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DatakFrame

noun

Making Spark accessible to everyone (data
scientists, engineers, statisticians, .. .)

€databricks




Tungsten

noun

Making Spark faster & prepare for the next
five years.

€databricks




How do DataFrames and

Tungsten relate to each other?




Google Trends for “dataframe”

Single-node tabular data structure, with API for

relational algebra (filter, join, ...)
math and stats

input/output (CSV, JSON, ...)

ad infinitum
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Data frame: lingua franca for “small data”

head(flights)

#> Source: local data frame [6 x 16]

#>

#> year month day dep _time dep delay arr_time arr_delay carrier tailnum
#> 1 2013 1 1 517 2 830 11 UA N14228
#> 2 2013 1 1 533 4 850 20 UA N24211
#> 3 2013 1 1 542 2 923 33 AA  N619AA
#> 4 2013 1 1 544 -1 1004 -18 B6 N804JB
#> ..
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Spark DataFrame
Distributed data frame for Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, dplyr), i.e. easy to learn

> head(filter(df, df$waiting < 50)) # an example in R
## eruptions waiting

H#1 1.750 47
HH#2 1.750 47
H#3 1.867 48
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Spark
DataFrame

Existing
Single-node
Data Frames
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It is not Spark vs Python/R,

but Spark and Python/R.




Spark and Python/R

Spark B Python/R
DF DF
scalability wealth
multi-core of
multi-machines libraries
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Spark RDD Execution

Java/Scala opaqgue closures Python
API (user-defined functions) API
v \ 4
JUM Python
Execution Execution
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Spark DataFrame Execution

DataFrame

Logical Plan Intermediate representation for computation

Catalyst
optimizer

Physical
Execution
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Spark DataFrame Execution

Python Java/Scala R
DF DF DF

\V

Logical Plan Intermediate representation for computation

Simple wrappers to create logical plan

Catalyst
optimizer

Physical
Execution
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Benefit of Logical Plan: Simpler Frontend

Python : ~2000 line of code (built over a weekend)
R:~1000 line of code

.e. much easier to add new language bindings (Julia, Clojure, ...)
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Performance
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Benefit of Logical Plan:
Performance Parity Across Languages

B SQL
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DataFrame —

Python
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Runtime for an example aggregation workload (secs)
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What about Tungsten?




Hardware Trends

Storage

Network

CPU
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Hardware Trends

2010

50+MB/s
Storage (HDD)
Network 1Gbps

CPU ~3GHz
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Hardware Trends

2010
50+MB/s

Storage (HDD)
Network 1Gbps

CPU ~3GHz
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2015

500+MB/s
(SSD)

10Gbps

~3GHz




Hardware Trends

2010
50+MB/s

Storage (HDD)
Network 1Gbps
CPU ~3GHz
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2015

500+MB/s
(SSD)

10Gbps

~3GHz

10X

10X




Tungsten: Preparing Spark for Next 5 Years
Substantially speed up execution by optimizing CPU efficiency, via:
(1) Runtime code generation

(2) Exploiting cache locality
(3) Off-heap memory management
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From DataFrame to Tungsten

Python Java/Scala R
DF DF DF
ogical Plan
e 5PM
‘ Deep Dive into Project Tungsten
Tungsten Developer Track by Josh Rosen

Execution
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Initial Performance Results
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Unified API, One Engine, Automatically Optimized

language
frontend SQL Python Java/Scala R
DataFrame
Logical Plan
Tungsten
JVM LLVM GPU NVRAM
backend

@databricks




DataFrame

: Advanced
Streaming Smeliies
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Spark Office Hours Today

1:00-1:45 Core, YARN, Ops

1:45-2:30 Core/SQL/Data Science Databricks booth Al
3:00-3:40 Streaming

3:40-4:15 Core, Python, R

4:30-5:15 Machine Learning

5:15-6:00 Matei Zaharia
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