Integrating Solr & Spark
Timothy Potter

Lucidworks

Spark

summit

Integrating Solr & Spark

https://qgithub.com/LucidWorks/spark-solr/

Indexing from Spark

Reading data from Solr

Solr data as a Spark SQL DataFrame
Interacting with Solr from the Spark shell
Document Matching

Reading Term vectors from Solr for MLlib

About Me ... "@

» Solr user since 2010, committer since April 2014, work for

Lucidworks, PMC member ~ May 2015
« Focus mainly on SolrCloud features ... and bin/solr! ‘

v Release manager for Lucene / Solr 5.1

e Co-author of Solrin Action

o Other contributions include Solr on YARN, Solr Scale
Toolkit, Solr-Storm, and Spark-Solr integration projects on
github

About Solr
"
 Vibrant, thriving open source community SO l-r v

e Solr 5.2 just released!
v Pluggable authentication and authorization
v ~2x indexing performance w/ replication
v Field cardinality estimation using HyperLoglog
v Rule-based replica placement strategy (rack awareness)

e Deploy to YARN cluster using Slider

.'Ipar‘l'{Z

summit>015

-

Your Data

L ucidworks Fusion

v

Connector Framework
Machine Learning Data Enrichment
Y
(solr=

Fusion

>

Your Business Your App

Security

A

Spaﬁ:I

summit>015

g Your Users

Spark Streaming Example: Solr as Sink

./spark-submit --master MASTER --class com.lucidworks.spark.SparkApp spark-solr-1.0.jar \
twitter-to-solr -zkHost localhost:2181 -collection social

Various transformations / enrichments
class TwitterToSolrStreamProcessor

extends SparkApp.StreamProcessor

on each tweet (e.g. sentiment analysis,
language detection)

1
~

7
7
)

1

SolrSupport.indexDStreamOfDocs(zkHost, collection, 100, docs);
1
1]
1
1/
1

1
1
\ 1
L
1
1
1
1
t

1

1

r]

1
1
1

R/
Solr=
' ——_—
Twitter |:> /, > j> > >

J

1
7
'I
1
4
/ J
Il Il
II
JavaReceiverlnputDStream<Status> tweets = /
TwitterUtils.createStream(jssc, null, filters);
Spar‘iI
summit>015

JavaDStream<SolrinputDocument> docs = tweets.map(
new Function<Status,SolrinputDocument>() {

// Convert a twitter4j Status object into a SolrinputDocument
public SolrinputDocument call(Status status) {

(Slide Legend
SolrinputDocument doc = new SolrinputDocument();
return doc;

D Provided by Spark
B);

D Custom Java / Scala code

D Provided by Lucidworks

Spark Streaming Example: Solr as Sink

// start receiving a stream of tweets ...
JavaReceiverInputDStream<Status> tweets =
TwitterUtils.createStream(jssc, null, filters);

// map incoming tweets into SolrInputDocument objects for indexing in Solr
JavaDStream<SolrInputDocument> docs = tweets.map(
new Function<Status,SolrInputDocument>() {
public SolrInputDocument call(Status status) {
SolrInputDocument doc =
SolrSupport.autoMapToSolrInputDoc("tweet-"+status.getId(), status, null);
doc.setField("provider_s", "twitter");
return doc;
}
}
)

// when ready, send the docs into a SolrCloud cluster
SolrSupport.indexDStreamOfDocs (zkHost, collection, docs);

Spor‘lzz

summit>015

-

Direct updates from Spark to shard leaders

compute shard
assignment on
batch client

‘ CloudSolrServer
iil <doe> ™ | (soln)

. Shard 1
<doc>["". (leader)
7 .
. Shard 2
<doc> : { E J

Watch
/clusterstate.json :
<doc> . Shard 3
: (leader)
ZooKeeper .
[clusterstate.json | i

\ v

M?OIS

.
.
.
| ' client-side " server-side

Coming Soon! ShardPartitioner

« Custom partitioning scheme for RDD using Solr's DocRouter

« Stream docs directly to each shard leader using metadata from ZooKeeper,
document shard assignment, and ConcurrentUpdateSolrClient

final ShardPartitioner shardPartitioner = new ShardPartitioner(zkHost, collection);
pairs.partitionBy(shardPartitioner).foreachPartition(
new VoidFunction<Iterator<Tuple2<String, SolrInputDocument>>>() {
public void call(Iterator<Tuple2<String, SolrInputDocument>> tupleIlter) throws Exception {
ConcurrentUpdateSolrClient cuss = null;
while (tupleIter.hasNext()) {
// ... Initialize ConcurrentUpdateSolrClient once per partition
cuss.add(doc);

}
S@%{v‘ﬁjﬁom

-

SolrRDD: Reading data from Solr into Spark

Can execute any query and expose as an RDD

SolrRDD produces JavaRDD<SolrDocument>

Use deep-paging if needed (cursorMark)

Stream docs from Solr (vs. building lists on the server-side)

More parallelism using a range filter on a numeric field (_version_)

Spoﬁzz

summit>015

-

SolrRDD: Reading data from Solr into Spark

e
/ SolrRDD \ Sl
olr 0
g=*:*&rows=1000& Collection
f N distrib=false&cursorMark=* Y N
.. 1
q:* <k Ragitiond . e P e, S Shard 1
e Results streamed back from Solr
................................. - N e
JavaRDD<SolrDocument> -
Partition 2 | Shard 2
—
-
)
N /
Read collection metadata ZooKeeper
Spar
summit>015

Spark SQL

Query Solr, then expose results as a SQL table

JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(jsc);

SolrRDD solrRDD = new SolrRDD(zkHost, collection);

DataFrame tweets = solrRDD.asTempTable(sqlContext, queryStr, "tweets");
DataFrame results = sqlContext.sql(

"SELECT COUNT(type_s) FROM tweets WHERE type s='echo'");

JavaRDD<Row> resultsRDD = results.javaRDD();
List<Long> count = resultsRDD.map(new Function<Row, Long>() { .. }).collect();
System.out.println("# of echos : "+count);

Spoﬁ?

summit>015

-

Query Solr from the Spark Shell

Interactive data mining with the full power of Solr queries

ADD JARS=$PROJECT_HOME/target/spark-solr-1.0-SNAPSHOT.jar bin/spark-shell

import com.lucidworks.spark.SolrRDD;
var solrRDD = new SolrRDD("localhost:9983","gettingstarted");

var tweets = solrRDD.query(sc,"*:*");
var count = tweets.count();

var tweets = solrRDD.asTempTable(sqlContext, "*:*", "tweets");
sglContext.sql("SELECT COUNT(type s) FROM tweets WHERE type s='echo'").show();

Spoﬁ?

summit>015

-

Spoﬁ'g

summit>015

-

Document Matching using Stored Queries

For each document, determine which of a large set of stored queries
matches.

Useful for alerts, alternative flow paths through a stream, etc

Index a micro-batch into an embedded (in-memory) Solr instance and
then determine which queries match

Matching framework; you have to decide where to load the stored
queries from and what to do when matches are found

Scale it using Spark ... need to scale to many queries, checkout Luwak

Document Matching using Stored Queries

JavaDStream<SolrinputDocument> enriched =

SolrSupport.filterDocuments(docFilterContext, ...);

\ N
) /
Get queries
Twitter |:> f> map()> - ..
/ i N ‘s\‘
/II \\\ \\\
/K A ‘\‘ 4
/ N N
’ \\ ~
s \ Index docs into an
N EmbeddedSolrS
JavaReceiverlnputDStream<Status> tweets = \ et e,
: - ; : \ Initialized from configs
TwitterUtils.createStream(jssc, null, filters); N)
\ stored in ZooKeeper
JavaDStream<SolrinputDocument> docs = tweets.map(N
new Function<Status,SolrinputDocument>() { \\
// Convert a twitter4j Status object into a SolrinputDocument Y
public SolrinputDocument call(Status status) { AN
8poriz SolrlnputDocument doc = new SolrinputDocument();
summit>015

return doc;

m;

ZooKeeper

Key abstraction to allow
you to plug-in how to
store the queries and
what action to take
when docs match

DocFilterContext

Stored Queries

(Slide Legend

D Provided by Spark

D Custom Java / Scala code

D Provided by Lucidworks

Reading Term Vectors from Solr

o Pull TF/IDF (or just TF) for each term in a field for each document in query
results from Solr

« Can be used to construct RDD<Vector> which can then be passed to MLLib:

SolrRDD solrRDD = new SolrRDD(zkHost, collection);

JavaRDD«<Vector> vectors =
solrRDD.queryTermVectors(jsc, solrQuery, field, numFeatures);
vectors.cache();

KMeansModel clusters =
KMeans.train(vectors.rdd(), numClusters, numlIterations);

// Evaluate clustering by computing Within Set Sum of Squared Errors

Spoﬁ? double WSSSE = clusters.computeCost(vectors.rdd());

summit>015

-

Wrap-up and Q & A

Need more use cases ...
Feel free to reach out to me with questions:

tim.potter@|ucidworks.com / @thelabdude

Spar

summit>015

