From DataFrames to Tungsten:

A Peek into Spark’s Future

Reynold Xin @rxin

Spark Summit, San Francisco

June 16, 2015 databr iCkSm

DatakFrame

noun

Making Spark accessible to everyone (data
scientists, engineers, statisticians, .. .)

€databricks

Tungsten

noun

Making Spark faster & prepare for the next
five years.

€databricks

How do DataFrames and

Tungsten relate to each other?

Google Trends for “dataframe”

Single-node tabular data structure, with API for

relational algebra (filter, join, ...)
math and stats

input/output (CSV, JSON, ...)

ad infinitum

@databricks

Data frame: lingua franca for “small data”

head(flights)

#> Source: local data frame [6 x 16]

#>

#> year month day dep _time dep delay arr_time arr_delay carrier tailnum
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804JB
#> ..

@databricks

Spark DataFrame
Distributed data frame for Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, dplyr), i.e. easy to learn

> head(filter(df, df$waiting < 50)) # an example in R
eruptions waiting

H#1 1.750 47
HH#2 1.750 47
H#3 1.867 48

@databricks

Spark
DataFrame

Existing
Single-node
Data Frames

@databricks

a

A

KB

MB

>

GB

data size

B

PB

It is not Spark vs Python/R,

but Spark and Python/R.

Spark and Python/R

Spark B Python/R
DF DF
scalability wealth
multi-core of
multi-machines libraries

@databricks

Machine

Learning

Spark RDD Execution

Java/Scala opaqgue closures Python
API (user-defined functions) API
v \ 4
JUM Python
Execution Execution

@databricks

Spark DataFrame Execution

DataFrame

Logical Plan Intermediate representation for computation

Catalyst
optimizer

Physical
Execution

@databricks

Spark DataFrame Execution

Python Java/Scala R
DF DF DF

\V

Logical Plan Intermediate representation for computation

Simple wrappers to create logical plan

Catalyst
optimizer

Physical
Execution

@databricks

Benefit of Logical Plan: Simpler Frontend

Python : ~2000 line of code (built over a weekend)
R:~1000 line of code

.e. much easier to add new language bindings (Julia, Clojure, ...)

@databricks

Performance

Python
RDD
Java/Scala

0

2

4 6

Runtime for an example aggregation workload

@databricks

10

Benefit of Logical Plan:
Performance Parity Across Languages

B SQL

R
DataFrame —

Python

 Java/Scala

—

Python
RDD —

~ Java/Scala

0 2 4 6 8

Runtime for an example aggregation workload (secs)
@databricks

10

What about Tungsten?

Hardware Trends

Storage

Network

CPU

@databricks

Hardware Trends

2010

50+MB/s
Storage (HDD)
Network 1Gbps

CPU ~3GHz

@databricks

Hardware Trends

2010
50+MB/s

Storage (HDD)
Network 1Gbps

CPU ~3GHz

@databricks

2015

500+MB/s
(SSD)

10Gbps

~3GHz

Hardware Trends

2010
50+MB/s

Storage (HDD)
Network 1Gbps
CPU ~3GHz

@databricks

2015

500+MB/s
(SSD)

10Gbps

~3GHz

10X

10X

Tungsten: Preparing Spark for Next 5 Years
Substantially speed up execution by optimizing CPU efficiency, via:
(1) Runtime code generation

(2) Exploiting cache locality
(3) Off-heap memory management

@databricks

From DataFrame to Tungsten

Python Java/Scala R
DF DF DF
ogical Plan
e 5PM
‘ Deep Dive into Project Tungsten
Tungsten Developer Track by Josh Rosen

Execution

@databricks

Initial Performance Results

1200
&= 1000
800
600

400

Run time (seconds

200
0

@databricks

——Tungsten-off

Tungsten-on

2X

4x

Data set size (relative)

8X

Unified API, One Engine, Automatically Optimized

language
frontend SQL Python Java/Scala R
DataFrame
Logical Plan
Tungsten
JVM LLVM GPU NVRAM
backend

@databricks

DataFrame

: Advanced
Streaming Smeliies

@databricks

Tungsten Execution

Spark Office Hours Today

1:00-1:45 Core, YARN, Ops

1:45-2:30 Core/SQL/Data Science Databricks booth Al
3:00-3:40 Streaming

3:40-4:15 Core, Python, R

4:30-5:15 Machine Learning

5:15-6:00 Matei Zaharia

@databricks

