Deep Dive into Project
Tungsten: Bringing Spark

Closer to Bare Metal

Josh Rosen () :
June 16,2015 databTICkSW

About Databricks

Founded by creators of Spark and remains largest contributor

Q

Step 3: Top 10 most popular baby names over time

Offers a hosted service:
« Spark on EC2
« Notebooks
 Plotvisualizations

e Cluster management
« Scheduled jobs

databricks

Goals of Project Tungsten

Substantially improve the memory and CPU efficiency of
Spark applications .

Push performance closer to the limits of modern
hardware.

databricks

In this talk

» Motivation: why we’re focusing on compute instead of IO
« How Tungsten optimizes memory + CPU

« Case study: aggregation

« Case study: record sorting

« Performance results

« Roadmap + next steps

databricks

Many big data workloads are now
compute bound

Making Sense of Performance in Data Analytics Frameworks

)
N S D | 15 o Kay Ousterhout”, Ryan Rasti™', Sylvia Ratnasamy”, Scott Shenker™', Byung-Gon Chun
‘UC Berkeley. 'ICSL “VMware, ' Seoul National University

“Network optimizations can only reduce job completion time by
a median of at most 2%.”

“Optimizing or eliminating disk accesses can only reduce job
completion time by a median of at most 19%.”

« We've observed similar characteristics in many Databricks Cloud
customer workloads.

databricks

Why is CPU the new bottleneck?

« Hardware has improved:

- Increasingly large aggregate 10 bandwidth, such as 10Gbps links in
networks

- High bandwidth SSD’s or striped HDD arrays for storage

« Spark’s 10 has been optimized:

- many workloads now avoid significant disk 10 by pruning input data
that is not needed in a given job

- new shuffle and network layer implementations
- Data formats have improved:
- Parquet, binary data formats

« Serialization and hashing are CPU-bound bottlenecks

databricks

How Tungsten improves CPU & memory
efficiency

« Memory Management and Binary Processing: leverage
application semantics to manage memory explicitly and
eliminate the overhead of JVM object model and garbage
collection

« Cache-aware computation: algorithms and data structures to
exploit memory hierarchy

 Code generation: exploit modern compilers and CPUs; allow
efficient operation directly on binary data

databricks

databricks

The overheads of Java objects

((abcd”

« Native: 4 bytes with UTF-8 encoding
- Java:

java.lang.String object internals:
OFFSET SIZE TYPE DESCRIPTION

12 byte object header

20 bytes of overhead + 8 bytes for chars

8 byte hashcode
Instance size: 24 bytes (reported by Instrumentation API)

databricks

Garbage collection challenges

Survivor Space

tenured permanent

Young Generation Old Generation Permanent Generation

« Many big data workloads create objects in ways that are
unfriendly to regular Java GC.

« Guest blog on GC tuning:

databricks

sun.misc.Unsafe

« JVM internal API for directly manipulating memory without
safety checks (hence “unsafe”)

« We use this API to build data structures in both on- and off-heap
memory

Flat data Dats Complex
structures
structures examples

with pointers

databricks

Java object-based row representation

3 fields of type (int, string, string)
with value (123, “data”, “bricks”)

GenericMutableRow

—>

BoxedInteger(123)

Array

String(“data”)

String(“bricks”)

5+ objects; high space overhead; expensive hashCode()

databricks

Tungsten’'s UnsafeRow format

null bit set (1 bit/field) values (8 bytes / field) variable length

Offset to var. length data T

Bit set for tracking null values

Every column appears in the fixed-length values region:
- Small values are inlined

- Forvariable-length values (strings), we store a relative offset into the variable-
length data section

Rows are always 8-byte word aligned (size is multiple of 8 bytes)

Equality comparison and hashing can be performed on raw bytes without
requiring additional interpretation

databricks

Example of an UnsafeRow

(

Offset to var. length data

v

48L

“data”

6

“bricks”

Offset to var. length data

Null tracking bitmap

databricks

Field lengths

How we encode memory addresses

 Off heap: addresses are raw memory pointers.

« On heap: addresses are base object + offset pairs.

« We use our own “page table” abstraction to enable more
compact encoding of on-heap addresses:

v

offset in page

Data page
(Java object)

N—-1
databricks Page table

java.util.HashMap

key ptr value ptr

Ll oo

key

« Huge object overheads

« Poor memory locality

2y Size estimation is hard

databricks

Tungsten’'s BytesToBytesMap

Memory page

>

key

key

key

array

databricks

« Low space overheads

« Good memory locality, especially for scans

Code generation
Evaluating “SELECT a+a+a”

- Generic evaluation of expression logic (query time in seconds)
IS very expensive on the JVM
- Virtual function calls
- Branches based on expression type

Interpreted Projection

- Object creation due to primitive boxing

- Memory consumption by boxed Code gen
primitive objects

« Generating custom bytecode can
eliminate these overheads

Hand written

databricks

Code generation

« Project Tungsten uses the Janino compiler to reduce code generation time.

» Spark 1.5 will greatly expand the number of expressions that support code
generation:

databricks

Example: aggregation optimizations In
DataFrames and Spark SQL

df.groupBy("department").agg(max("age"), sum("expense"))

databricks

Example: aggregation optimizations Iin
DataFrames and Spark SQL

Input Row ——| Grouping Key —> UnsafeRow
project convert
lprobe

BytesToBytesMap

A 4

Update
Aggregates

Agg. Result

update in place

databricks

Optimized record sorting in Spark SQL +
DataFrames ()

« AlphaSort-style prefix sort:
- Store prefixes of sort keys inside the sort pointer array
- During sort, compare prefixes to short-circuit and avoid full record comparisons

« Use this to build external sort-merge join to support joins larger than memory

Naive layout pointer record

Cache friendly layout Key prefix | pointer record

databricks

Initial performance results for agg. query

1200
1000

800

Run time

(seconds) o

400
200
0

databricks

1x

2X 4X 8X
Data set size (relative)

Default
Code Gen

Tungsten onheap

Tungsten offheap

Initial performance results for agg. query

200

150
Average GC
time per
node
(seconds)

100

50

databricks

2X 4X 8X
Data set size (relative)

Default
Code Gen

Tungsten onheap

Tungsten offheap

Project Tungsten Roadmap

Spark 1.4 Spark 1.5 Spark 1.6

» Binary processing for Optimized code « Vectorized / batched
aggregation in Spark generation processing

SQL/ DataFrames Optimized sorting in

Spark SQL /
DataFrames

o 1
« New Tungsten shuffle

Mmanager

End-to-end processing
« Compression & using binary data
serialization representations

optimizations External aggregation

databricks

Which Spark jobs can benefit from
Tungsten?

« DataFrames
_ Java logs.join(
users,
logs.userld == users.userld,
) \
.groupBy () .agg ({

- Scala

« Spark SQL queries

« Some Spark RDD API programs, via general serialization + compression
optimizations

databricks

How to enable all of Spark 1.4’s
Tungsten optimizations

Warning! These features
are experimental in 1.4!

K.sql.codegen = true
kK.sqgl .unsafe.enabled = true
K.shuffle.manager = tungsten-sort

databricks

Thank you.

Follow our progress on JIRA:

databricks

