Flyby: Improved Dense
Matrix Multiplication ...

Tom Vacek
Thomson Reuters R&D

Spark

summit2c

Outline

* Matching use case
» 3 Algorithms
« Evaluation

SQUCI#.I’T%I'ZOT

Matching application

movies
[ml Mo M3]

Uy | -f(mlaul)

users
<
N

seaé USers cartesian movies map...combineByKey

cartesian matrix multiply

- / - ~ _

i a'l bl a,'l bg CL’l b3

(o bl b2 b3 — (L’le a’2b2 a,’2b3

aRows cartesian(bCols) map (a, b) => a™b

Spor‘f(Z
summit2015

shuffleMultiply

1 flatmap 1
* Local reduceByKey Tn,
 Optimal efficiency:) o (m.k).
O(n'-°) workers
each do O(n'>) work (i,k),r:n .
O(n'-2%) wire | recucaByKey +

:]

SQUCI#;"T%DOIS

left flyby right

right
r1 r2 r3
s b= follr) follr) foll,r)
la — f(lz,v’f‘la') f(lz:;“zf) f(lz:T:s,')

N l3 — f(l37 r1,) f(l?n T2,) f(l3,7’3,)

SQUCI#;"T%DOIS

2 . N

/
-

le

seucfyf’éltZOT

b1

aﬁbl

b2

aibg

Flyby matrix multiply

b3

a&bg

SQUCI#;’T%QOT

b1

aﬁbl

aébl

b2

a&bg

aébg

Flyby matrix multiply

b3

a&bg

aébg

Flyby implementation (hack

def flyby[L,R,0] (left: RDD[L], right:RDD[R], foldO: (L,R)=>0, foldFun: (L,R,0)=>0))={
var reduction:RDD[O] = null
val leftlocal = getPartitionsAsLocalArray(left)

for (part <- leftLocal) {
val flyer = right.sparkContext broadcast (part)

val nextReduction = if (reduction == null) {

right.map { case rr =>
val init = foldO(flyer.value.head, rr)

flyer.value.tail.foldLeft (init) { case (acc, nextflyer) =>
foldFun (nextflyer, rr, acc)} }
} else {

right.zip(reduction) .map { case (rr, red) =>
flyer.value.foldLeft (red) { case (acc, nextflyer) =>
foldFun (nextflyer, rr, acc)} }
} .persist
nextReduction.count
flyer.unpersist (false)
J? reduction.unpersist (false)
SprK reduction = nextReduction

summit2015

Matrix Experiments

* Implemented dist dense matrix class using
Breeze

* 5 Nodes, quad socket Xeon E5-2690 (32
cores), 250GB. Cloudera 5.3 (Spark 1.2.0)

» Evaluate nxn matrices, npartitions
» Code: bitbucket.org/twvacek/spark-flyby

Sopik,

mmic2

= .

MLLIb

BlockMatrix introduced to mllib at version
1.3.0 (13 Mar 2015)

Not available at time this work was done.
Our matrix class very similar.
Milib multiply ~= shuffleMultiply

Results

4000
3500
3000
2500

2000

1500
1000
I S E——

10k (36) 25k (100) 30k (144)

npartitions
sp m;"zlf2015 (p)

lﬁ Bcart ®shuf ®flyby

time (s)

o

Discussion

* Flyby: signif improvement over cartesian.
Gain for matching applications.

* Improvement over shuffle probably from
memory caching. Asymptotics?

* FlybyRDD ?
» Code: bitbucket.org/twvacek/spark-flyby

Sopik,

mmic2

= .

