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Matching application
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cartesian matrix multiply
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shuffleMultiply
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Flyby implementation (hack

def flyby[L,R,0] (left: RDD[L], right:RDD[R], foldO: (L,R)=>0, foldFun: (L,R,0)=>0))={
var reduction:RDD[O] = null
val leftlocal = getPartitionsAsLocalArray(left)

for (part <- leftLocal) {
val flyer = right.sparkContext broadcast (part)

val nextReduction = if (reduction == null) {

right.map { case rr =>
val init = foldO(flyer.value.head, rr)

flyer.value.tail.foldLeft (init) { case (acc, nextflyer) =>
foldFun (nextflyer, rr, acc)} }
} else {

right.zip(reduction) .map { case (rr, red) =>
flyer.value.foldLeft (red) { case (acc, nextflyer) =>
foldFun (nextflyer, rr, acc)} }
} .persist
nextReduction.count
flyer.unpersist (false)
J? reduction.unpersist (false)
SprK reduction = nextReduction
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Matrix Experiments

* Implemented dist dense matrix class using
Breeze

* 5 Nodes, quad socket Xeon E5-2690 (32
cores), 250GB. Cloudera 5.3 (Spark 1.2.0)

» Evaluate nxn matrices, npartitions
» Code: bitbucket.org/twvacek/spark-flyby
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MLLIb

BlockMatrix introduced to mllib at version
1.3.0 (13 Mar 2015)

Not available at time this work was done.
Our matrix class very similar.
Milib multiply ~= shuffleMultiply



Results
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Discussion

* Flyby: signif improvement over cartesian.
Gain for matching applications.

* Improvement over shuffle probably from
memory caching. Asymptotics?

* FlybyRDD ?
» Code: bitbucket.org/twvacek/spark-flyby
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