
Flyby: Improved Dense
Matrix Multiplication (& other tasks)

Tom Vacek
Thomson Reuters R&D

Outline
•  Matching use case
•  3 Algorithms
•  Evaluation

Matching application

users cartesian movies map…combineByKey

cartesian matrix multiply

aRows cartesian(bCols) map (a , b) => a*b

shuffleMultiply
•  Local reduceByKey
•  Optimal efficiency:

 O(n1.5) workers
 each do O(n1.5) work
 O(n1.25) wire

i,j

(i,1),j
(i,n),j

j,k

(1,k),j
(m,k),j

flatmap

join

(i,k),1
(i,k),n

i,k

map ._1
reduceByKey +

left flyby right

Flyby matrix multiply

Flyby matrix multiply

Flyby implementation (hack)
def flyby[L,R,O] (left: RDD[L], right:RDD[R], fold0: (L,R)=>O, foldFun: (L,R,O)=>O))={
 var reduction:RDD[O] = null
 val leftLocal = getPartitionsAsLocalArray(left)
 for(part <- leftLocal) {
 val flyer = right.sparkContext broadcast (part)
 val nextReduction = if (reduction == null) {
 right.map { case rr =>
 val init = fold0(flyer.value.head, rr)
 flyer.value.tail.foldLeft(init) { case (acc, nextflyer) =>

 foldFun(nextflyer, rr, acc)} }
 } else {
 right.zip(reduction).map { case (rr, red) =>
 flyer.value.foldLeft(red) { case (acc, nextflyer) =>

 foldFun(nextflyer, rr, acc)} }
 }.persist
 nextReduction.count
 flyer.unpersist (false)
 reduction.unpersist(false)
 reduction = nextReduction

Matrix Experiments
•  Implemented dist dense matrix class using

Breeze
•  5 Nodes, quad socket Xeon E5-2690 (32

cores), 250GB. Cloudera 5.3 (Spark 1.2.0)
•  Evaluate n×n matrices, npartitions
•  Code: bitbucket.org/twvacek/spark-flyby

MLLib
•  BlockMatrix introduced to mllib at version

1.3.0 (13 Mar 2015)
•  Not available at time this work was done.
•  Our matrix class very similar.
•  Mllib multiply ~= shuffleMultiply

Results

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

10k (36)" 25k (100)" 30k (144)"

tim
e

(s
)"

n (npartitions)"

cart" shuf" flyby"

Discussion
•  Flyby: signif improvement over cartesian.

Gain for matching applications.
•  Improvement over shuffle probably from

memory caching. Asymptotics?
•  FlybyRDD ?
•  Code: bitbucket.org/twvacek/spark-flyby

