

https://github.com/LucidWorks/spark-solr/

•  Indexing from Spark

•  Reading data from Solr

•  Solr data as a Spark SQL DataFrame

•  Interacting with Solr from the Spark shell

•  Document Matching

•  Reading Term vectors from Solr for MLlib

Integrating Solr & Spark

•  Solr user since 2010, committer since April 2014, work for
Lucidworks, PMC member ~ May 2015

•  Focus mainly on SolrCloud features … and bin/solr!

ü  Release manager for Lucene / Solr 5.1

•  Co-author of Solr in Action

•  Other contributions include Solr on YARN, Solr Scale
Toolkit, Solr-Storm, and Spark-Solr integration projects on
github

About Me …

About Solr

•  Vibrant, thriving open source community

•  Solr 5.2 just released!

ü  Pluggable authentication and authorization

ü  ~2x indexing performance w/ replication

ü  Field cardinality estimation using HyperLogLog

ü  Rule-based replica placement strategy (rack awareness)

•  Deploy to YARN cluster using Slider

Lucidworks Fusion

Spark Streaming Example: Solr as Sink

Twitter

./spark-­‐submit	
 -­‐-­‐master	
 MASTER	
 -­‐-­‐class	
 com.lucidworks.spark.SparkApp	
 spark-­‐solr-­‐1.0.jar	
 \	

	
 	
 	
 	
 	
 twitter-­‐to-­‐solr	
 -­‐zkHost	
 localhost:2181	
 –collection	
 social	

Solr

 JavaReceiverInputDStream<Status> tweets =
 TwitterUtils.createStream(jssc, null, filters);

Various transformations / enrichments
on each tweet (e.g. sentiment analysis,
language detection)

 JavaDStream<SolrInputDocument> docs = tweets.map(
 new Function<Status,SolrInputDocument>() {
 // Convert a twitter4j Status object into a SolrInputDocument
 public SolrInputDocument call(Status status) {
 SolrInputDocument doc = new SolrInputDocument();
 …
 return doc;
 }});

map()

class TwitterToSolrStreamProcessor
 extends SparkApp.StreamProcessor

SolrSupport.indexDStreamOfDocs(zkHost, collection, 100, docs);

Slide Legend

Provided by Spark

Custom Java / Scala code

Provided by Lucidworks

Spark Streaming Example: Solr as Sink
//	
 start	
 receiving	
 a	
 stream	
 of	
 tweets	
 ...	

JavaReceiverInputDStream<Status>	
 tweets	
 =	

	
 	
 TwitterUtils.createStream(jssc,	
 null,	
 filters);	

	

//	
 map	
 incoming	
 tweets	
 into	
 SolrInputDocument	
 objects	
 for	
 indexing	
 in	
 Solr	

JavaDStream<SolrInputDocument>	
 docs	
 =	
 tweets.map(

	
 	
 new	
 Function<Status,SolrInputDocument>()	
 {	

	
 	
 	
 	
 public	
 SolrInputDocument	
 call(Status	
 status)	
 {	

	
 	
 	
 	
 	
 	
 SolrInputDocument	
 doc	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 SolrSupport.autoMapToSolrInputDoc("tweet-­‐"+status.getId(),	
 status,	
 null);	

	
 	
 	
 	
 	
 	
 doc.setField("provider_s",	
 "twitter");	

	
 	
 	
 	
 	
 	
 return	
 doc;	

	
 	
 	
 	
 }	

	
 	
 }	

);	

	

//	
 when	
 ready,	
 send	
 the	
 docs	
 into	
 a	
 SolrCloud	
 cluster	

SolrSupport.indexDStreamOfDocs(zkHost,	
 collection,	
 docs);	

Direct updates from Spark to shard leaders

server-side client-side

Coming Soon! ShardPartitioner

•  Custom partitioning scheme for RDD using Solr’s DocRouter

•  Stream docs directly to each shard leader using metadata from ZooKeeper,
document shard assignment, and ConcurrentUpdateSolrClient

final	
 ShardPartitioner	
 shardPartitioner	
 =	
 new	
 ShardPartitioner(zkHost,	
 collection);	

pairs.partitionBy(shardPartitioner).foreachPartition(

	
 	
 new	
 VoidFunction<Iterator<Tuple2<String,	
 SolrInputDocument>>>()	
 {	

	
 	
 	
 	
 public	
 void	
 call(Iterator<Tuple2<String,	
 SolrInputDocument>>	
 tupleIter)	
 throws	
 Exception	
 {	

	
 	
 	
 	
 	
 	
 ConcurrentUpdateSolrClient	
 cuss	
 =	
 null;	

	
 	
 	
 	
 	
 	
 while	
 (tupleIter.hasNext())	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 ...	
 Initialize	
 ConcurrentUpdateSolrClient	
 once	
 per	
 partition	

	
 	
 	
 	
 	
 	
 	
 cuss.add(doc);	

	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 }	

});	

SolrRDD: Reading data from Solr into Spark

•  Can execute any query and expose as an RDD

•  SolrRDD produces JavaRDD<SolrDocument>	

•  Use deep-paging if needed (cursorMark)

•  Stream docs from Solr (vs. building lists on the server-side)

•  More parallelism using a range filter on a numeric field (_version_)

SolrRDD: Reading data from Solr into Spark

Shard 1

Shard 2

Solr
Collection

Partition 1

SolrRDD

Partition 2

Spark
Driver
App

q=*:*	

ZooKeeper Read collection metadata

q=*:*&rows=1000&	

distrib=false&cursorMark=*	

Results streamed back from Solr

JavaRDD<SolrDocument>

Spark SQL
Query Solr, then expose results as a SQL table

JavaSparkContext	
 jsc	
 =	
 new	
 JavaSparkContext(conf);	

SQLContext	
 sqlContext	
 =	
 new	
 SQLContext(jsc);	

	

SolrRDD	
 solrRDD	
 =	
 new	
 SolrRDD(zkHost,	
 collection);	

DataFrame	
 tweets	
 =	
 solrRDD.asTempTable(sqlContext,	
 queryStr,	
 "tweets");	

DataFrame	
 results	
 =	
 sqlContext.sql(

"SELECT	
 COUNT(type_s)	
 FROM	
 tweets	
 WHERE	
 type_s='echo'");	

	

JavaRDD<Row>	
 resultsRDD	
 =	
 results.javaRDD();	

List<Long>	
 count	
 =	
 resultsRDD.map(new	
 Function<Row,	
 Long>()	
 {	
 …	
 }).collect();	

System.out.println("#	
 of	
 echos	
 :	
 "+count);	

Query Solr from the Spark Shell
Interactive data mining with the full power of Solr queries

ADD_JARS=$PROJECT_HOME/target/spark-­‐solr-­‐1.0-­‐SNAPSHOT.jar	
 bin/spark-­‐shell	

	

import	
 com.lucidworks.spark.SolrRDD;	

var	
 solrRDD	
 =	
 new	
 SolrRDD("localhost:9983","gettingstarted");	

	

var	
 tweets	
 =	
 solrRDD.query(sc,"*:*");	

var	
 count	
 =	
 tweets.count();	

	

var	
 tweets	
 =	
 solrRDD.asTempTable(sqlContext,	
 "*:*",	
 "tweets");	

sqlContext.sql("SELECT	
 COUNT(type_s)	
 FROM	
 tweets	
 WHERE	
 type_s='echo'").show();	

	

Document Matching using Stored Queries

•  For each document, determine which of a large set of stored queries
matches.

•  Useful for alerts, alternative flow paths through a stream, etc

•  Index a micro-batch into an embedded (in-memory) Solr instance and
then determine which queries match

•  Matching framework; you have to decide where to load the stored
queries from and what to do when matches are found

•  Scale it using Spark … need to scale to many queries, checkout Luwak

Document Matching using Stored Queries

Stored Queries

DocFilterContext

Twitter map()

Slide Legend

Provided by Spark

Custom Java / Scala code

Provided by Lucidworks

 JavaReceiverInputDStream<Status> tweets =
 TwitterUtils.createStream(jssc, null, filters);

 JavaDStream<SolrInputDocument> docs = tweets.map(
 new Function<Status,SolrInputDocument>() {
 // Convert a twitter4j Status object into a SolrInputDocument
 public SolrInputDocument call(Status status) {
 SolrInputDocument doc = new SolrInputDocument();
 …
 return doc;
 }});

JavaDStream<SolrInputDocument> enriched =
 SolrSupport.filterDocuments(docFilterContext, …);

Get queries

Index docs into an
EmbeddedSolrServer
Initialized from configs
stored in ZooKeeper

…

ZooKeeper

Key abstraction to allow
you to plug-in how to
store the queries and
what action to take
when docs match

Reading Term Vectors from Solr
•  Pull TF/IDF (or just TF) for each term in a field for each document in query

results from Solr

•  Can be used to construct RDD<Vector> which can then be passed to MLLib:

SolrRDD	
 solrRDD	
 =	
 new	
 SolrRDD(zkHost,	
 collection);	

	

JavaRDD<Vector>	
 vectors	
 =	
 	

	
 	
 solrRDD.queryTermVectors(jsc,	
 solrQuery,	
 field,	
 numFeatures);	

vectors.cache();	

	

KMeansModel	
 clusters	
 =	
 	

	
 	
 KMeans.train(vectors.rdd(),	
 numClusters,	
 numIterations);	

	

//	
 Evaluate	
 clustering	
 by	
 computing	
 Within	
 Set	
 Sum	
 of	
 Squared	
 Errors	

double	
 WSSSE	
 =	
 clusters.computeCost(vectors.rdd());	

	

Wrap-up and Q & A

Need more use cases …

Feel free to reach out to me with questions:

tim.potter@lucidworks.com / @thelabdude

