   value	
  ptr	
   next	
  

key	
   value	
  

array 

•  Huge object overheads 

•  Poor memory locality 

•  Size estimation is hard 



Memory	
  page	
  

hc	
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Tungsten’s BytesToBytesMap 

ptr	
  

…	
  

array 

•  Low space overheads 

•  Good memory locality, especially for scans 

key	
   value	
   key	
   value	
  
key	
   value	
   key	
   value	
  

key	
   value	
   key	
   value	
  



Code generation 
•  Generic evaluation of expression logic 

is very expensive on the JVM 
–  Virtual function calls 
–  Branches based on expression type 
–  Object creation due to primitive boxing 
–  Memory consumption by boxed 

primitive objects 
•  Generating custom bytecode can 

eliminate these overheads 
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9.33 

9.36 

36.65 

Hand written 

Code gen 

Interpreted Projection 

Evaluating “SELECT a + a + a” 
(query time in seconds) 



Code generation 
•  Project Tungsten uses the Janino compiler to reduce code generation time. 
•  Spark 1.5 will greatly expand the number of expressions that support code 

generation: 
–  SPARK-8159 
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Example: aggregation optimizations in 
DataFrames and Spark SQL 
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df.groupBy("department").agg(max("age"), sum("expense"))	



Example: aggregation optimizations in 
DataFrames and Spark SQL 
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Input	
  Row	
   Grouping	
  Key	
   UnsafeRow	
  
project convert 

BytesToBytesMap	
   scan 

Update	
  
Aggregates	
  

Agg.	
  Result	
  

update in place 

probe 

SPARK-7080 



Optimized record sorting in Spark SQL + 
DataFrames (SPARK-7082)  
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pointer	
  

•  AlphaSort-style prefix sort: 
–  Store prefixes of sort keys inside the sort pointer array 
–  During sort, compare prefixes to short-circuit and avoid full record comparisons 

•  Use this to build external sort-merge join to support joins larger than memory 

record	
  

Key	
  prefix	
   pointer	
   record	
  

Naïve layout 

Cache friendly layout 



Initial performance results for agg. query 
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Initial performance results for agg. query 
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Project Tungsten Roadmap 
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Spark	
  1.4	
   Spark	
  1.5	
   Spark	
  1.6	
  

•  Binary processing for 
aggregation in Spark 
SQL / DataFrames 

•  New Tungsten shuffle 
manager 

•  Compression & 
serialization 
optimizations 

•  Optimized code 
generation 

•  Optimized sorting in 
Spark SQL / 
DataFrames 

•  End-to-end processing 
using binary data 
representations 

•  External aggregation 

•  Vectorized / batched 
processing 

•  ??? 



Which Spark jobs can benefit from 
Tungsten? 
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•  DataFrames 
–  Java 
–  Scala 
–  Python 
–  R 

•  Spark SQL queries 
•  Some Spark RDD API programs, via general serialization + compression 

optimizations 

logs.join( !
"users, !
"logs.userId == users.userId, !
""left_outer") \ !

.groupBy("userId").agg({"*": "count"}) !



How to enable all of Spark 1.4’s 
Tungsten optimizations 
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spark.sql.codegen = true	
spark.sql.unsafe.enabled = true	
spark.shuffle.manager = tungsten-sort	

Warning!	
  These	
  features	
  
are	
  experimental	
  in	
  1.4!	
  



Thank you. 
Follow our progress on JIRA: SPARK-7075 


