

DEVOPS ADVANCED CLASS

June 2015: Spark Summit West 2015

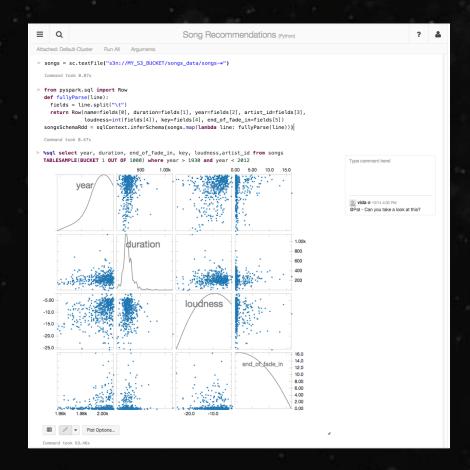
http://training.databricks.com/devops.pdf

www.linkedin.com/in/blueplastic

databricks

making big data simple

- Founded in late 2013
- by the creators of Apache Spark
- Original team from UC Berkeley AMPLab
- Raised \$47 Million in 2 rounds
- ~55 employees
- We're hiring! (http://databricks.workable.com)
- Level 2/3 support partnerships with
 - Hortonworks
 - MapR
 - DataStax



Databricks Cloud:

"A unified platform for building Big Data pipelines – from ETL to Exploration and Dashboards, to Advanced Analytics and Data Products."

The Databricks team contributed more than 75% of the code added to Spark in the past year

AGENDA

Before Lunch

- History of Spark
- RDD fundamentals
- Spark Runtime Architecture Integration with Resource Managers (Standalone, YARN)
- **GUIs**
- Lab: DevOps 101

After Lunch

- Memory and Persistence
- Jobs -> Stages -> Tasks
- Broadcast Variables and Accumulators
- PySpark
- DevOps 102

- Shuffle
- Spark Streaming

Some slides will be skipped

Please keep Q&A low during class

(5pm – 5:30pm for Q&A with instructor)

2 anonymous surveys: Pre and Post class

Lunch: noon – 1pm

2 breaks (before lunch and after lunch)

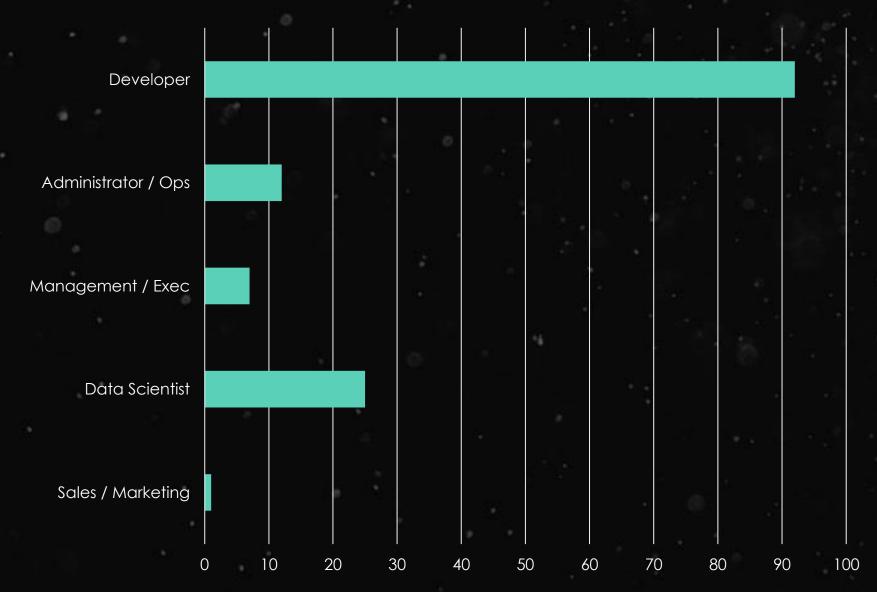
INSTRUCTOR: SAMEER FAROOQUI

LinkedIn: https://www.linkedin.com/in/blueplastic

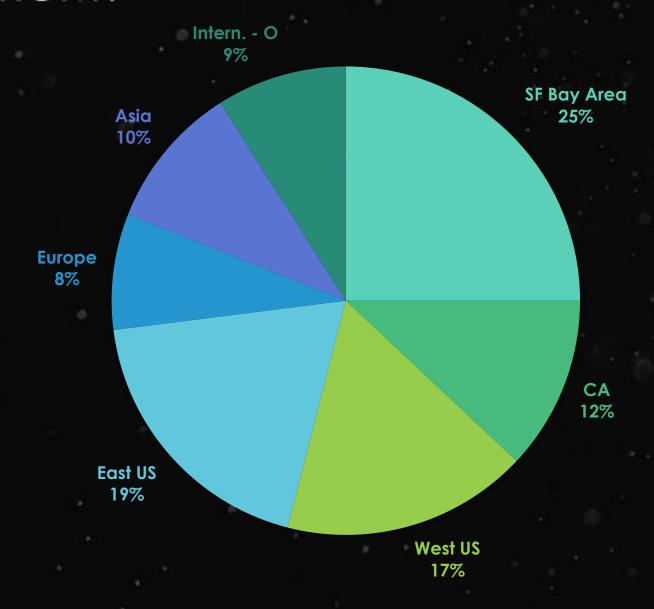
- 1 year: Client Services Engineer @ Databricks
- 2 years: Freelance Big Data Consulting + Training
 - Taught 100+ classes
 - Traveled to 20+ countries and 50+ cities
- 5 months: Systems Architect @ Hortonworks
- 1.5 years: Emerging Data Platforms Consultant @ Accenture R&D
- 2 years: Storage & Clustering Software Consultant @ Symantec
- 2.5 years: Tech Support Engineer @ Symantec

Wakeboarding / Snowboarding / Scuba Diving / Free-diving / Kayaking / Running / Hiking / Canoeing / Surfing / Tennis

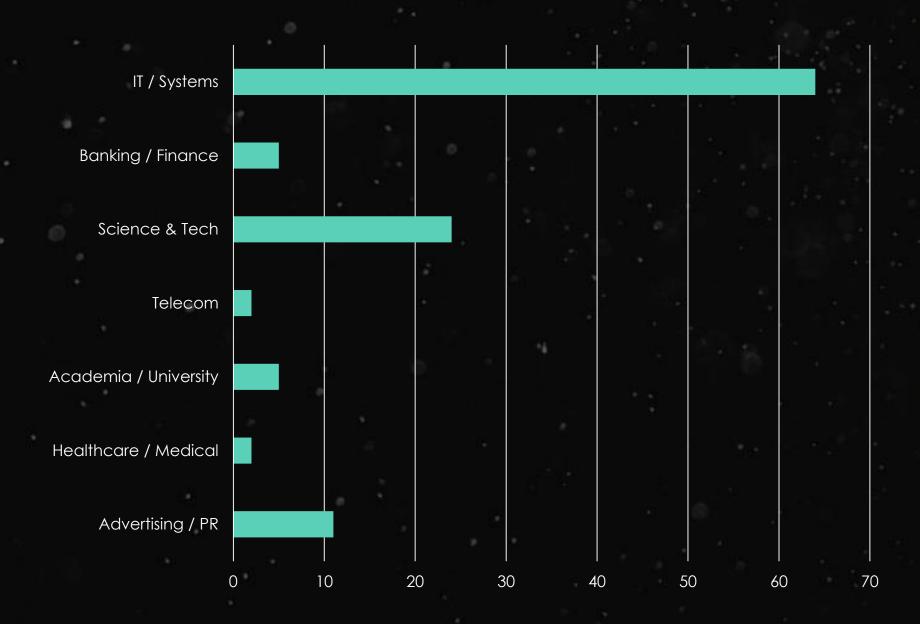
YOUR JOB?



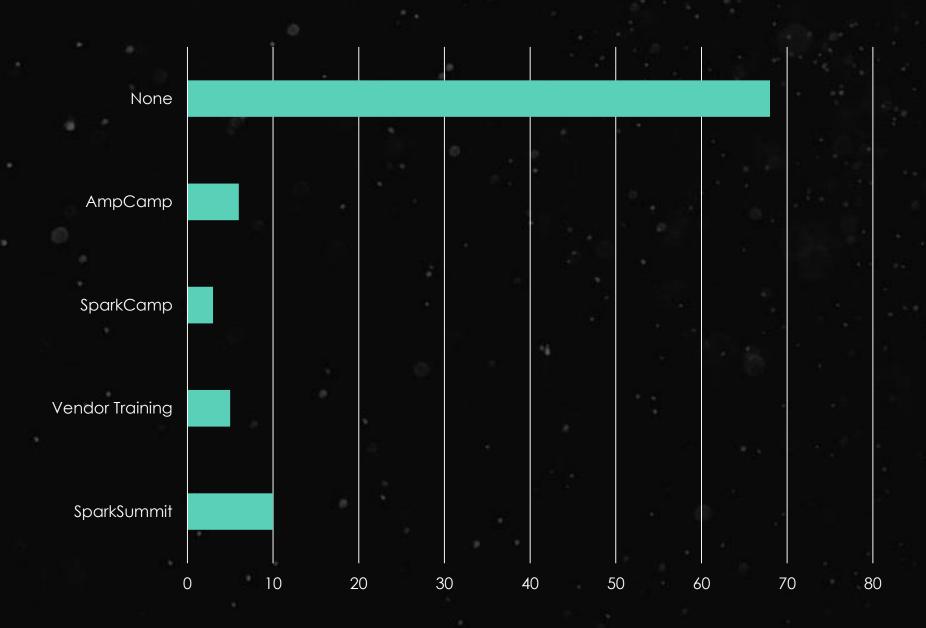
TRAVELED FROM?



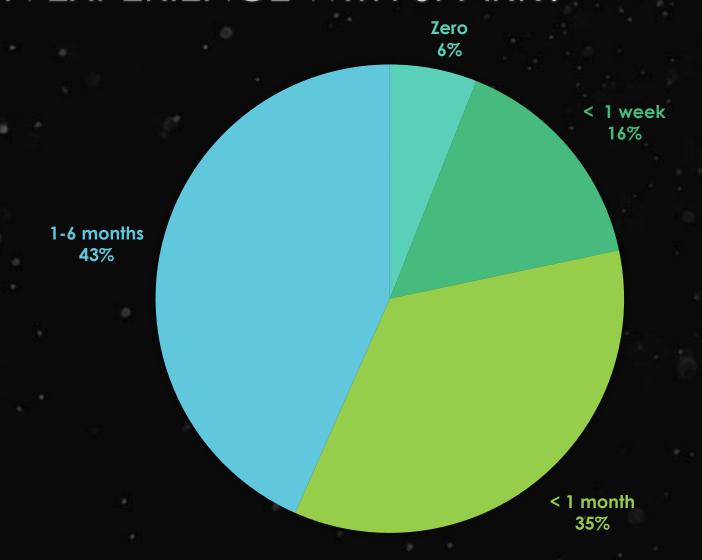
WHICH INDUSTRY?



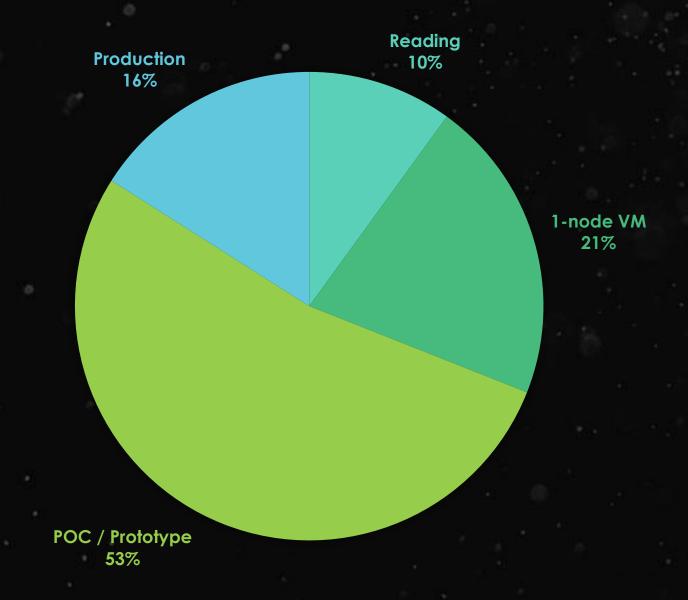
PRIOR SPARK TRAINING?



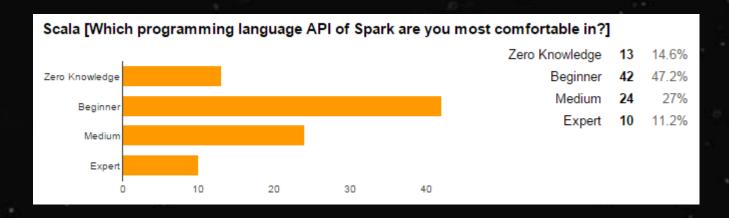
HANDS ON EXPERIENCE WITH SPARK?

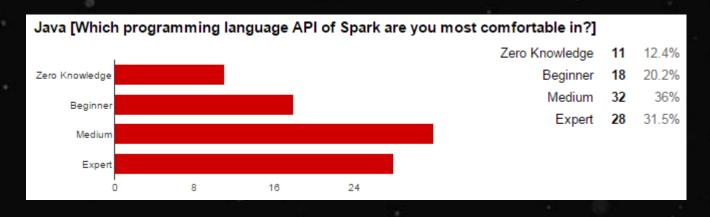


SPARK USAGE LIFECYCLE?

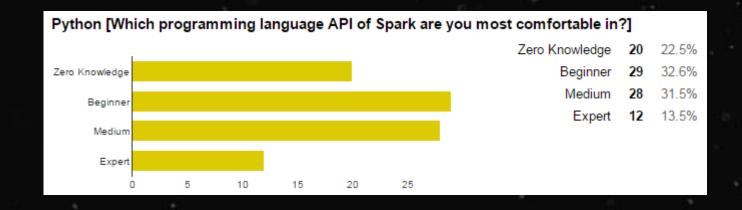


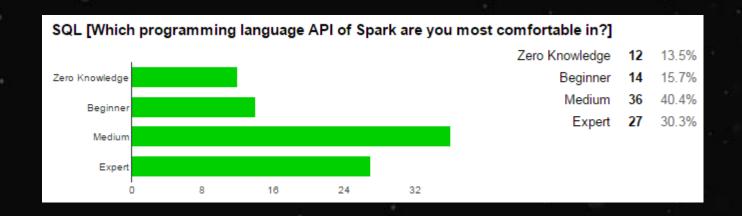
PROGRAMMING EXPERIENCE



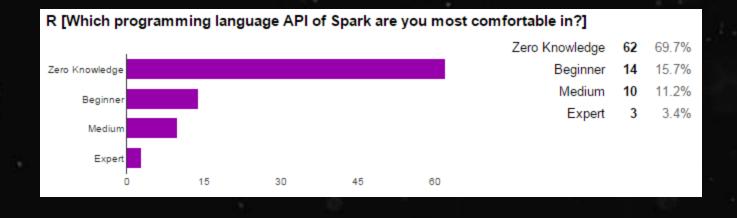


PROGRAMMING EXPERIENCE



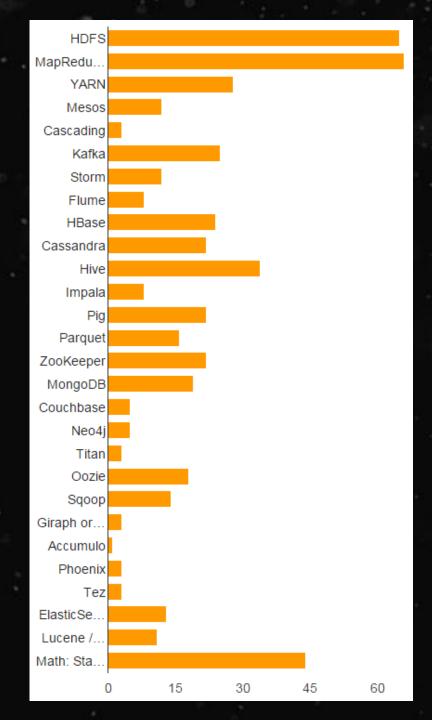


PROGRAMMING EXPERIENCE



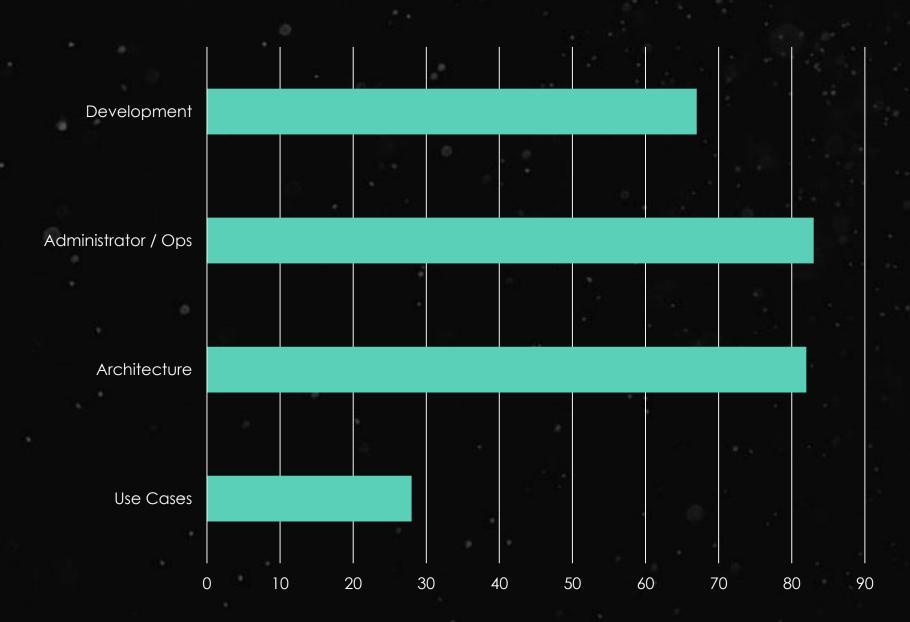
Survey completed by 89 out of 215 students

BIG DATA EXPERIENCE



HDFS	65	73%
MapReduce	66	74.2%
YARN	28	31.5%
Mesos	12	13.5%
Cascading	3	3.4%
Kafka	25	28.1%
Storm	12	13.5%
Flume	8	9%
HBase	24	27%
Cassandra	22	24.7%
Hive	34	38.2%
Impala	8	9%
Pig	22	24.7%
Parquet	16	18%
ZooKeeper	22	24.7%
MongoDB	19	21.3%
Couchbase	5	5.6%
Neo4j	5	5.6%
Titan	3	3.4%
Oozie	18	20.2%
Sqoop	14	15.7%
Giraph or Graphlab	3	3.4%
Accumulo	1	1.1%
Phoenix	3	3.4%
Tez	3	3.4%
ElasticSearch	13	14.6%
Lucene / Solr	11	12.4%
us, Matrix math, etc	44	49.4%

FOCUS OF CLASS?



Algorithms Machines People

- AMPLab project was launched in Jan 2011, 6 year planned duration
- Personnel: ~65 students, postdocs, faculty & staff
- Funding from Government/Industry partnership, NSF Award, Darpa, DoE, 20+ companies
- Created BDAS, Mesos, SNAP. Upcoming projects: Succinct & Velox.

"Unknown to most of the world, the University of California, Berkeley's AMPLab has already left an indelible mark on the world of information technology, and even the web. But we haven't yet experienced the full impact of the group[...] Not even close"

- Derrick Harris, GigaOm, Aug 2014

STORAGE VS PROCESSING WARS

NoSQL battles (then)

Relational vs NoSQL

HBase vs Cassanrdra

Redis vs Memcached vs Riak

MongoDB vs CouchDB vs Couchbase Neo4j vs Titan vs Giraph vs OrientDB

Solr vs Elasticsearch

Compute battles (now)

MapReduce vs Spark

Spark Streaming vs Storm

Hive vs Spark SQL vs Impala

Mahout vs MLlib vs H20

STORAGE VS PROCESSING WARS

NoSQL battles (then)

Relational vs NoSQL

HBase vs Cassanrdra

Redis vs Memcached vs Riak

MongoDB vs CouchDB vs Couchbase

Neo4j vs Titan vs Giraph vs OrientDB

Solr vs Elasticsearch

Compute battles (now)

MapReduce vs Spark

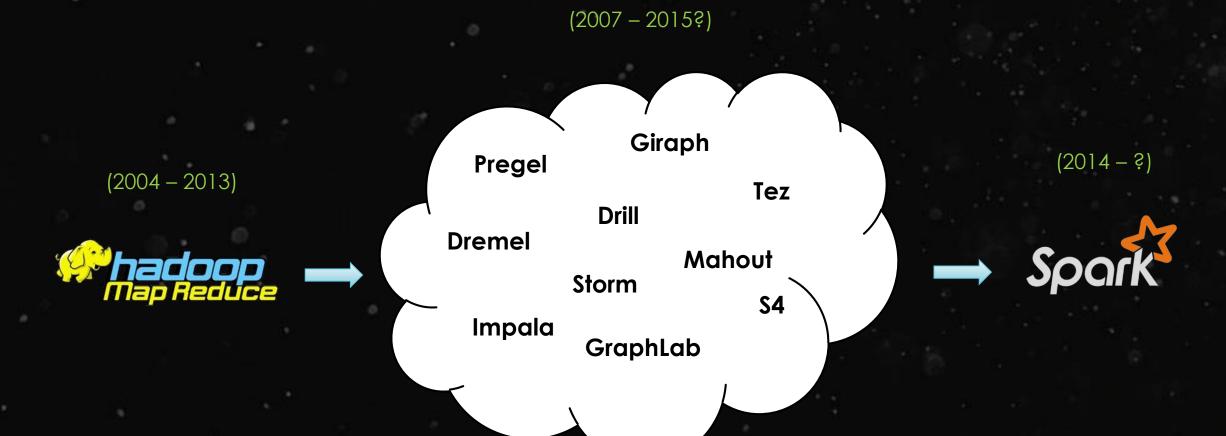
Spark Streaming vs Storm

Hive vs Spark SQL vs Impala

Mahout vs MLlib vs H20

NOSQL POPULARITY WINNERS

Column Family Key -> Value Key -> Doc Graph Search MongoDB - 279 Cassandra - 109 Neo4j - 30 Redis - 95 **Solr** - 81 CouchDB - 28 Memcached - 33 OrietnDB - 4 HBase - 62 Elasticsearch - 70 Couchbase - 24 DynamoDB - 16 Splunk – 41 Titan – 3 DynamoDB - 15 **Riak - 13** Giraph - 1 MarkLogic - 11

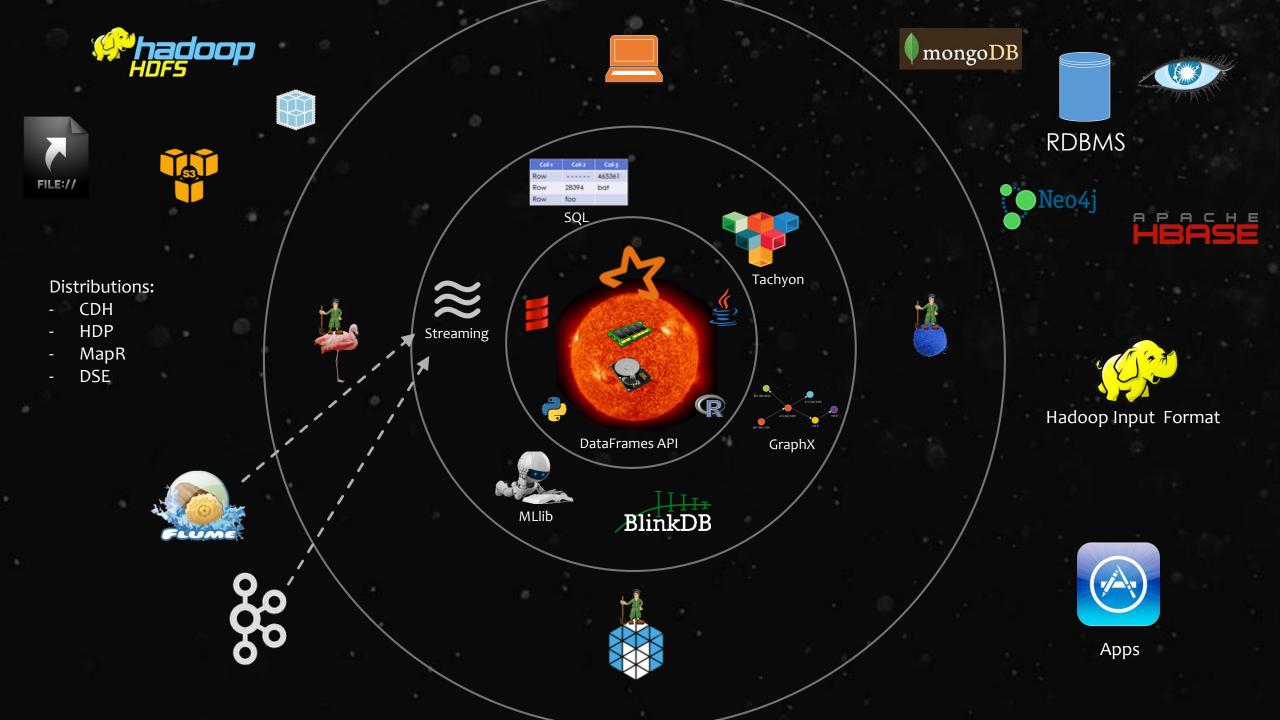


Specialized Systems

(iterative, interactive, ML, streaming, graph, SQL, etc)

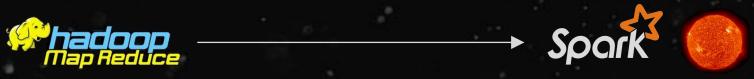
General Batch Processing

General Unified Engine



11:06 AM - 30 Jun 2014

- Developers from 50+ companies
- 400+ developers
- Apache Committers from 16+ organizations



YARN

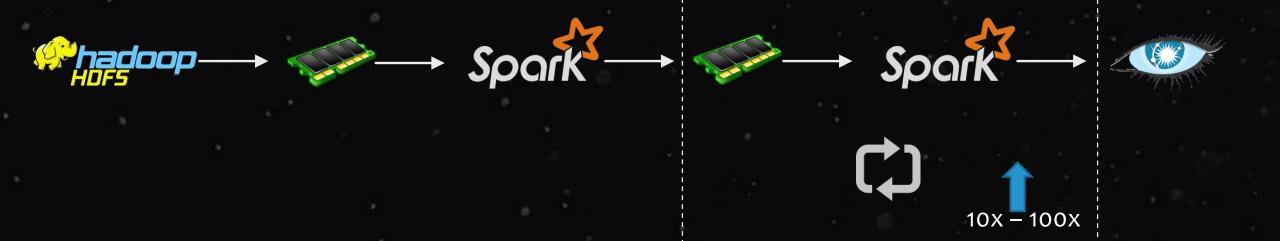
Mesos

Tachyon

→ Spark SQL

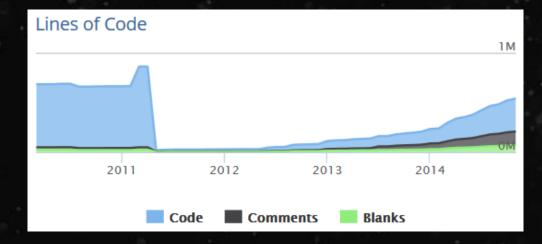
→ Spark MLlib

→ Spark Streaming



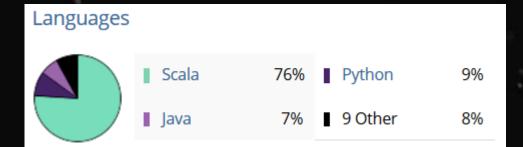
In a Nutshell, Apache Spark...

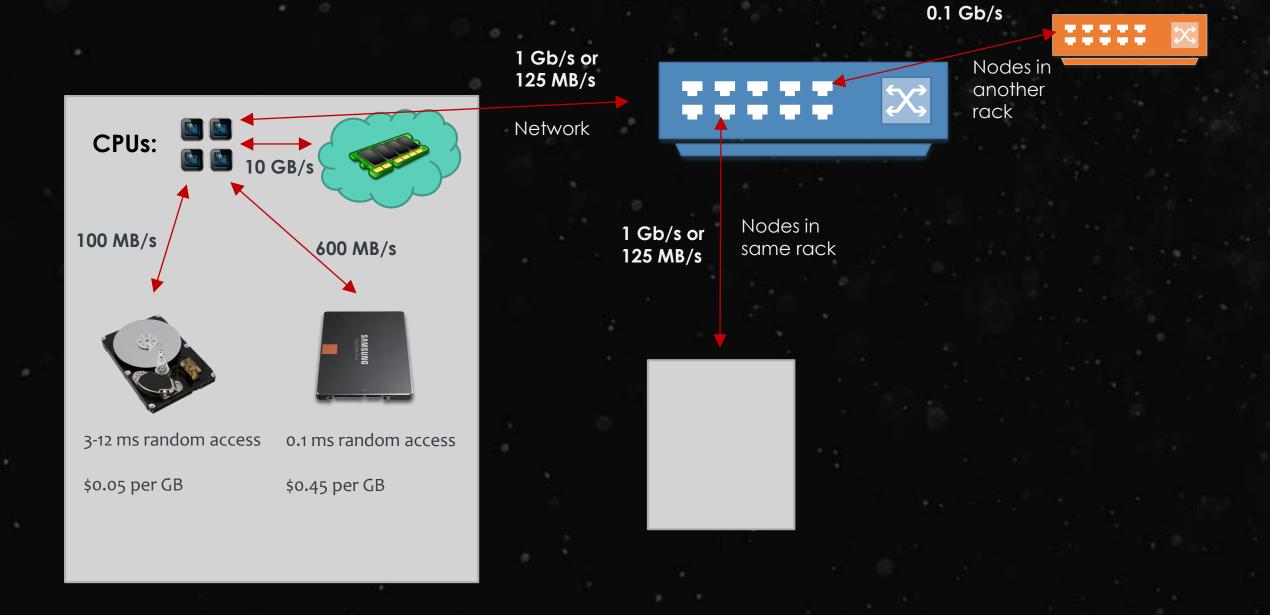
- ... has had 17,297 commits made by 448 contributors representing 332,309 lines of code
- ··· is mostly written in Scala with a well-commented source code
- ... has a codebase with a long source history maintained by a very large development team with stable Y-O-Y commits
- ... took an estimated 88 years of effort (COCOMO model) starting with its first commit in March, 2010 Aug 2009 ending with its most recent commit 2 days ago





...in June 2013





Spark: Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica University of California, Berkeley

Abstract

MapReduce and its variants have been highly successful in implementing large-scale data-intensive applications on commodity clusters. However, most of these systems are built around an acyclic data flow model that is not suitable for other popular applications. This paper focuses on one such class of applications: those that reuse a working set of data across multiple parallel operations. This includes many iterative machine learning algorithms. as well as interactive data analysis tools. We propose a new framework called Spark that supports these applications while retaining the scalability and fault tolerance of MapReduce. To achieve these goals, Spark introduces an abstraction called resilient distributed datasets (RDDs). An RDD is a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost. Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can be used to interactively query a 39 GB dataset with sub-second response time.

A new model of cluster computing has become widely popular, in which data-parallel computations are executed on clusters of unreliable machines by systems that automatically provide locality-aware scheduling, fault tolerance, and load balancing. MapReduce [11] pioneered this model, while systems like Dryad [17] and Map-Reduce-Merge [24] generalized the types of data flows supported. These systems achieve their scalability and fault tolerance by providing a programming model where the user creates acyclic data flow graphs to pass input data through a set of operators. This allows the underlying system to manage DryadLINO [25]. In addition, Spark can be used interscheduling and to react to faults without user intervention.

While this data flow programming model is useful for a large class of applications, there are applications that cannot be expressed efficiently as acyclic data flows. In this paper, we focus on one such class of applications: those that reuse a working set of data across multiple parallel operations. This includes two use cases where we have seen Hadoop users report that MapReduce is deficient:

. Iterative jobs: Many common machine learning algorithms apply a function repeatedly to the same dataset to optimize a parameter (e.g., through gradient de- tively to scan a 39 GB dataset with sub-second latency. scent). While each iteration can be expressed as a

- MapReduce/Dryad job, each job must reload the data from disk, incurring a significant performance penalty.
- Interactive analytics: Hadoop is often used to run ad-hoc exploratory queries on large datasets, through SQL interfaces such as Pig [21] and Hive [1]. Ideally, a user would be able to load a dataset of interest into memory across a number of machines and query it repeatedly. However, with Hadoop, each query incurs significant latency (tens of seconds) because it runs as a separate MapReduce job and reads data from disk.

This paper presents a new cluster computing framework called Spark, which supports applications with working sets while providing similar scalability and fault tolerance properties to MapReduce.

The main abstraction in Spark is that of a resilient distributed dataset (RDD), which represents a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost. Users can explicitly cache an RDD in memory across machines and reuse it in multiple MapReduce-like parallel operations. RDDs achieve fault tolerance through a notion of lineage: if a partition of an RDD is lost, the RDD has enough information about how it was derived from other RDDs to be able to rebuild just that partition. Although RDDs are not a general shared memory abstraction, they represent a sweet-spot between expressivity on the one hand and scalability and reliability on the other hand, and we have found them well-suited for a variety of applications.

Spark is implemented in Scala [5], a statically typed high-level programming language for the Java VM, and exposes a functional programming interface similar to actively from a modified version of the Scala interpreter, which allows the user to define RDDs, functions, variables and classes and use them in parallel operations on a cluster. We believe that Spark is the first system to allow an efficient, general-purpose programming language to be used interactively to process large datasets on a cluster.

Although our implementation of Spark is still a prototype, early experience with the system is encouraging. We show that Spark can outperform Hadoop by 10x in iterative machine learning workloads and can be used interac-

This paper is organized as follows. Section 2 describes

"The main abstraction in Spark is that of a resilient distributed dataset (RDD), which represents a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost.

Users can explicitly cache an RDD in memory across machines and reuse it in multiple MapReduce-like parallel operations.

RDDs achieve fault tolerance through a notion of lineage: if a partition of an RDD is lost, the RDD has enough information about how it was derived from other RDDs to be able to rebuild just that partition."

June 2010

http://www.cs.berkeley.edu/~matei/papers/2010/hotcloud_spark.pdf

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a distributed memory abstraction that lets programmers perform in-memory computations on large clusters in a fault-tolerant manner. RDDs are motivated by two types of applications that current computing frameworks handle inefficiently: iterative algorithms and interactive data mining tools. In both cases, keeping data in memory can improve performance by an order of magnitude. To achieve fault tolerance efficiently, RDDs provide a restricted form of shared memory, based on coarsegrained transformations rather than fine-grained updates to shared state. However, we show that RDDs are expressive enough to capture a wide class of computations, including recent specialized programming models for iterative jobs, such as Pregel, and new applications that these models do not capture. We have implemented RDDs in a system called Spark, which we evaluate through a variety of user applications and benchmarks.

1 Introduction

Cluster computing frameworks like MapReduce [10] and Dryad [19] have been widely adopted for large-scale data analytics. These systems let users write parallel computations using a set of high-level operators, without having to worry about work distribution and fault tolerance.

Although current frameworks provide numerous abstractions for accessing a cluster's computational resources, they lack abstractions for leveraging distributed memory. This makes them inefficient for an important class of emerging applications: those that reuse intermediate results across multiple computations. Data reuse is common in many iterative machine learning and graph algorithms, including PageRank, K-means clustering, and logistic regression. Another compelling use case is interactive data mining, where a user runs multiple adhoc queries on the same subset of the data. Unfortunately, in most current frameworks, the only way to reuse data between computations (e.g., between two MapReduce jobs) is to write it to an external stable storage system, e.g., a distributed file system. This incurs substantial overheads due to data replication, disk I/O, and serialization, which can dominate application execution times.

Recognizing this problem, researchers have developed specialized frameworks for some applications that require data reuse. For example, Pregel [22] is a system for iterative graph computations that keeps intermediate data in memory, while Hal.oop [7] offers an iterative MapReduce interface. However, these frameworks only support specific computation patterns (e.g., looping a series of MapReduce steps), and perform data sharing implicitly for these patterns. They do not provide abstractions for more general reuse, e.g., to let a user load several datasets into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called reinitial data datasets (RDDs) that enables efficient data reuse in a broad range of applications. RDDs are fault-tolerant, parallel data structures that let users explicitly persist intermediate results in memory, control their partitioning to optimize data placement, and manipulate them using a rich set of operators.

The main challenge in designing RDDs is defining a programming interface that can provide fault tolerance efficiently. Existing abstractions for in-memory storage on clusters, such as distributed shared memory [24], key-value stores [25], databases, and Piccolo [27], offer an interface based on fine-grained updates to mutable state (e.g., cells in a table). With this interface, the only ways to provide fault tolerance are to replicate the data across machines or to log updates across machines. Both approaches are expensive for data-intensive workloads, as they require copying large amounts of data over the cluster network, whose bandwidth is far lower than that of RAM, and they incur substantial storage overhead.

In contrast to these systems, RDDs provide an interface based on coarse-grained transformations (e.g., map, filter and join) that apply the same operation to many data items. This allows them to efficiently provide fault tolerance by logging the transformations used to build a dataset (its lineage) rather than the actual data. ¹ If a partition of an RDD is lost, the RDD has enough information about how it was derived from other RDDs to recompute "We present Resilient Distributed Datasets (RDDs), a distributed memory abstraction that lets programmers perform in-memory computations on large clusters in a fault-tolerant manner.

RDDs are motivated by two types of applications that current computing frameworks handle inefficiently: iterative algorithms and interactive data mining tools.

In both cases, keeping data in memory can improve performance by an order of magnitude."

"Best Paper Award and Honorable Mention for Community Award" - NSDI 2012

- Cited 392 times!

April 2012

http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

¹Checkpointing the data in some RDDs may be useful when a lineage chain grows large, however, and we discuss how to do it in §5.4.

Analyze real time streams of data in ½ second intervals

⇒ C www.cs.berkeley.edu/~matei/papers/2013/sosp_spark_streaming.pdf

Discretized Streams: Fault-Tolerant Streaming Computation at Scale

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica University of California, Berkeley

Abstract

Many "big data" applications must act on data in real time. Running these applications at ever-larger scales requires parallel platforms that automatically handle faults and stragglers. Unfortunately, current distributed stream processing models provide fault recovery in an expensive manner, requiring hot replication or long recovery times, and do not handle stragglers. We propose a new processing model, discretized streams (D-Streams), that overcomes these challenges. D-Streams enable a parallel recovery mechanism that improves efficiency over traditional replication and backup schemes, and tolerates stragglers. We show that they support a rich set of operators while attaining high per-node throughput similar to single-node systems, linear scaling to 100 nodes, subsecond latency, and sub-second fault recovery. Finally, D-Streams can easily be composed with batch and interactive query models like MapReduce, enabling rich applications that combine these modes. We implement D-Streams in a system called Spark Streaming.

1 Introduction

Much of "big data" is received in real time, and is most valuable at its time of arrival. For example, a social network may wish to detect trending conversation topics in

faults and stragglers (slow nodes). Both problems are inevitable in large clusters [12], so streaming applications must recover from them quickly. Fast recovery is even more important in streaming than it was in batch jobs: while a 30 second delay to recover from a fault or straggler is a nuisance in a batch setting, it can mean losing the chance to make a key decision in a streaming setting.

Unfortunately, existing streaming systems have limited fault and straggler tolerance. Most distributed streaming systems, including Storm [37], TimeStream [33], MapReduce Online [11], and streaming databases [5, 9, 10], are based on a continuous operator model, in which long-running, stateful operators receive each record, update internal state, and send new records. While this model is quite natural, it makes it difficult to handle faults and stragglers.

Specifically, given the continuous operator model, systems perform recovery through two approaches [20]: replication, where there are two copies of each node [5, 34], or upstream backup, where nodes buffer sent messages and replay them to a new copy of a failed node [33, 11, 37]. Neither approach is attractive in large clusters: replication costs 2× the hardware, while upstream backup takes a long time to recover, as the whole system must wait for a new node to serially rebuild the failed

```
TwitterUtils.createStream(...)
    .filter( .getText.contains("Spark"))
    .countByWindow(Seconds(5))
```

- 2 Streaming Paper(s) have been cited 138 times

Seemlessly mix SQL queries with Spark programs.

Spark SQL: Relational Data Processing in Spark

Michael Armbrust[†], Reynold S. Xin[†], Cheng Lian[†], Yin Huai[†], Davies Liu[†], Joseph K. Bradley[†], Xiangrui Meng[†], Tomer Kaftan[‡], Michael J. Franklin^{†‡}, Ali Ghodsi[†], Matei Zaharia^{†*}

†Databricks Inc. *MIT CSAIL ‡AMPLab, UC Berkeley

ABSTRACT

Spark SOL is a new module in Apache Spark that integrates relational processing with Spark's functional programming API. Built on our experience with Shark, Spark SOL lets Spark programmers leverage the benefits of relational processing (e.g., declarative queries and optimized storage), and lets SQL users call complex analytics libraries in Spark (e.g., machine learning). Compared to previous systems, Spark SOL makes two main additions. First, it offers much tighter integration between relational and procedural processing, through a declarative DataFrame API that integrates with procedural Spark code. Second, it includes a highly extensible optimizer, Catalyst, built using features of the Scala programming language, that makes it easy to add composable rules, control code generation, and define extension points. Using Catalyst, we have built a variety of features (e.g., schema inference for JSON, machine learning types, and query federation to external databases) tailored for the complex needs of modern data analysis. We see Spark SOL as an evolution of both SQL-on-Spark and of Spark itself, offering richer APIs and optimizations while keeping the benefits of the Spark programming model.

Categories and Subject Descriptors

H.2 [Database Management]: Systems

Keywords

Databases; Data Warehouse; Machine Learning; Spark; Hadoop

1 Introduction

Big data applications require a mix of processing techniques, data sources and storage formats. The earliest systems designed for these workloads, such as MapReduce, gave users a powerful, but

While the popularity of relational systems shows that users often prefer writing declarative queries, the relational approach is insufficient for many big data applications. First, users want to perform ETL to and from various data sources that might be semi- or unstructured, requiring custom code. Second, users want to perform advanced analytics, such as machine learning and graph processing, that are challenging to express in relational systems. In practice, we have observed that most data pipelines would ideally be expressed with a combination of both relational queries and complex procedural algorithms. Unfortunately, these two classes of systems—relational and procedural—have until now remained largely disjoint, forcing users to choose one paradigm or the other.

This paper describes our effort to combine both models in Spark SQL, a major new component in Apache Spark [39]. Spark SQL builds on our earlier SQL-on-Spark effort, called Shark. Rather than forcing users to pick between a relational or a procedural API, however, Spark SOL lets users seamlessly intermix the two.

Spark SQL bridges the gap between the two models through two contributions. First, Spark SQL provides a DataFrame API that can perform relational operations on both external data sources and Spark's built-in distributed collections. This API is similar to the widely used data frame concept in R [32], but evaluates operations lazily so that it can perform relational optimizations. Second, to support the wide range of data sources and algorithms in big data, Spark SQL introduces a novel extensible optimizer called Catalyst. Catalyst makes it easy to add data sources, optimization rules, and data types for domains such as machine learning.

The DataFrame API offers rich relational/procedural integration within Spark programs. DataFrames are collections of structured records that can be manipulated using Spark's procedural API, or using new relational APIs that allow richer optimizations. They can

```
sqlCtx = new HiveContext(sc)
results = sqlCtx.sql(
   "SELECT * FROM people")
names = results.map(lambda p: p.name)
```


Analyze networks of nodes and edges using graph processing

GraphX: A Resilient Distributed Graph System on Spark

Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, Ion Stoica

AMPLab, EECS, UC Berkeley {rxin, jegonzal, franklin, istoica}@cs.berkeley.edu

ABSTRACT

From social networks to targeted advertising, big graphs capture the structure in data and are central to recent advances in machine learning and data mining. Unfortunately, directly applying existing data-parallel tools to graph computation tasks can be cumbersome and inefficient. The need for intuitive, scalable tools for graph computation has lead to the development of new graph-parallel systems (e.g., Pregel, PowerGraph) which are designed to efficiently execute graph algorithms. Unfortunately, these new graph-parallel systems do not address the challenges of graph construction and transformation which are often just as problematic as the subsequent computation. Furthermore, existing graph-parallel systems provide limited fault-tolerance and support for interactive data mining.

We introduce GraphX, which combines the advantages of both data-parallel and graph-parallel systems by efficiently expressing graph computation within the Spark data-parallel framework. We leverage new ideas in distributed graph representation to efficiently distribute graphs as tabular data-structures. Similarly, we leverage advances in data-flow systems to exploit in-memory computation and fault-tolerance. We provide powerful new operations to simplify graph construction and transformation. Using these primitives we implement the PowerGraph and Pregel abstractions in less than 20 lines of code. Finally, by exploiting the Scala foundation of Spark, we enable users to interactively load, transform, and compute on massive graphs.

1. INTRODUCTION

From social networks to advertising and the web, big graphs can be found in a wide range of important applications. By modeling the and distributed systems. By abstracting away the challenges of large-scale distributed system design, these frameworks simplify the design, implementation, and application of new sophisticated graph algorithms to large-scale real-world graph problems.

While existing graph-parallel frameworks share many common properties, each presents a slightly different view of graph computation tailored to either the originating domain or a specific family of graph algorithms and applications. Unfortunately, because each framework relies on a separate runtime, it is difficult to compose these abstractions. Furthermore, while these frameworks address the challenges of graph computation, they do not address the challenges of data ETL (preprocessing and construction) or the process of interpreting and applying the results of computation. Finally, few frameworks have built-in support for interactive graph computation.

Alternatively data-parallel systems like MapReduce and Spark [12] are designed for scalable data processing and are well suited to the task of graph construction (ETL). By exploiting data-parallelism, these systems are highly scalable and support a range of fault-tolerance strategies. More recent systems like Spark even enable interactive data processing. However, naively expressing graph computation and graph algorithms in these data-parallel abstractions can be challenging and typically leads to complex joins and excessive data movement that does not exploit the graph structure.

To address these challenges we introduce GraphX, a graph computation system which runs in the Spark data-parallel framework. GraphX extends Spark's Resilient Distributed Dataset (RDD) abstraction to introduce the Resilient Distributed Graph (RDG), which associates records with vertices and edges in a graph and provides a collection of expressive computational primitives. Using these

```
graph = Graph(vertices, edges)
messages = spark.textFile("hdfs://...")
graph2 = graph.joinVertices(messages) {
   (id, vertex, msg) => ...
}
```


SQL queries with Bounded Errors and Bounded Response Times

BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data

Sameer Agarwal[†], Barzan Mozafari^o, Aurojit Panda[†], Henry Milner[†], Samuel Madden^o, Ion Stoica*[†]

†University of California, Berkeley ° Massachusetts Institute of Technology *Conviva Inc. {sameerag, apanda, henrym, istoica}@cs.berkeley.edu, {barzan, madden}@csail.mit.edu

Abstract

In this paper, we present BlinkDB, a massively parallel, approximate query engine for running interactive SQL queries on large volumes of data. BlinkDB allows users to tradeoff query accuracy for response time, enabling interactive queries over massive data by running queries on data samples and presenting results annotated with meaningful error bars. To achieve this, BlinkDB uses two key ideas: (1) an adaptive optimization framework that builds and maintains a set of multi-dimensional stratified samples from original data over time, and (2) a dynamic sample selection strategy that selects an appropriately sized sample based on a query's accuracy or response time requirements. We evaluate BlinkDB against the well-known TPC-H benchmarks and a real-world analytic workload derived from Conviva Inc., a company that manages video distribution over the Internet. Our experiments on a 100 node cluster show that BlinkDB can answer queries on up to 17 TBs of data in less than 2 seconds (over 200× faster than Hive), within an error of 2-10%.

1. Introduction

Modern data analytics applications involve computing aggregates over a large number of records to *roll-up* web clicks,

cessing of large amounts of data by trading result accuracy for response time and space. These techniques include sampling [10, 14], sketches [12], and on-line aggregation [15]. To illustrate the utility of such techniques, consider the following simple query that computes the average SessionTime over all users originating in New York:

SELECT AVG(SessionTime) FROM Sessions WHERE City = 'New York'

Suppose the Sessions table contains 100 million tuples for New York, and cannot fit in memory. In that case, the above query may take a long time to execute, since disk reads are expensive, and such a query would need multiple disk accesses to stream through all the tuples. Suppose we instead executed the same query on a sample containing only 10,000 New York tuples, such that the entire sample fits in memory. This would be orders of magnitude faster, while still providing an approximate result within a few percent of the actual value, an accuracy good enough for many practical purposes. Using sampling theory we could even provide confidence bounds on the accuracy of the answer [16].

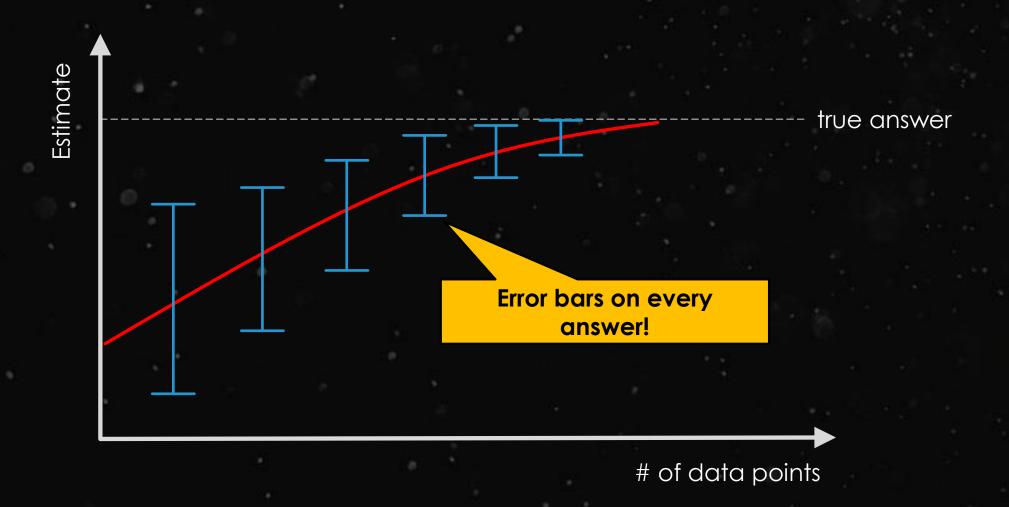
Previously described approximation techniques make different trade-offs between efficiency and the generality of the FROM Table
WHERE city='San Francisco'
WITHIN 2 SECONDS

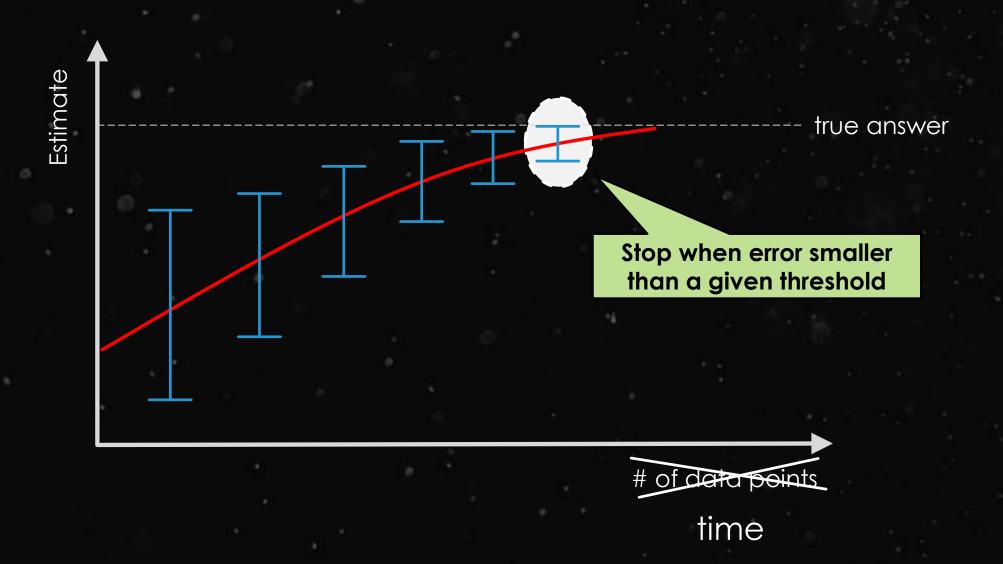
FROM Table
WHERE city='San Francisco'
ERROR 0.1 CONFIDENCE 95.0%

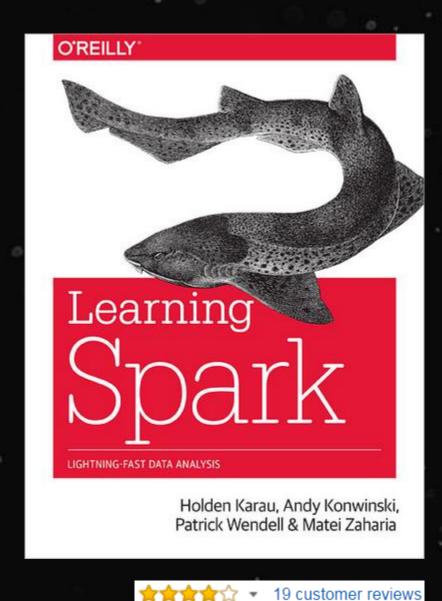
Queries with Time Bounds

Queries with Error Bounds

https://www.cs.berkeley.edu/~sameerag/blinkdb_eurosys13.pdf







http://shop.oreilly.com/product/0636920028512.do

eBook: \$33.99

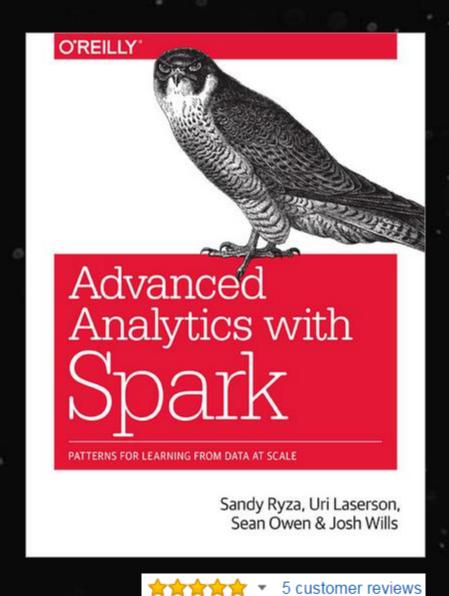
PDF, ePub, Mobi, DAISY

Print: \$39.99

Shipping now!

\$30 @ Amazon:

http://www.amazon.com/Learning-Spark-Lightning-Fast-Data-Analysis/dp/1449358624



http://shop.oreilly.com/product/0636920035091.do

eBook: \$42.50

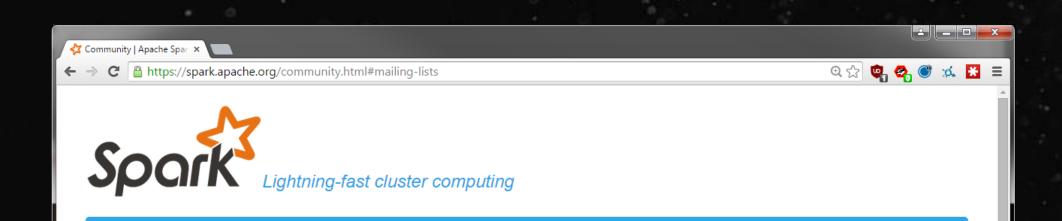
PDF, ePub, Mobi, DAISY

Print: \$49.99

Shipping now!

\$34.80 @ Amazon:

http://www.amazon.com/Advanced-Analytics-Spark-Patterns-Learning/dp/1491912766



Community -

Examples

FAQ

Spark Community

Libraries -

Mailing Lists

Download

Get help using Spark or contribute to the project on our mailing lists:

 user@spark.apache.org is for usage questions, help, and announcements. (subscribe) (unsubscribe) (archives)

Documentation -

 dev@spark.apache.org is for people who want to contribute code to Spark. (subscribe) (unsubscribe) (archives)

The StackOverflow tag apache-spark is an unofficial but active forum for Spark users' questions and answers.

Events and Meetups

Conferences

- Spark Summit Europe 2015. Oct 27 Oct 29 in Amsterdam.
- Spark Summit 2015. June 15 17 in San Francisco.

Latest News

Spark 1.4.0 released (Jun 11, 2015)

One month to Spark Summit 2015 in San Francisco (May 15, 2015)

Announcing Spark Summit Europe (May 15, 2015)

Spark Summit East 2015 Videos Posted (Apr 20, 2015)

Archive

Download Spark

ence

Lab: Intro to Spark devops on DSE 4.6 / page 1

Lab: Intro to Spark 1.1 on DSE 4.6

Lab created on: Sept 2, 2014 (last updated Dec 9, 2014) (please send edits and corrections to): sameerf@databricks.com

This lab was created with collaboration from engineers at DataStax and Databricks, specifically: Piotr Kołaczkowski (DS), Holden Karau (DB), Pat McDonough (DB), Patrick Wendell (DB) and Matei Zaharia (DB).

Estimated lab completion time: 2.5 hours

License: @ 🛈 🛇 🧿

Objective:

This lab will introduce you to using Apache Spark 1.1 on DataStax Enterprise Edition 4.6.0 in the Amazon cloud. The lab assumes that the audience is a beginner to both Cassandra and Spark. So the document walks the reader through installing DSE, learning Cassandra and then learning Spark. The ultimate goal here is to introduce students to Cassandra + Spark in a devops manner: looking at config files, writing some simple CQL or Spark code, breaking things and troubleshooting issues, exploring the Spark source code, etc. Although the ideal way to use this lab is actually type + run the commands in a parallel environment, the lab can still be used for purely reading. All the output of the commands are pasted in this lab, so you can get a very clear idea of what would happen if you had actually run the command.

The following high level steps are part of this lab:

- Connect via SSH to your EC2 instance
- Create a new keyspace and table in C* and add data to it
- Start the scala based Spark shell
- Import the fresh data into a Spark RDD

http://tinyurl.com/dsesparklab

- 102 pages
- DevOps style
- For complete beginners
- Includes:
 - Spark Streaming
 - Dangers of GroupByKey vs.
 ReduceByKey

Labs: Intro to Hadoop Ecosystem on CDH 5.2

Labs: Intro to HDFS/YARN & Apache Spark on CDH 5.2

Lab created on: Dec, 2014

(please send edits and corrections to): sameerf@databricks.com

Estimated lab completion time: 2 hours (spread throughout the day)

License: @ 🛈 🛇 🧿

Objective:

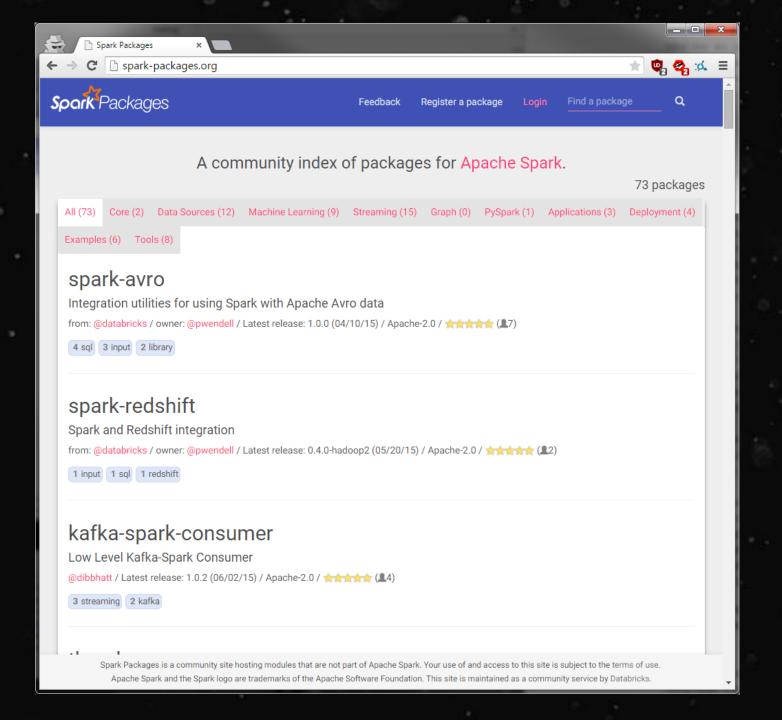
This lab will introduce you to using 3 Hadoop ecosystem components in Cloudera's distribution: HDFS, Spark 1.1.0 and YARN. The lab will first walk you through the Cloudera Manager installation on a VM in AWS, followed by a CDH 5.2 binaries deployment on the same node. Then the lab will introduce students to Hadoop in a DevOps manner: experimenting with the distributed file system, looking at the XML config files, running a batch analytics workload with Spark from disk and from memory, writing some simple scala Spark code, running SQL commands with Spark SQL, breaking things and troubleshooting issues, etc.

The following high level steps are in the initial part of this lab:

- · Connect via SSH to your Amazon instance
- Install Cloudera Manager and CDH 5.2
- Create a new folder in HDFS and add data files to it
- Start the scala based Spark shell
- · Import the fresh data into Spark a RDD

http://tinyurl.com/cdhsparklab

- 109 pages
- DevOps style
- For complete beginners
- Includes:
 - PySpark
 - Spark SQL
 - Spark-submit



version 1.0.0

- Introduced Spark SQL
- Introduced support for Hadoop Security and PySpark on YARN
- Added Spark Submit
- Added History Server web UI
- MLlib improvements: sparse feature vectors, scalable decision trees, SVD, PCA, L-BFGS
- Substantial performance boosts in GraphX
- Added flume support in Streaming
- Support for Java 8 lambda syntax

May 2014

contributions from 117 developers

version **1.1.0**

- New sort based Shuffle for very large scale workloads (10k + reducers)
- Spark SQL additions: JDBC/ODBC server, JSON support, UDFs
- New statistics library for MLlib and 2-3x speed improvement for many algorithms
- New in Spark Streaming: partial HA, Amazon Kinesis, Flume pull, streaming linear regression, rate limiting
- PySpark now supports HBase, C*, Avro,
 SequenceFiles

Sept 2014

contributions from **171** developers

version 1.2.0

- New Netty based network transfer subsystem for very large shuffles
- Scala 2.11 support
- Streaming: Python API, driver HA, WAL
- MLlib: ML Pipelines (multiple algorithms are run in sequence with varying parameters), major python improvements
- Spark SQL: External data sources API, Hive 0.13 support
- GraphX: graduates from alpha and adds a stable API
- PySpark: broadcast variables > 2 GB

Dec 2014

contributions from **172** developers

60+ institutions

version 1.3.0

- DataFrame API released
- SparkSQL graduates from an alpha project
- Core: reduce performance, error reporting, some SSL encryption, GC metrics in UI
- MLlib: LDA for topic modeling, GMM, multinomial logistic regression, FP-growth
- Streaming: direct Kafka API
- PySpark: Support for ML Pipelines

Mar 2015

contributions from **174** developers

version 1.4.0

- Introduced SparkR
- Core: DAG visualization, Python 3 support, REST API, serialized shuffle, beginning of Tungsten
- SQL/DF: ORCFile format support, UI for JDBC server
- ML pipelines graduates from alpha
- Many new ML algorithms
- Streaming: visual graphs in UI, better Kafka + Kinesis support

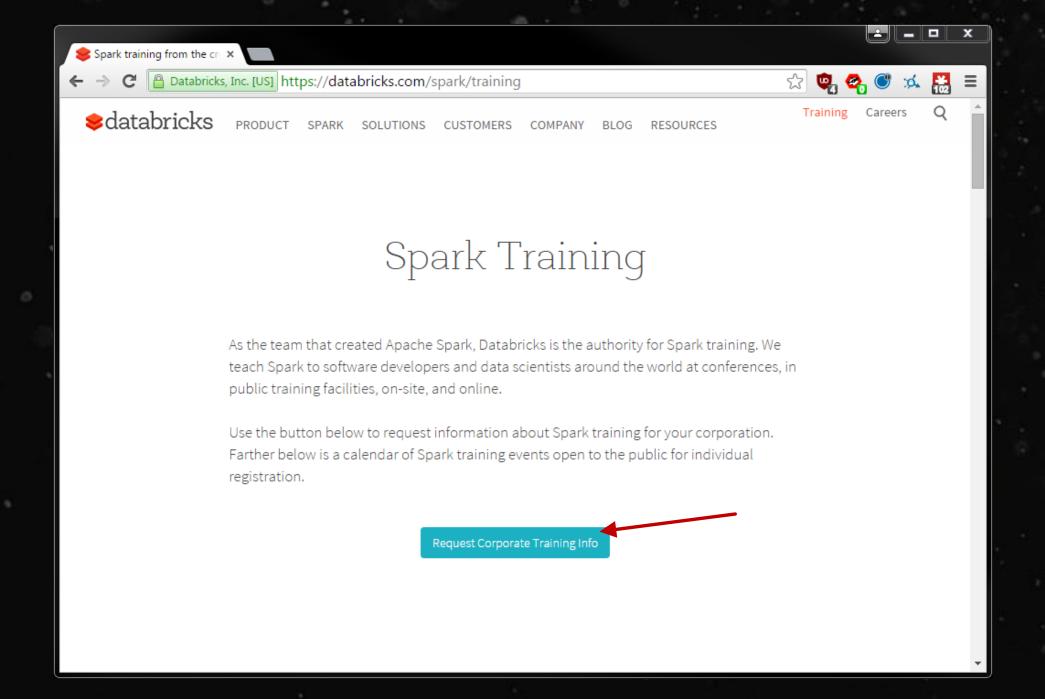
Jun 2015

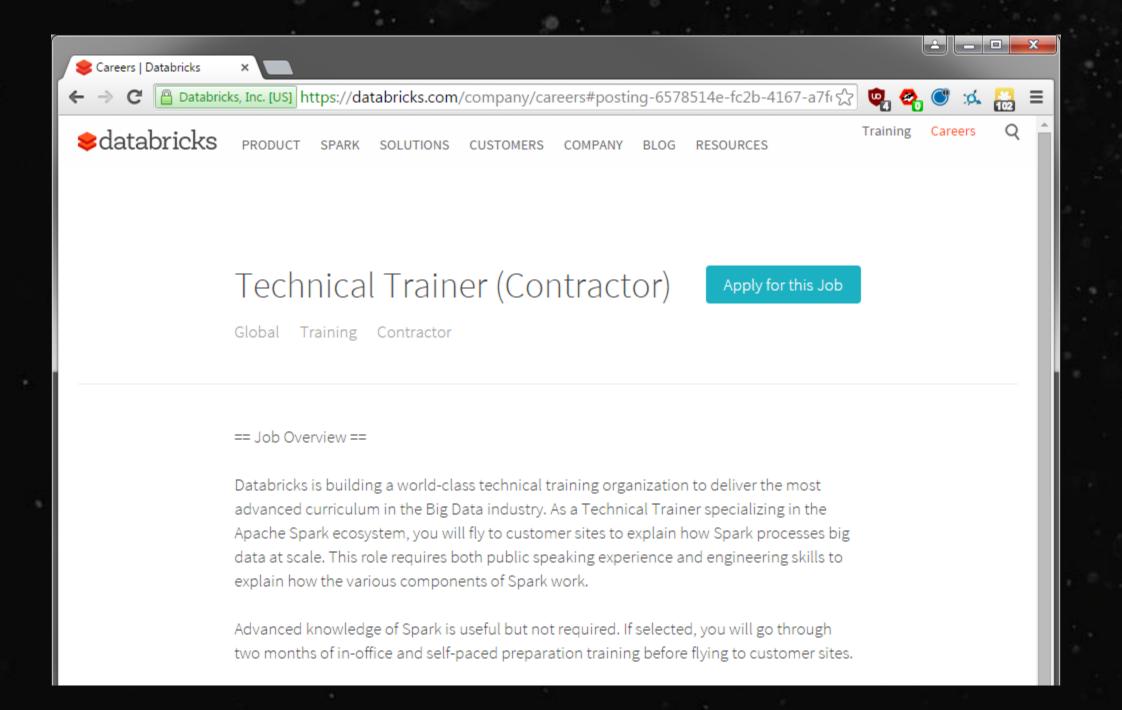
contributions from210 developers

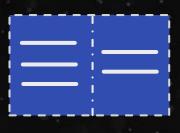
70+ institutions

Benchmark & Integration testing by:

- Intel
- Palantir
- Cloudera
- Mesosphere
- Huawei
- Shopify
- Netflix
- Yahoo
- UC Berkeley
- Databricks



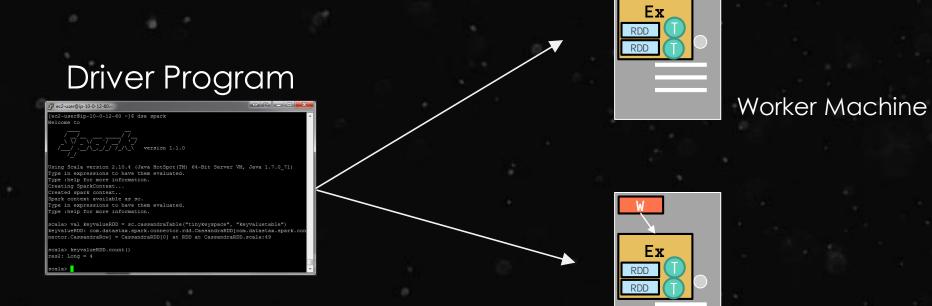




RDD FUNDAMENTALS

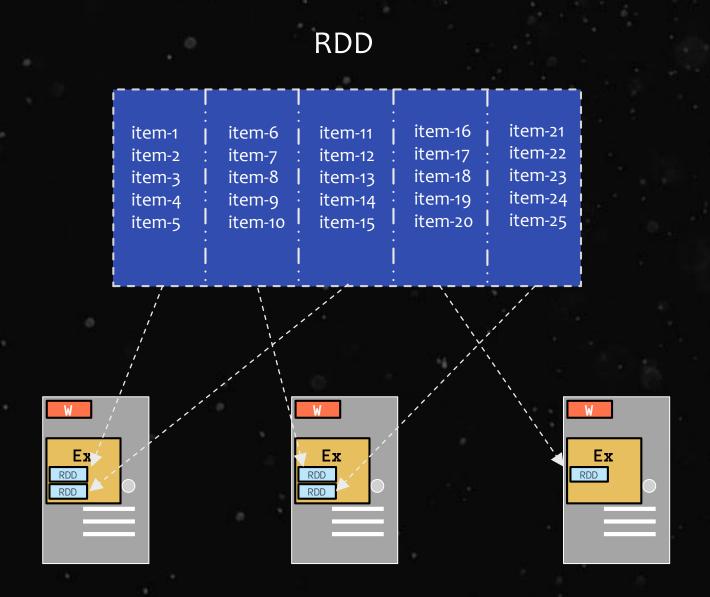
INTERACTIVE SHELL

```
₽ ubuntu@ip-10-0-53-24: ~
ubuntu@ip-10-0-53-24:~$ dse spark
Welcome to
    Using Scala version 2.10.3 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0 51)
Type in expressions to have them evaluated.
Type :help for more information.
Creating SparkContext...
Created spark context..
Spark context available as sc.
Type in expressions to have them evaluated.
Type :help for more information.
scala> val myRDD = sc.cassandraTable("tinykeyspace", "keyvaluetable")
myRDD: com.datastax.bdp.spark.CassandraRDD[com.datastax.bdp.spark.CassandraRow] = Cassan
draRDD[0] at RDD at CassandraRDD.scala:32
scala> myRDD.count()
res2: Long = 5
scala>
```

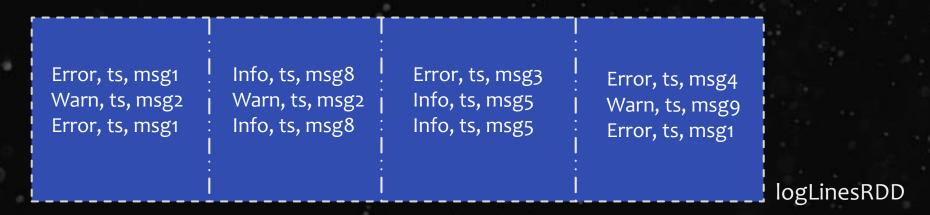


Worker Machine

more partitions = more parallelism



RDD w/ 4 partitions



An RDD can be created 2 ways:

- Parallelize a collection
- Read data from an external source (S3, C*, HDFS, etc)


```
# Parallelize in Python
wordsRDD = sc.parallelize(["fish", "cats", "dogs"])
```



```
// Parallelize in Scala
val wordsRDD= sc.parallelize(List("fish", "cats", "dogs"))
```


- Take an existing in-memory collection and pass it to SparkContext's parallelize method
- Not generally used outside of prototyping and testing since it requires entire dataset in memory on one machine


```
// Parallelize in Java
JavaRDD<String> wordsRDD = sc.parallelize(Arrays.asList("fish", "cats", "dogs"));
```

READ FROM TEXT FILE

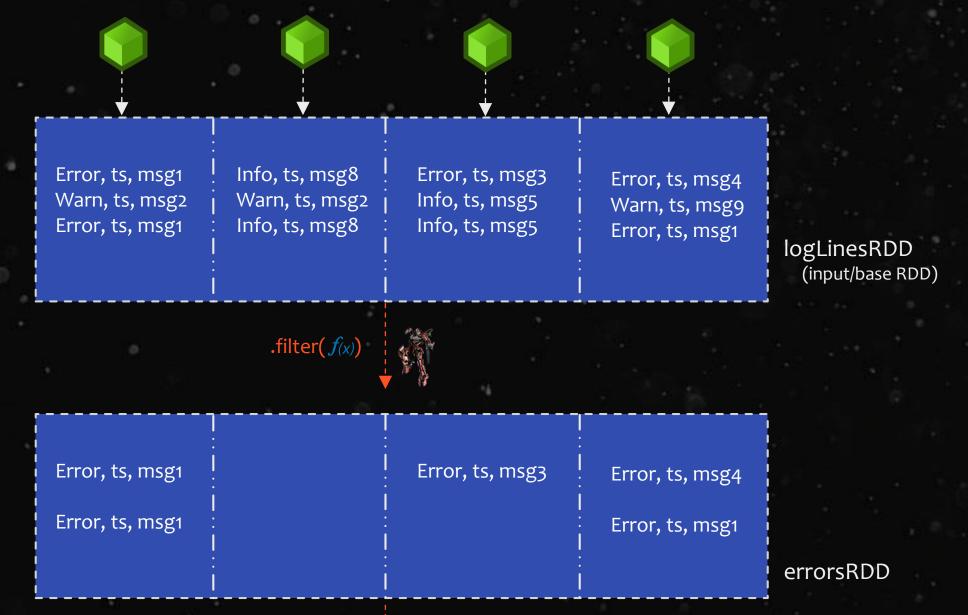

```
# Read a local txt file in Python
linesRDD = sc.textFile("/path/to/README.md")
```

 There are other methods to read data from HDFS, C*, S3, HBase, etc.


```
// Read a local txt file in Scala
val linesRDD = sc.textFile("/path/to/README.md")
```

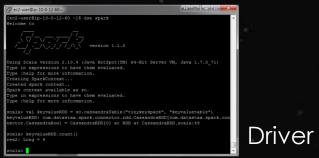


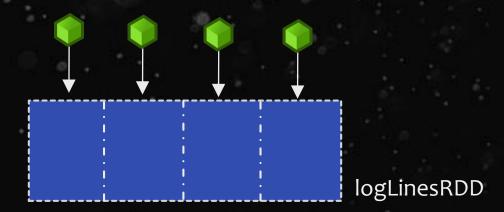
```
// Read a local txt file in Java
JavaRDD<String> lines = sc.textFile("/path/to/README.md");
```

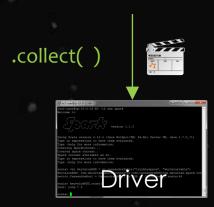



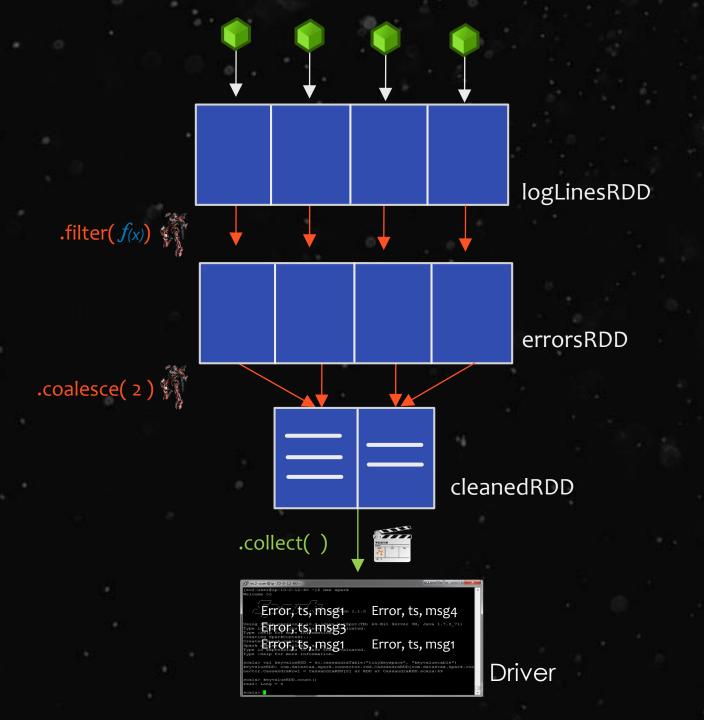
Error, ts, msg3
Error, ts, msg1
Error, ts, msg1

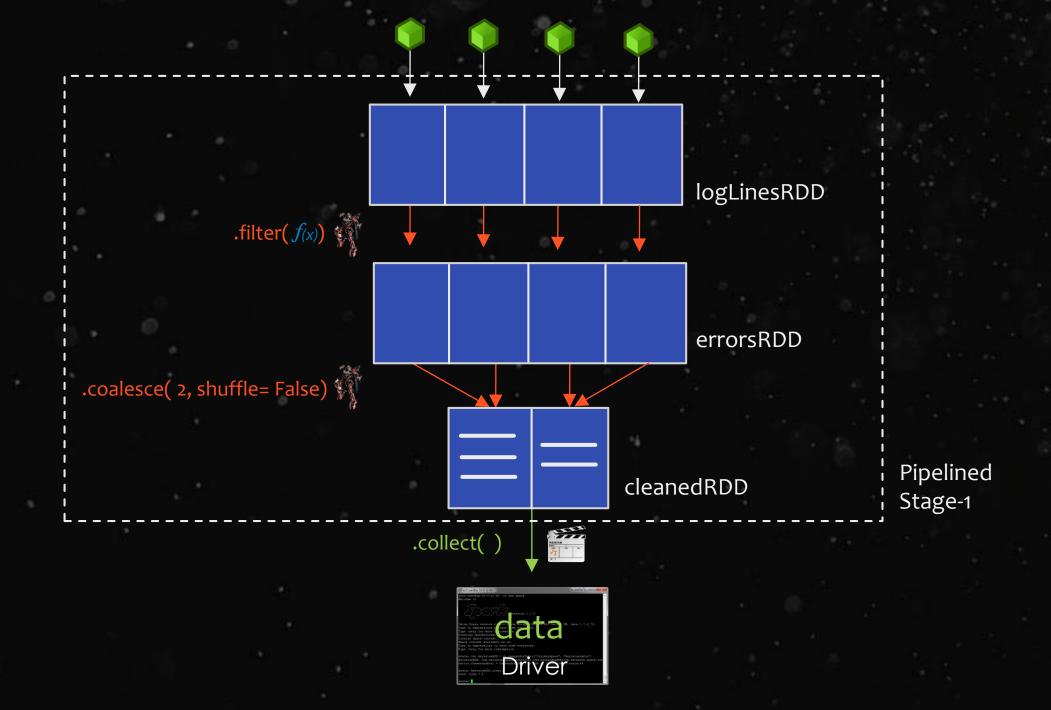
cleanedRDD

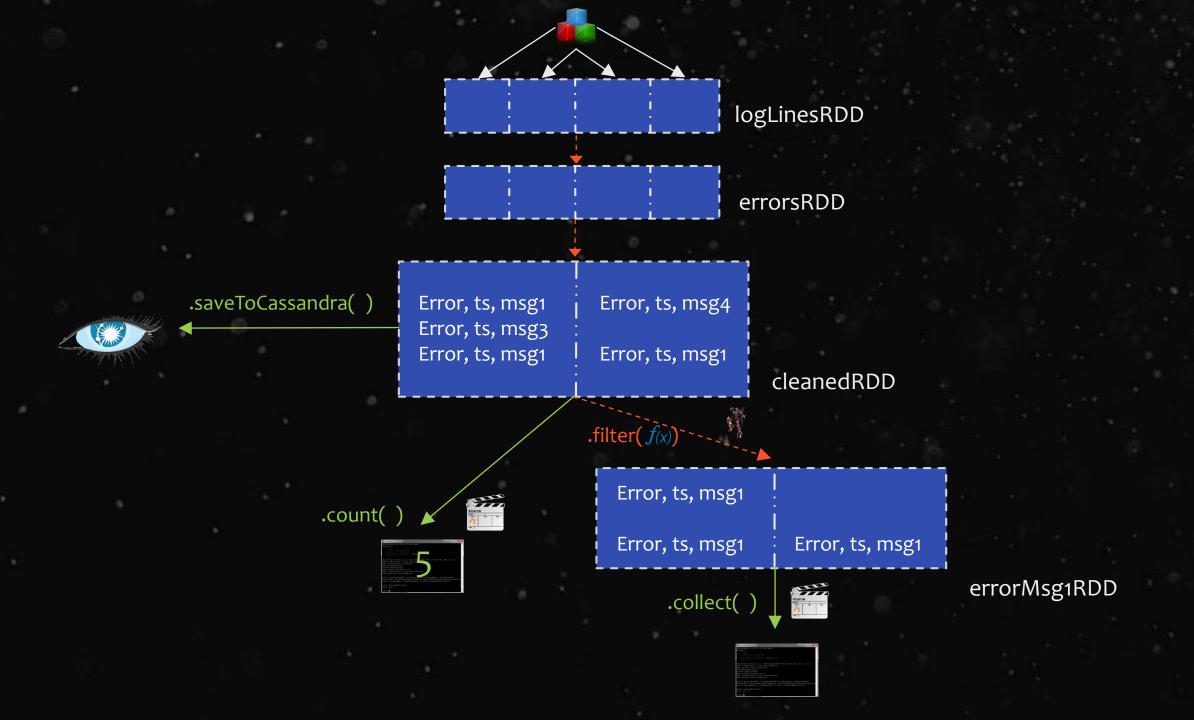


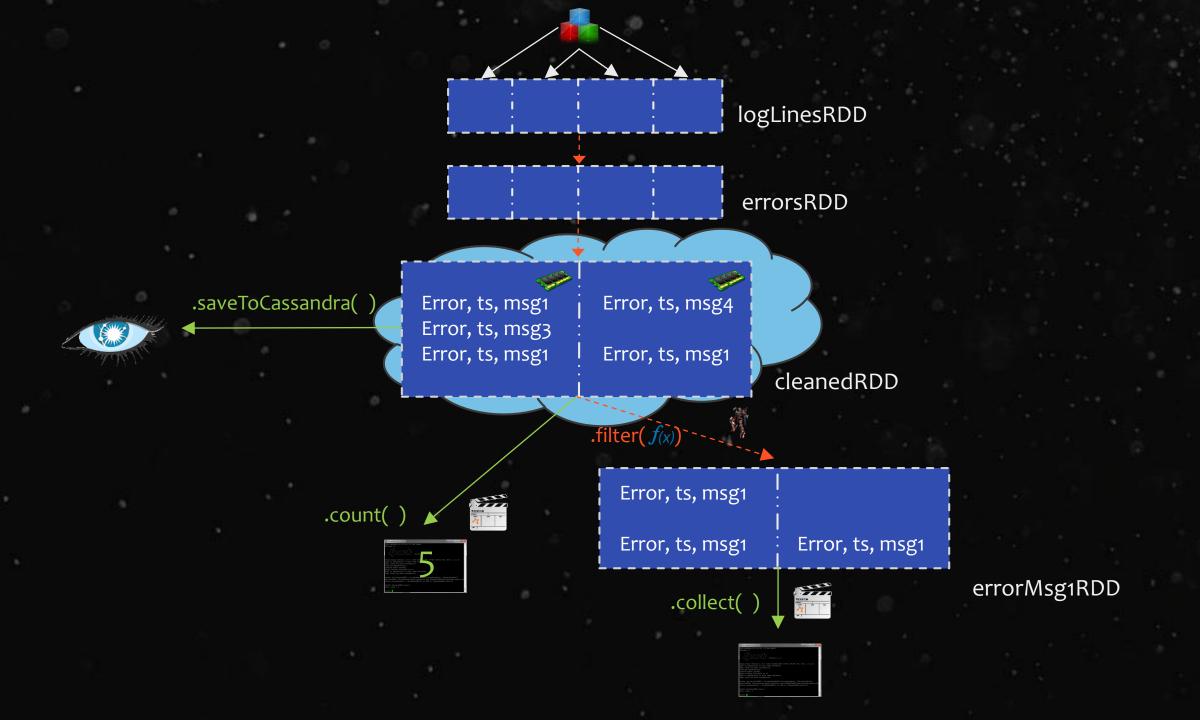










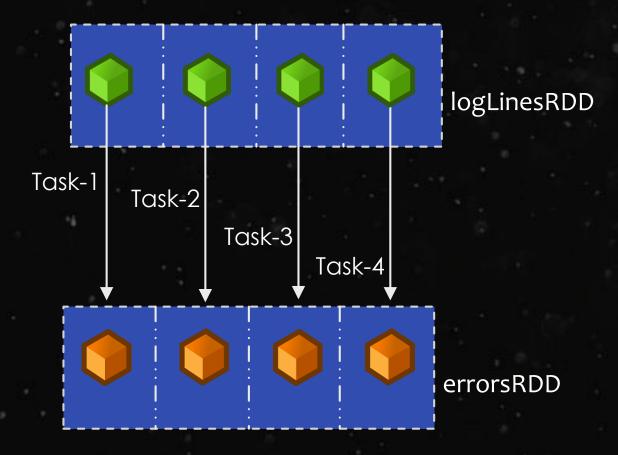


RDD GRAPH

Dataset-level view:

logLinesRDD P-1 P-4 P-3 P-2 (HadoopRDD) Path = hdfs://... errorsRDD P-1 P-2 P-3 P-4 (filteredRDD) func = _.contains(...) shouldCache=false

Partition-level view:



LIFECYCLE OF A SPARK PROGRAM

- 1) Create some input RDDs from external data or parallelize a collection in your driver program.
- 2) Lazily transform them to define new RDDs using transformations like filter() or map()
- 3) Ask Spark to cache() any intermediate RDDs that will need to be reused.
- 4) Launch actions such as count() and collect() to kick off a parallel computation, which is then optimized and executed by Spark.

TRANSFORMATIONS (lazy)

<pre>map()</pre>	<pre>intersection()</pre>	<pre>cartesion()</pre>
flatMap()	<pre>distinct()</pre>	pipe()
filter()	groupByKey()	coalesce()
<pre>mapPartitions()</pre>	reduceByKey()	repartition()
<pre>mapPartitionsWithIndex()</pre>	sortByKey()	<pre>partitionBy()</pre>
sample()	join()	
union()	cogroup()	

 Most transformations are element-wise (they work on one element at a time), but this is not true for all transformations

ACTIONS

```
reduce()
collect()
count()
first()
take()
takeSample()
saveToCassandra()

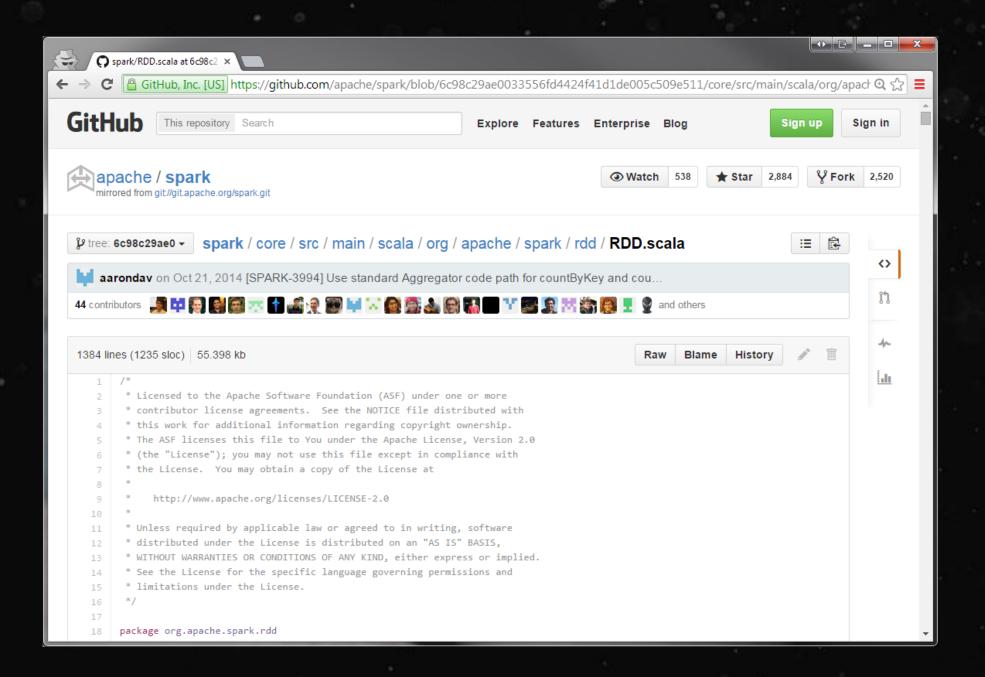
takeOrdered()
saveAsTextFile()
saveAsSequenceFile()
saveAsObjectFile()
countByKey()
foreach()
...
```

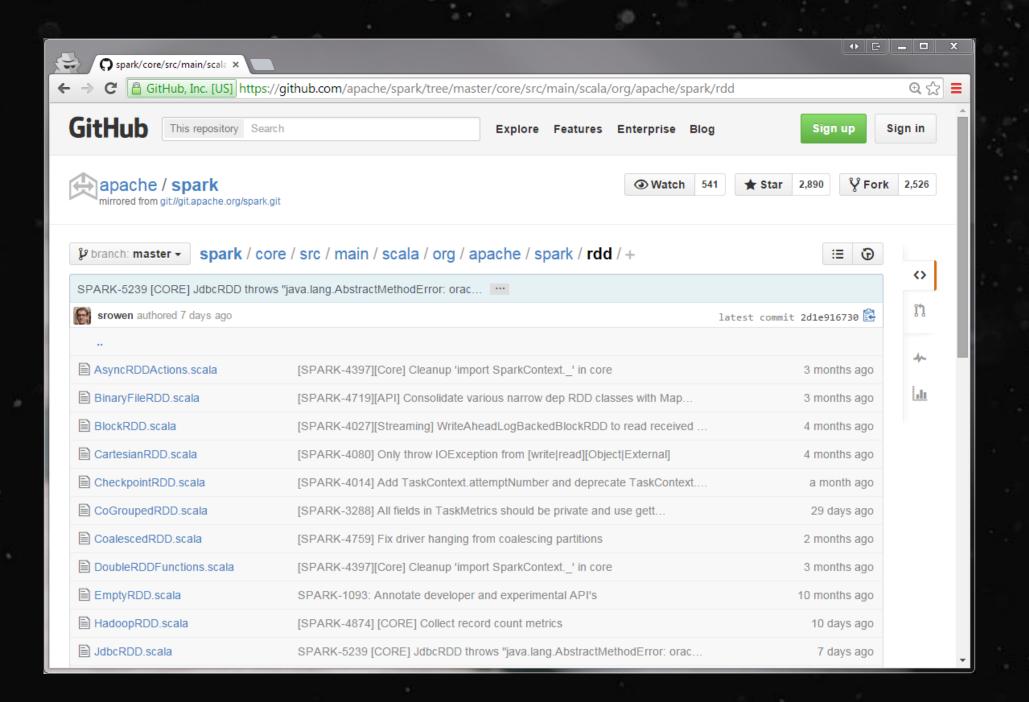
TYPES OF RDDS

- HadoopRDD
- FilteredRDD
- MappedRDD
- PairRDD
- ShuffledRDD
- UnionRDD
- PythonRDD

- DoubleRDD
- JdbcRDD
- JsonRDD
- SchemaRDD
- VertexRDD
- EdgeRDD

- CassandraRDD (DataStax)
- GeoRDD (ESRI)
- EsSpark (ElasticSearch)





RDD INTERFACE

- * 1) Set of partitions ("splits")
- 2) List of dependencies on parent RDDs
- 3) Function to compute a partition given parents
- * 4) Optional preferred locations
- * 5) Optional partitioning info for k/v RDDs (Partitioner)

This captures all current Spark operations!

EXAMPLE: HADOOPRDD

- * Partitions = one per HDFS block
- Dependencies = none
- * Compute (partition) = read corresponding block

- preferredLocations (part) = HDFS block location
- * Partitioner = none

EXAMPLE: FILTEREDRDD

- Partitions = same as parent RDD
- Dependencies = "one-to-one" on parent
- Compute (partition) = compute parent and filter it

- preferredLocations (part) = none (ask parent)
- * Partitioner = none

EXAMPLE: JOINEDRDD

- * Partitions = One per reduce task
- Dependencies = "shuffle" on each parent
- Compute (partition) = read and join shuffled data

- * preferredLocations (part) = none
- Partitioner = HashPartitioner(numTasks)

READING DATA USING THE C* CONNECTOR

INPUT SPLIT SIZE

(for dealing with wide rows)

Start the Spark shell by passing in a custom cassandra.input.split.size:

ubuntu@ip-10-0-53-24:~\$ dse spark -Dspark.cassandra.input.split.size=2000
Welcome to

Using Scala version 2.10.3 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0 51)

Type in expressions to have them evaluated.

Type :help for more information.

Creating SparkContext...

Created spark context..

Spark context available as sc.

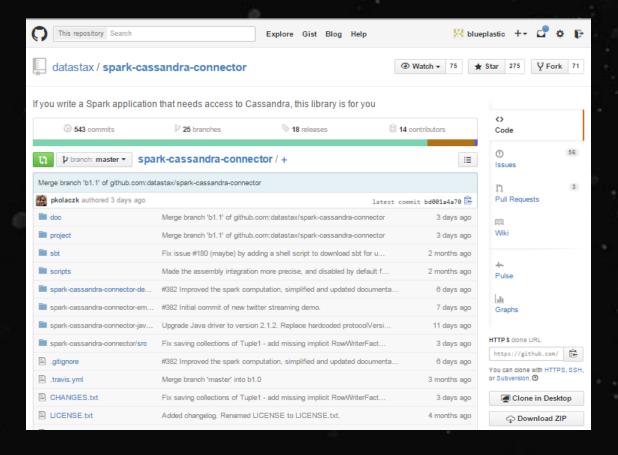
Type in expressions to have them evaluated.

Type :help for more information.

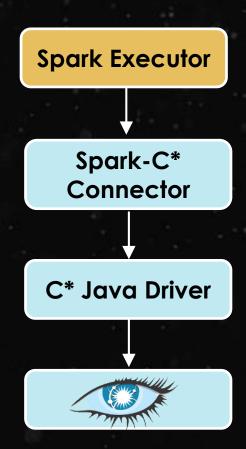
scala>

The cassandra.input.split.size parameter defaults to 100,000. This is the approximate number of physical rows in a single Spark partition. If you have really wide rows (thousands of columns), you may need to lower this value. The higher the value, the fewer Spark tasks are created. Increasing the value too much may limit the parallelism level."

https://github.com/datastax/spark-cassandra-connector



- Open Source
- Implemented mostly in Scala
- Scala + Java APIs
- Does automatic type conversions



Spark Cassandra Connector **build passing**

Lightning-fast cluster computing with Spark and Cassandra

This library lets you expose Cassandra tables as Spark RDDs, write Spark RDDs to Cassandra tables, and execute arbitrary CQL queries in your Spark applications.

Features

- Compatible with Apache Cassandra version 2.0 or higher and DataStax Enterprise 4.5
- · Compatible with Apache Spark 1.0 and 1.1
- · Exposes Cassandra tables as Spark RDDs
- · Maps table rows to CassandraRow objects or tuples
- Offers customizable object mapper for mapping rows to objects of user-defined classes
- Saves RDDs back to Cassandra by implicit saveToCassandra call
- Converts data types between Cassandra and Scala
- Supports all Cassandra data types including collections
- Filters rows on the server side via the CQL WHERE clause
- Allows for execution of arbitrary CQL statements
- Plays nice with Cassandra Virtual Nodes

"Simple things should be simple, complex things should be possible"

- Alan Kay

DEMO: DATABRICKS CLOUD GUI

https://classwest03.cloud.databricks.com

- 60 user accounts
- 60 user clusters
- 1 community cluster

https://classwest20.cloud.databricks.com

- 60 user accounts
- 60 user clusters
- 1 community cluster

https://classwest10.cloud.databricks.com

- 60 user accounts
- 60 user clusters
- 1 community cluster

https://classwest30.cloud.databricks.com

- 60 user accounts
- 60 user clusters
- 1 community cluster

Databricks Guide (5 mins)

DevOps 101 (30 mins)

DevOps 102 (30 mins)

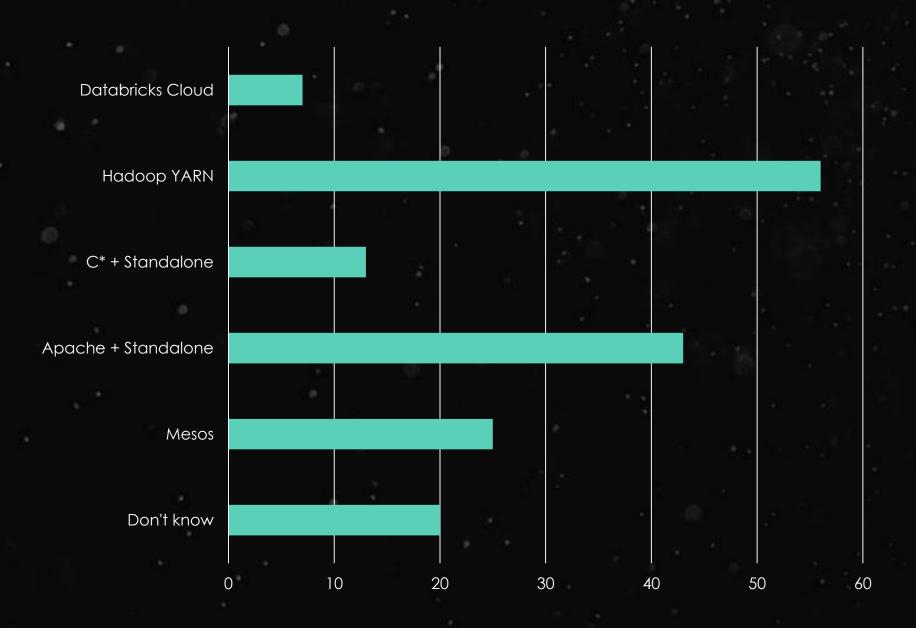
SQL 101 (30 mins)

Dataframes (20 mins)

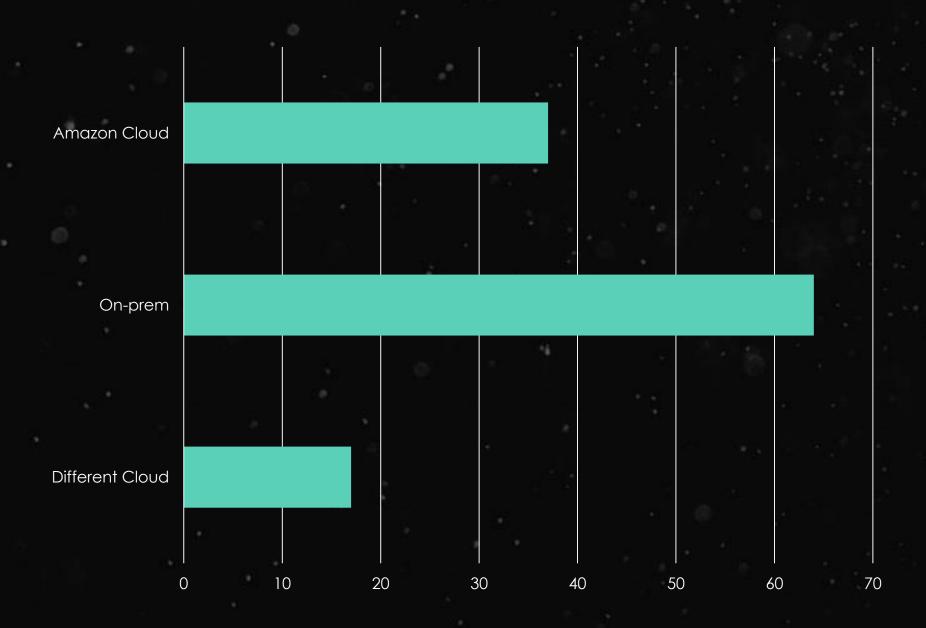
Transformations & Actions (30 mins)

SPARK RESOURCE MANAGERS

HOW WILL YOU DEPLOY SPARK?



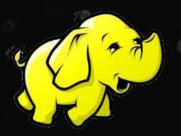
WHERE WILL YOU DEPLOY SPARK?

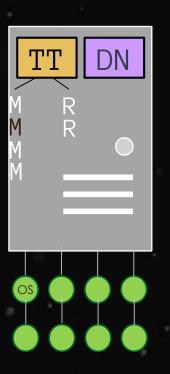


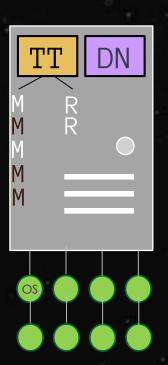
WAYS TO RUN SPARK

- Mesos

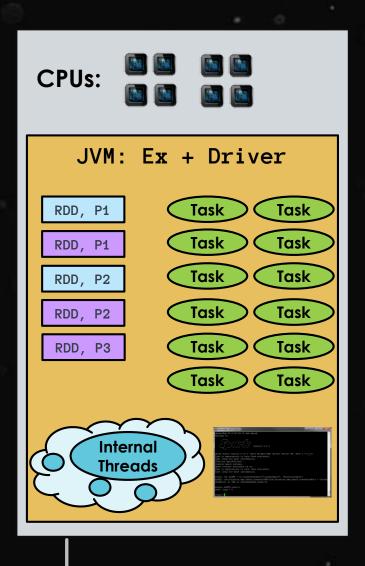
History: 2 MR APPS RUNNING







LOCAL MODE



Disk

Worker Machine


```
3 options:
```

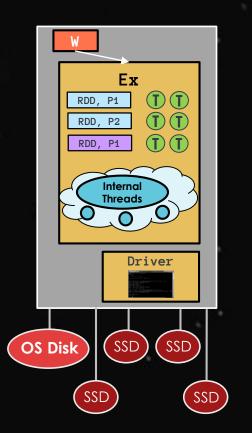
- local
- local[N]
- local[*]

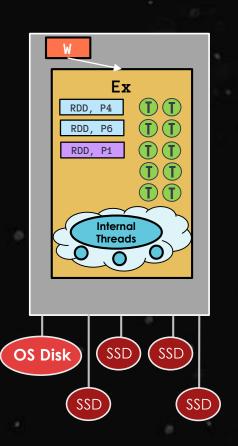
> ./bin/spark-shell --master local[12]

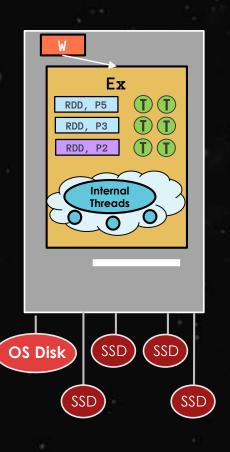
STANDALONE MODE

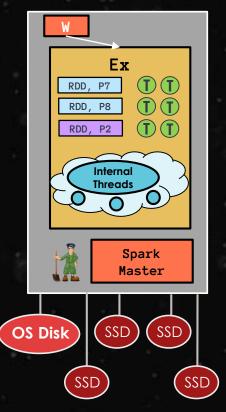
different spark-env.sh

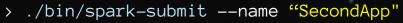
– SPARK_WORKER_CORES









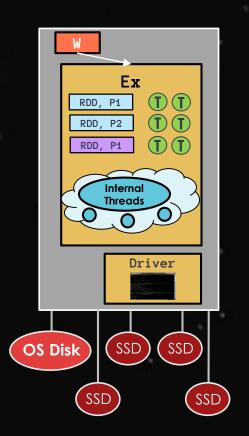


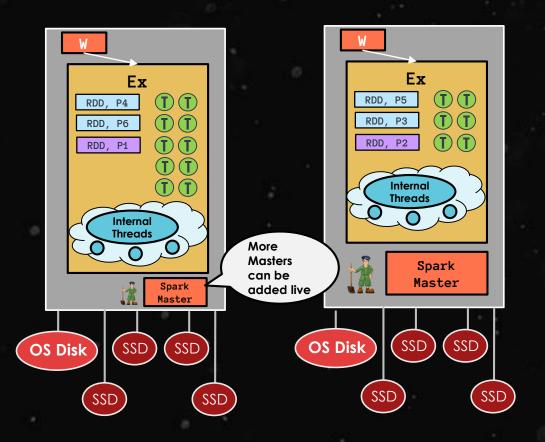
--master spark://host1:port1 myApp.jar

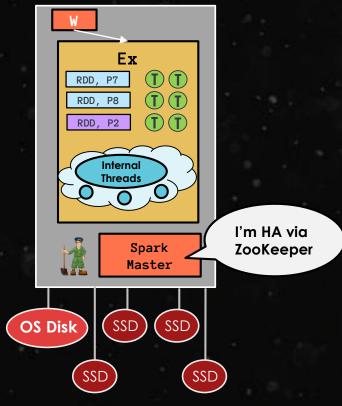
spark-env.sh

different spark-env.sh

– SPARK_WORKER_CORES







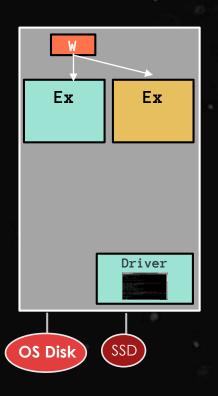
> ./bin/spark-submit --name "SecondApp"

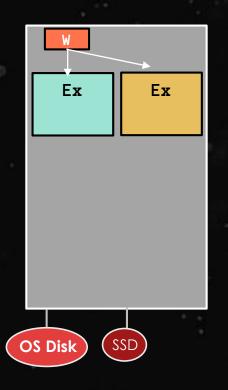
--master spark://host1:port1,host2:port2 myApp.jar

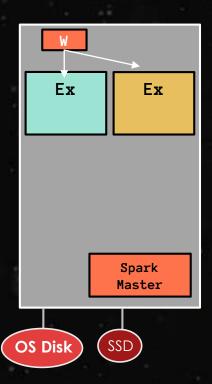
spark-env.sh

- SPARK_LOCAL_DIRS

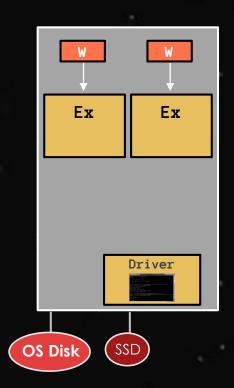
(multiple apps)

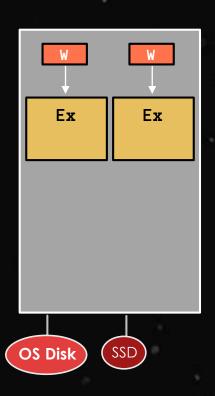


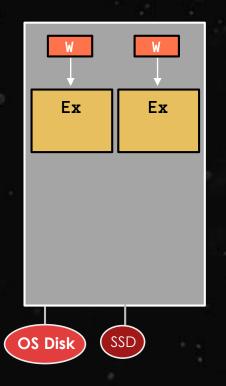


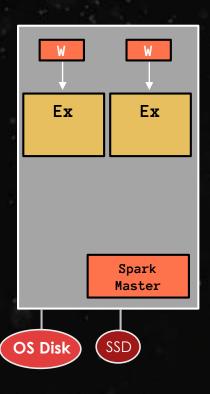


(single app)









SPARK_WORKER_INSTANCES: [default: 1] # of worker instances to run on each machine

SPARK_WORKER_CORES: [default: ALL] # of cores to allow Spark applications to use on the machine

SPARK_WORKER_MEMORY: [default: TOTAL RAM - 1 GB] Total memory to allow Spark applications to use on the machine

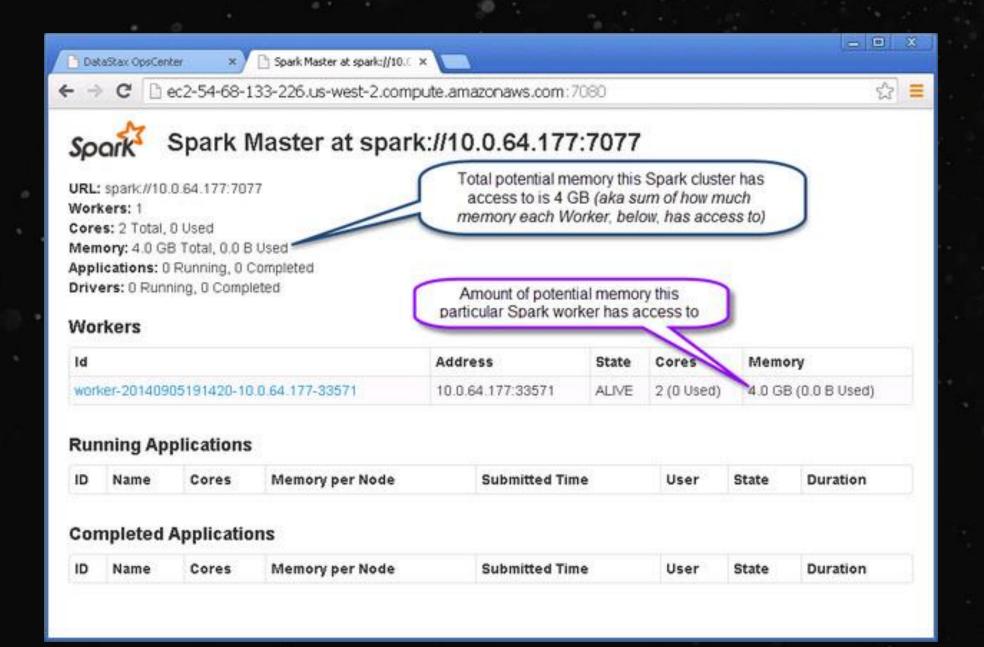
SPARK_DAEMON_MEMORY: [default: 512 MB] Memory to allocate to the Spark master and worker daemons themselves

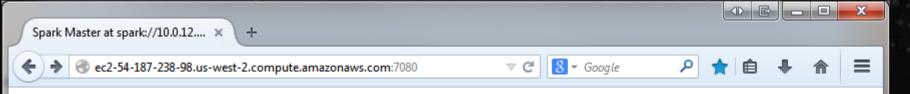
Standalone settings

- Apps submitted will run in FIFO mode by default

spark.cores.max: maximum amount of CPU cores to request for the
application from across the cluster

spark.executor.memory: Memory for each executor





Spark Master at spark://10.0.12.60:7077

URL: spark://10.0.12.60:7077

Workers: 1

Cores: 3 Total, 3 Used

Memory: 7.7 GB Total, 512.0 MB Used Applications: 1 Running, 0 Completed Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers

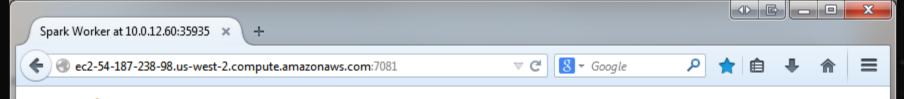
ld	Address	State	Cores	Memory
worker-20141110195851-10.0.12.60-35935	10.0.12.60:35935	ALIVE	3 (3 Used)	7.7 GB (512.0 MB Used)

Running Applications

ID	Name	Cores	Memory per Node	Submitted Time	User	State	Duration
app-20141110204831-0000	Spark shell	3	512.0 MB	2014/11/10 20:48:31	ec2-user	RUNNING	23 min

Completed Applications

ID	Name	Cores	Memory per Node	Submitted Time	User	State	Duration



Spark Worker at 10.0.12.60:35935

ID: worker-20141110195851-10.0.12.60-35935

Master URL: spark://10.0.12.60:7077

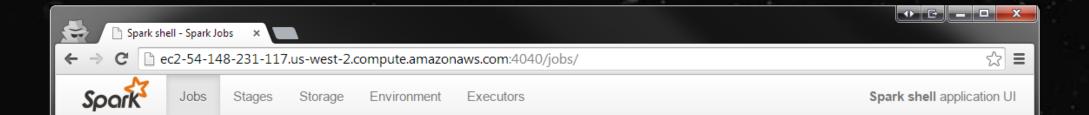
Cores: 3 (3 Used)

Memory: 7.7 GB (512.0 MB Used)

Back to Master

Running Executors (1)

ExecutorID	Cores	State	Memory	Job Details	Logs
0	3	RUNNING	512.0 MB	ID: app-20141110204831-0000 Name: Spark shell User: cassandra	stdout stderr



Total Duration: 39 min Scheduling Mode: FIFO

Active Jobs: 0 Completed Jobs: 4 Failed Jobs: 0

Active Jobs (0)

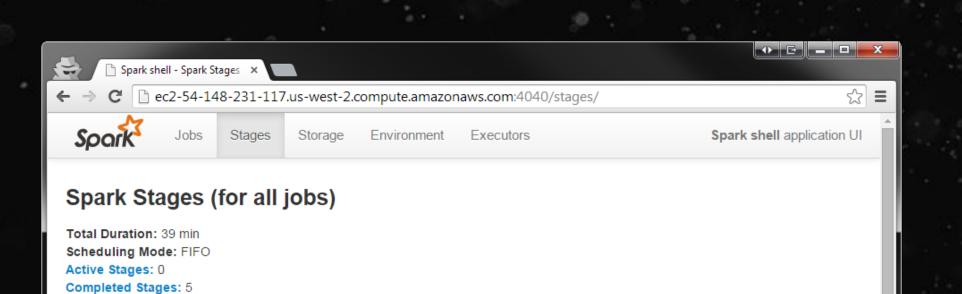
Job Id	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total	
--------	-------------	-----------	----------	-------------------------	---	--

Completed Jobs (4)

Job Id	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
3	collect at <console>:19</console>	2014/12/01 16:18:24	38 ms	1/1 (1 skipped)	2/2 (2 skipped)
2	collect at <console>:19</console>	2014/12/01 16:18:22	55 ms	1/1 (1 skipped)	2/2 (2 skipped)
1	collect at <console>:19</console>	2014/12/01 16:18:07	0.2 s	2/2	4/4
0	count at <console>:15</console>	2014/12/01 16:17:39	0.3 s	1/1	2/2

Failed Jobs (0)

Job Id	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
--------	-------------	-----------	----------	-------------------------	---



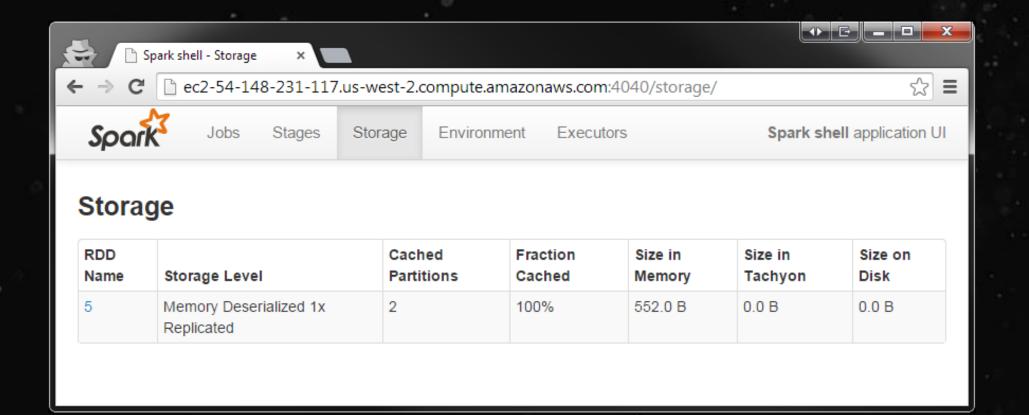
Active Stages (0)

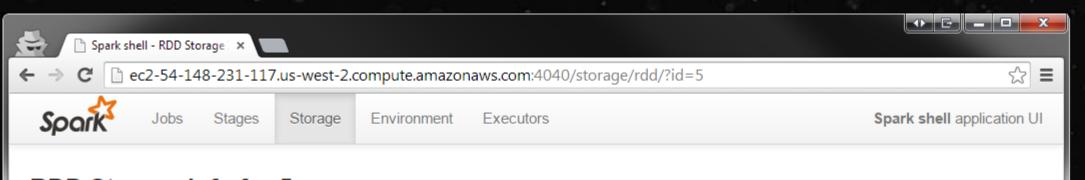
Failed Stages: 0

Stage Id Description Submitted Duration Tasks: Succeeded/Total Input Output Shuffle Read Shuffle W	Stage Id	Description	cription Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	Shuffle Wrif
--	----------	-------------	--------------------	----------	------------------------	-------	--------	--------------	--------------

Completed Stages (5)

Stage Id	Description	Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	Shuffle Write
6	collect at <console>:19 +deta</console>	ils 2014/12/01 16:18:24	28 ms	2/2	552.0 B			
4	collect at <console>:19 +deta</console>	ils 2014/12/01 16:18:22	45 ms	2/2				
2	collect at <console>:19 +deta</console>	ils 2014/12/01 16:18:07	69 ms	2/2				
1	map at <console>:16 +deta</console>	ils 2014/12/01 16:18:07	76 ms	2/2	254.0 B			737.0 B
0	count at <console>:15 +deta</console>	ils 2014/12/01 16:17:40	0.2 s	2/2	254.0 B			





RDD Storage Info for 5

Storage Level: Memory Deserialized 1x Replicated

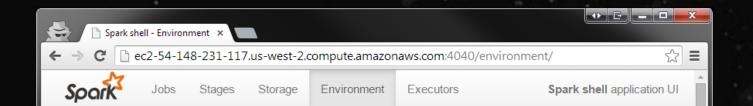
Cached Partitions: 2 Total Partitions: 2 Memory Size: 552.0 B Disk Size: 0.0 B

Data Distribution on 1 Executors

Host	Memory Usage	Disk Usage
localhost:38329	552.0 B (265.4 MB Remaining)	0.0 B

2 Partitions

Block Name	Storage Level	Size in Memory	Size on Disk	Executors
rdd_5_0	Memory Deserialized 1x Replicated	424.0 B	0.0 B	localhost:38329
rdd_5_1	Memory Deserialized 1x Replicated	128.0 B	0.0 B	localhost:38329



Environment

Runtime Information

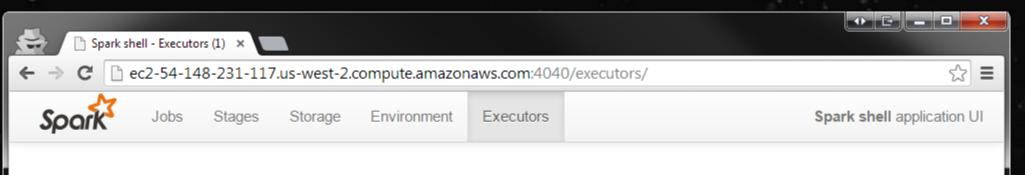
Name	Value
Java Home	/usr/java/jdk1.7.0_67/jre
Java Version	1.7.0_67 (Oracle Corporation)
Scala Version	version 2.10.4

Spark Properties

Name	Value
spark.app.id	local-1417468637156
spark.app.name	Spark shell
spark.driver.host	ip-10-0-125-125.us-west-2.compute.internal
spark.driver.port	59091
spark.executor.id	driver
spark.fileserver.uri	http://10.0.125.125:56999
spark.jars	
spark.master	local[*]
spark.repl.class.uri	http://10.0.125.125:57870
spark.scheduler.mode	FIFO
spark.tachyonStore.folderName	spark-a5c91951-a6b4-4425-badc-a1e2e9146a70

System Properties

Name	Value

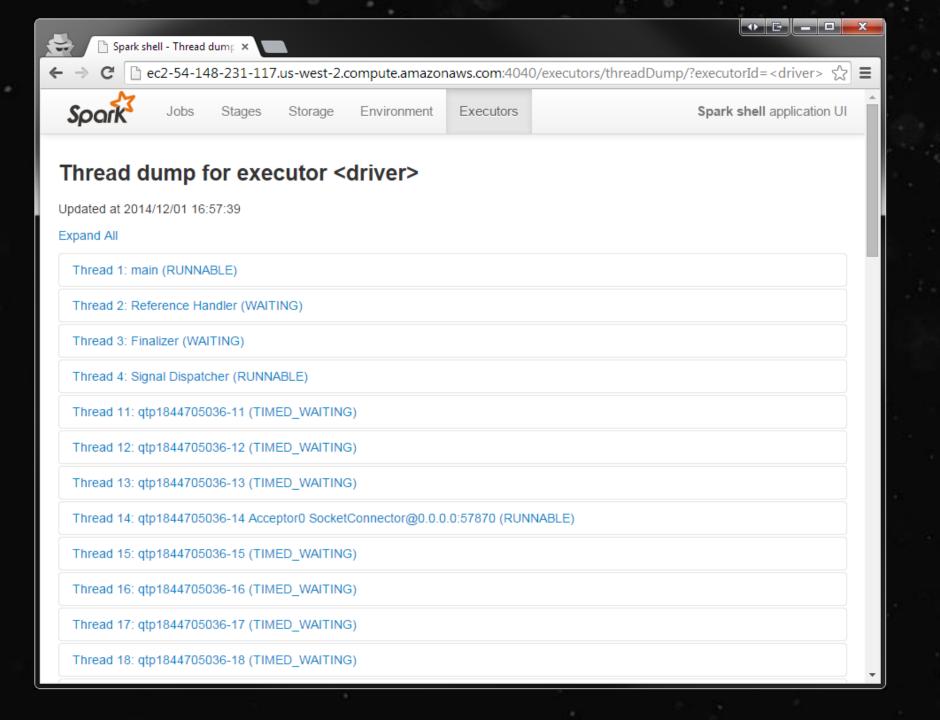


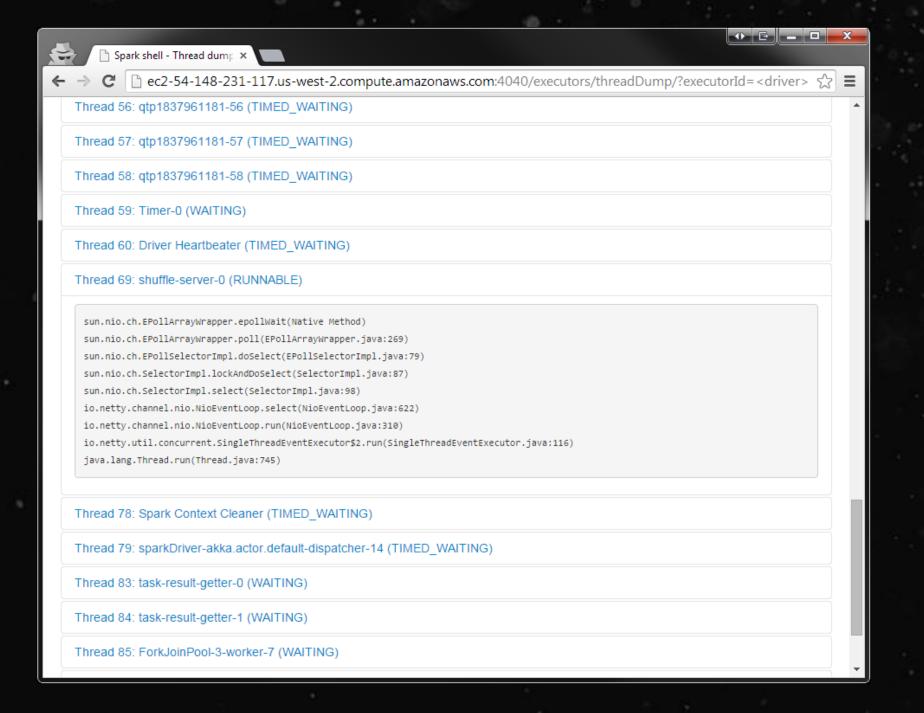
Executors (1)

Memory: 552.0 B Used (265.4 MB Total)

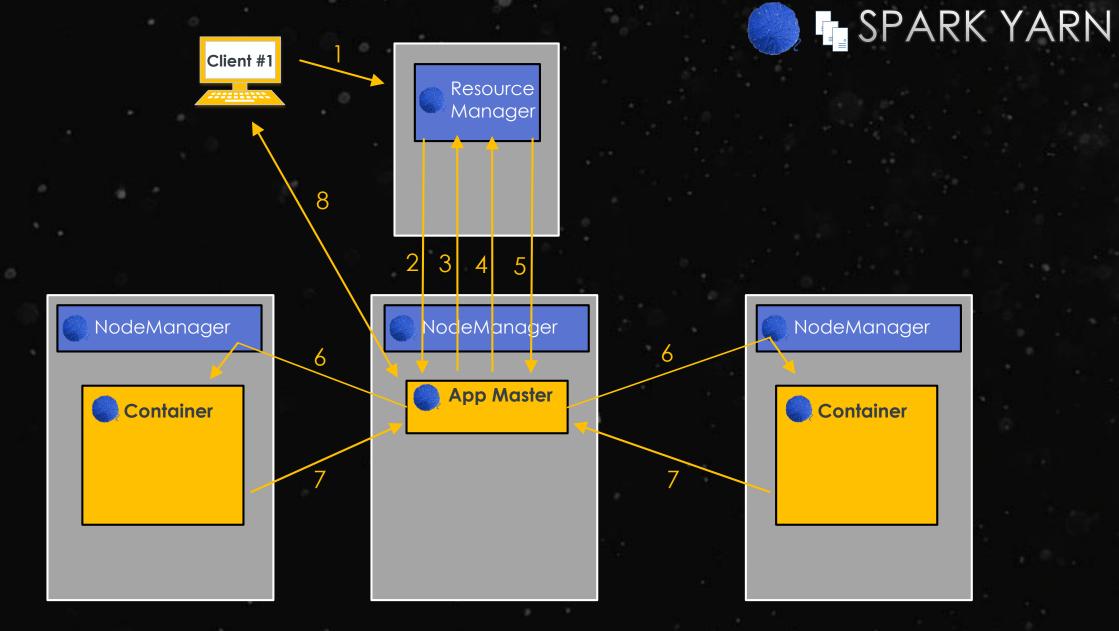
Disk: 0.0 B Used

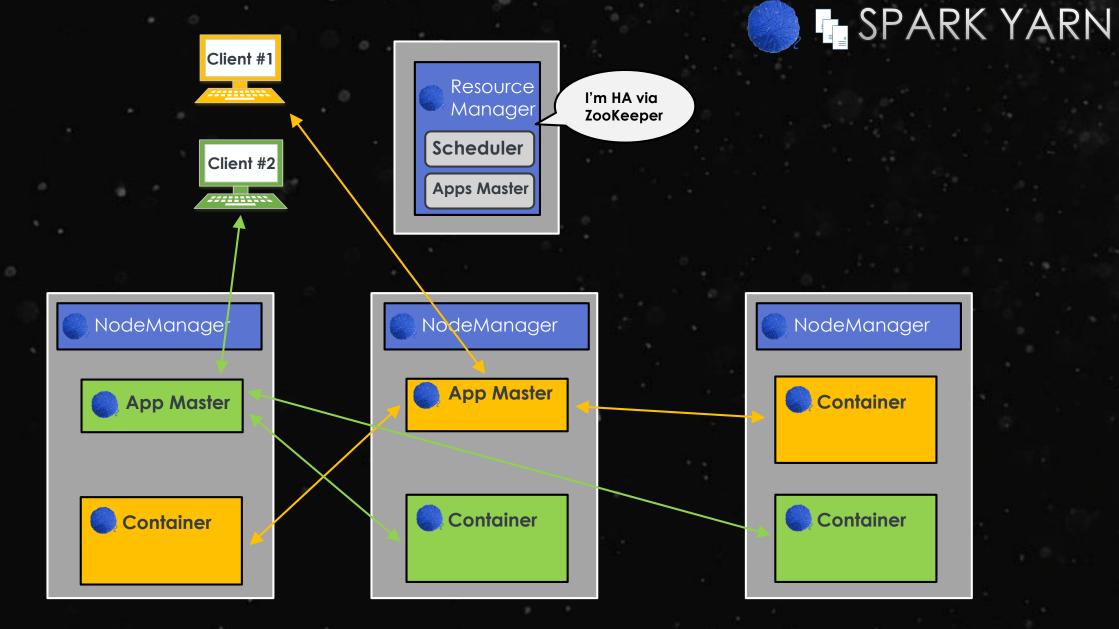
Executor ID	Address	RDD Blocks	Memory Used	Disk Used	Active Tasks	Failed Tasks	Complete Tasks	Total Tasks	Task Time	Input	Shuffle Read	Shuffle Write	Thread Dump
<driver></driver>	localhost:38329	2	552.0 B / 265.4 MB	0.0 B	0	0	10	10	740 ms	1060.0 B	0.0 B	737.0 B	Thread Dump





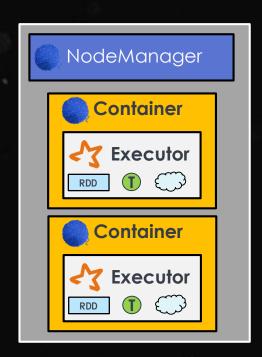
YARN MODE





(cluster mode)

- Does not support Spark Shells



YARN settings

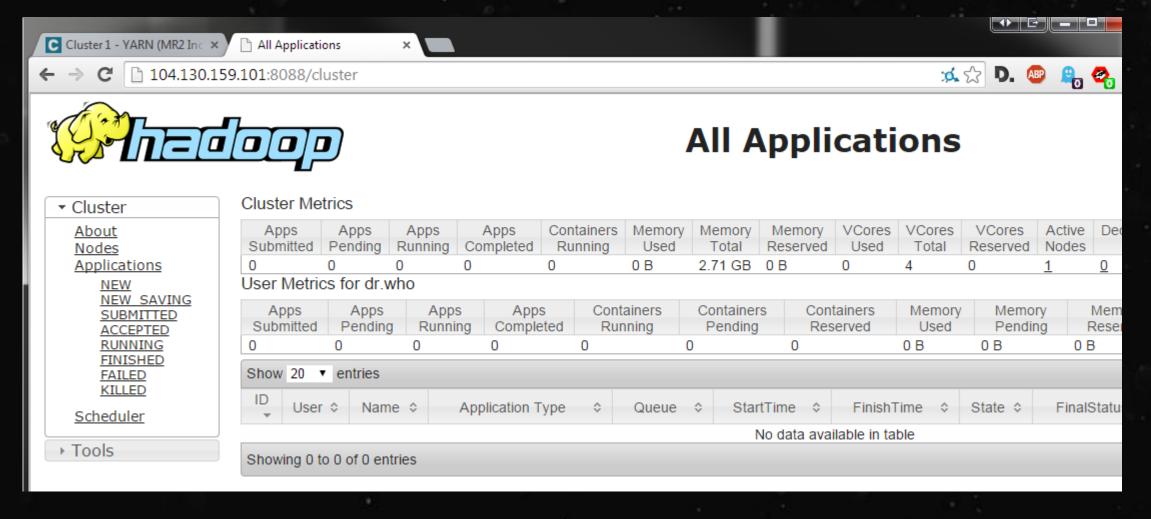
--num-executors: controls how many executors will be allocated

--executor-memory: RAM for each executor

--executor-cores: CPU cores for each executor

YARN resource manager UI: http://<ip address>:8088

(No apps running)



[ec2-user@ip-10-0-72-36 ~]\$ spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client --master yarn /opt/cloudera/parcels/CDH-5.2.1-1.cdh5.2.1.p0.12/jars/spark-examples-1.1.0-cdh5.2.1-hadoop2.5.0-cdh5.2.1.jar 10

App running in client mode

ec2-54-149-62-154.us-west-2.compute.amazonaws.com:8088/cluster/apps

Logged in as: dr.who

Cluster Metrics

All Applications

→ Cluster About **Nodes** Applications NEW SAVING SUBMITTED **ACCEPTED** RUNNING **FINISHED** FAILED **KILLED** Scheduler

▶ Tools

Lost Apps Containers Memory Memory Memory **VCores VCores VCores** Active Decommissioned Unhealthy Rebooted Apps Apps Apps Submitted Pending Running Completed Reserved Used Reserved Nodes Running Used Total Total Nodes Nodes Nodes Nodes 0 B 3.46 GB 0 B 0 0 User Metrics for dr.who Containers **VCores** VCores **VCores** Apps Apps Apps Apps Containers Containers Memory Memory Memory Submitted Reserved Used Pending Running Completed Running Pending Reserved Used Pending Pending Reserved 0 B 0 B 0 B 0 Show 20 ▼ entries Search: Queue \$ StartTime \$ State \$ FinalStatus \$ Tracking UI \$ FinishTime < Progress \$ application 1417641624005 0003 FINISHED SUCCEEDED ec2-Spark Pi SPARK Thu, 04 Dec Thu, 04 Dec root.ec2-History 2014 2014 15:31:14 user user 15:30:43 GMT GMT application 1417641624005 0002 Thu, 04 Dec Thu, 04 Dec FINISHED SUCCEEDED ec2-Spark Pi SPARK root.ec2-History user user 2014 2014 15:26:19 15:25:48 GMT GMT application 1417641624005 0001 Spark Pi SPARK Thu. 04 Dec Thu, 04 Dec FINISHED SUCCEEDED ec2root.ec2-History user user 2014 2014 15:25:35 15:25:18 GMT GMT Showing 1 to 3 of 3 entries

ec2-54-149-62-154.us-west-2.compute.amazonaws.com:8088/cluster/app/application_1417641624005_0003

Logged in as: dr.who

▼ Cluster

<u>About</u> Nodes **Applications**

NEW SAVING SUBMITTED ACCEPTED RUNNING FINISHED FAILED KILLED

Scheduler

→ Tools

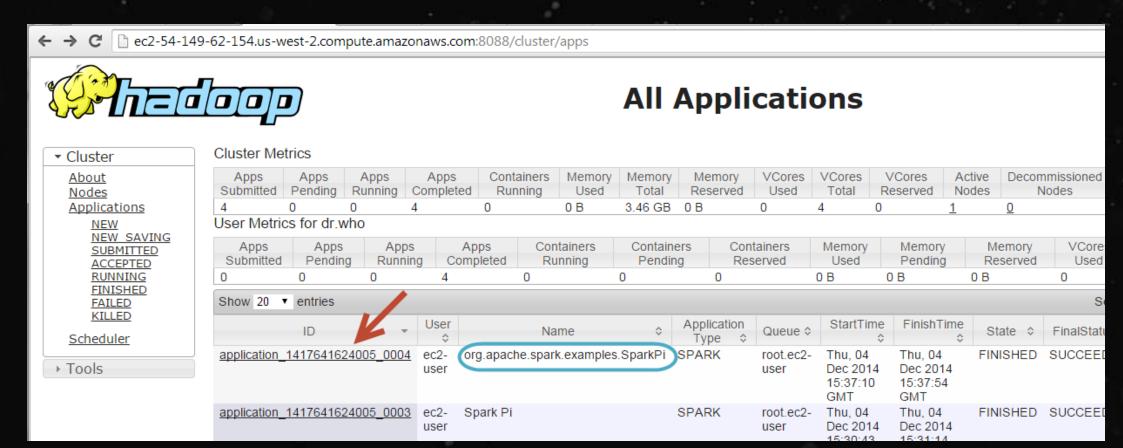
	Application Overview
User:	ec2-user
Name:	Spark Pi
Application Type:	SPARK
Application Tags:	
State:	FINISHED
FinalStatus:	SUCCEEDED
Started:	4-Dec-2014 10:30:43
Elapsed:	31sec
Tracking URL:	<u>History</u>
Diagnostics:	

		Application Metrics
Total Resource Preempted: <m< th=""><th>memory:0, vCores:0></th><th></th></m<>	memory:0, vCores:0>	
Total Number of Non-AM Containers Preempted: 0)	
Total Number of AM Containers Preempted: 0)	
Resource Preempted from Current Attempt: <m< th=""><th>memory:0, vCores:0></th><th></th></m<>	memory:0, vCores:0>	
Number of Non-AM Containers Preempted from Current Attempt: 0)	
Aggregate Resource Allocation: 573	57388 MB-seconds, 45 vcore-seconds	

ApplicationMaster			
Attempt Number	Start Time	Node	Logs
1	4-Dec-2014 10:30:43	ip-10-0-72-36.us-west-2.compute.internal:8042	logs

[ec2-user@ip-10-0-72-36 ~]\$ spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode cluster --master yarn /opt/cloudera/parcels/CDH-5.2.1-1.cdh5.2.1.p0.12/jars/spark-examples-1.1.0-cdh5.2.1-hadoop2.5.0-cdh5.2.1.jar 10

App running in cluster mode



Logged in as: dr.who

App running in cluster mode

▼ Cluster

<u>About</u> <u>Nodes</u>

Applications

<u>NEW</u>

NEW SAVING

SUBMITTED ACCEPTED

RUNNING FINISHED

FAILED KILLED

Scheduler

→ Tools

Application Overview User: ec2-user Name: org.apache.spark.examples.SparkPi Application Type: SPARK **Application Tags:** State: FINISHED FinalStatus: SUCCEEDED Started: 4-Dec-2014 10:37:10 Elapsed: 43sec Tracking URL: History Diagnostics:

	Application Metrics
Total Resource Preempted:	<memory:0, vcores:0=""></memory:0,>
Total Number of Non-AM Containers Preempted:	0
Total Number of AM Containers Preempted:	0
Resource Preempted from Current Attempt:	<memory:0, vcores:0=""></memory:0,>
Number of Non-AM Containers Preempted from Current Attempt:	0
Aggregate Resource Allocation:	83705 MB-seconds, 66 vcore-seconds

ApplicationMaster			
Attempt Number	Start Time	Node	Logs
1	4-Dec-2014 10:37:10	ip-10-0-72-36.us-west-2.compute.internal:8042	logs

App running in cluster mode

1 1

ec2-54-149-62-154.us-west-2.compute.amazonaws.com:19888/jobhistory/logs/ip-10-0-72-36.us-west-2.compute.interna

Application

About Jobs

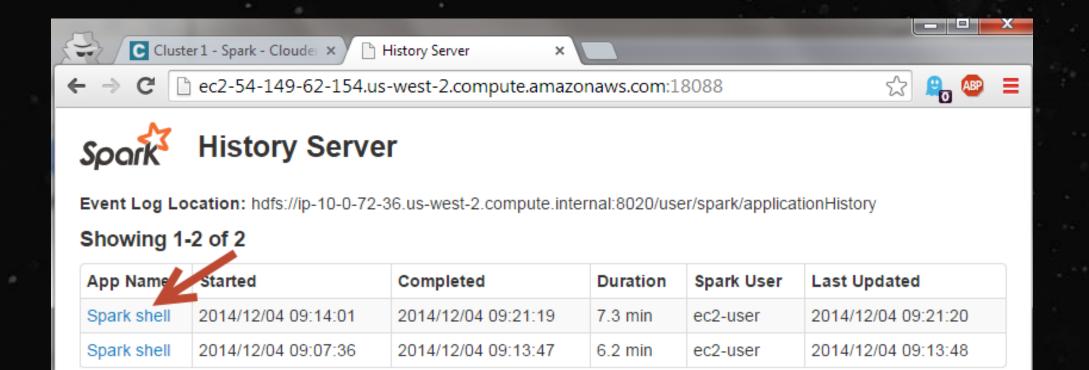
▶ Tools

Log Type: stderr Log Length: 22704

Showing 4096 bytes of 22704 total. Click here for the full log.

/.sparkStaging/application_1417641624005_0004/spark-assembly-1.1.0-cdh5.2.1-hadoop2.5.0-cdh5.2.1.jar" } size: 95571683 timestam 14/12/04 10:37:52 INFO yarn.YarnAllocationHandler: Completed container container_1417641624005_0004_01_000002 (state: COMPLETE, 14/12/04 10:37:52 INFO yarn.ExecutorRunnable: Setting up executor with environment: Map(CLASSPATH -> \$PWD: \$PWD/ spark .jar:\$H 14/12/04 10:37:52 INFO yarn.ExecutorRunnable: Setting up executor with commands: List(\$JAVA_HOME/bin/java, -server, -XX:OnOutOf 14/12/04 10:37:52 INFO impl.ContainerManagementProtocolProxy: Opening proxy: ip-10-0-72-36.us-west-2.compute.internal:8041 14/12/04 10:37:52 INFO yarn.ApplicationMaster: Allocating 1 containers to make up for (potentially) lost containers 14/12/04 10:37:52 INFO yarn. YarnAllocationHandler: Will Allocate 1 executor containers, each with 1408 memory 14/12/04 10:37:52 INFO yarn. YarnAllocationHandler: Container request (host: Any, priority: 1, capability: <memory:1408, vCores: 14/12/04 10:37:53 INFO spark.MapOutputTrackerMasterActor: MapOutputTrackerActor stopped! 14/12/04 10:37:53 INFO network.ConnectionManager: Selector thread was interrupted! 14/12/04 10:37:53 INFO network.ConnectionManager: ConnectionManager stopped 14/12/04 10:37:53 INFO storage.MemoryStore: MemoryStore cleared 14/12/04 10:37:53 INFO storage.BlockManager: BlockManager stopped 14/12/04 10:37:53 INFO storage.BlockManagerMaster: BlockManagerMaster stopped 14/12/04 10:37:53 INFO remote.RemoteActorRefProvider\$RemotingTerminator: Shutting down remote daemon. 14/12/04 10:37:53 INFO remote.RemoteActorRefProvider\$RemotingTerminator: Remote daemon shut down; proceeding with flushing remo 14/12/04 10:37:53 INFO Remoting: Remoting shut down 14/12/04 10:37:53 INFO remote.RemoteActorRefProvider\$RemotingTerminator: Remoting shut down. 14/12/04 10:37:54 INFO spark.SparkContext: Successfully stopped SparkContext 14/12/04 10:37:54 INFO yarn.ApplicationMaster: Unregistering ApplicationMaster with SUCCEEDED 14/12/04 10:37:54 INFO impl.AMRMClientImpl: Waiting for application to be successfully unregistered. 14/12/04 10:37:54 INFO yarn.ApplicationMaster: All executors have launched. 14/12/04 10:37:54 INFO yarn.ApplicationMaster: Started progress reporter thread - heartbeat interval : 5000 14/12/04 10:37:54 INFO varn.ApplicationMaster: AppMaster received a signal. 14/12/04 10:37:54 INFO yarn.ApplicationMaster: Deleting staging directory .sparkStaging/application_1417641624005_0004 14/12/04 10:37:54 INFO yarn.ApplicationMaster\$\$anon\$1: Invoking sc stop from shutdown hook 14/12/04 10:37:54 INFO ui.SparkUI: Stopped Spark web UI at http://ip-10-0-72-36.us-west-2.compute.internal:41025 14/12/04 10:37:54 INFO spark.SparkContext: SparkContext already stopped

Log Type: stdout Log Length: 23 Pi is roughly 3.142392



PLUGGABLE RESOURCE MANAGEMENT

	Spark Central Master	Who starts Executors?	Tasks run in
Local	[none]	Human being	Executor
Standalone	Standalone Master	Worker JVM	Executor
YARN	YARN App Master	Node Manager	Executor
Mesos	Mesos Master	Mesos Slave	Executor

DEPLOYING AN APP TO THE CLUSTER

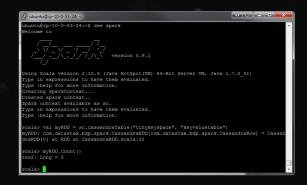
spark-submit provides a uniform interface for submitting jobs across all cluster managers

Table 7-2. Possible values for the --master flag in spark-submit

Value	Explanation
spark://host:port	Connect to a Spark Standalone master at the specified port. By default Spark Standalone master's listen on port 7077 for submitted jobs.
mesos:// host:port	Connect to a Mesos cluster master at the specified port. By default Mesos masters listen on port 5050 for submitted jobs.
yarn	Indicates submission to YARN cluster. When running on YARN you'll need to export HADOOP_CONF_DIR to point the location of your Hadoop configuration directory.
local	Run in local mode with a single core.
local[N]	Run in local mode with N cores.
local[*]	Run in local mode and use as many cores as the machine has.

PySpark at a Glance

Write Spark jobs in Python

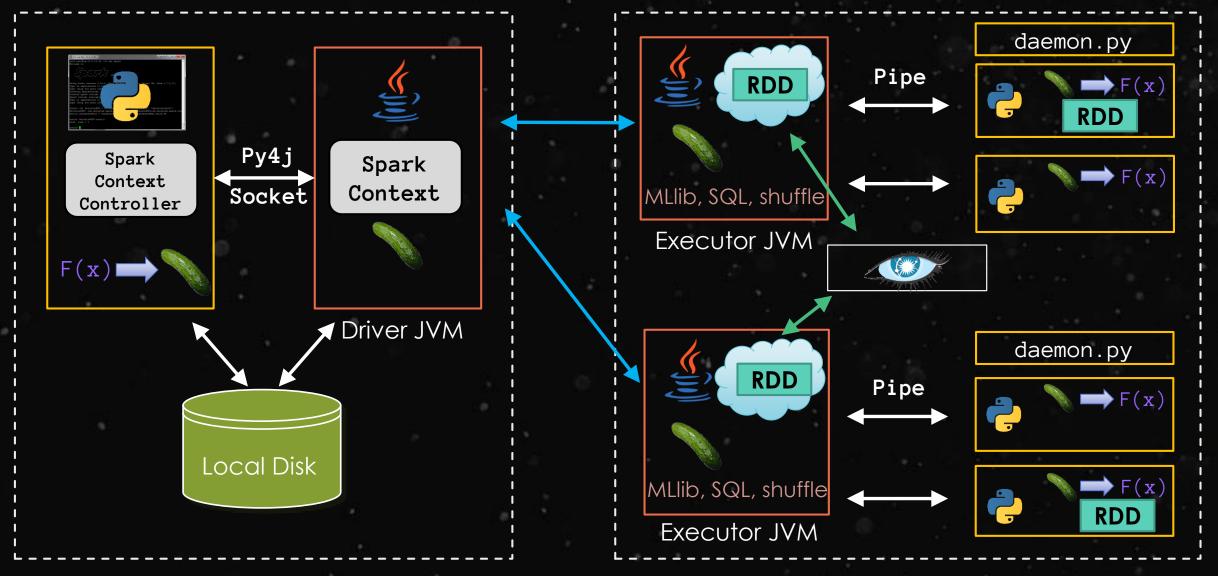


Run interactive jobs in the shell

Supports C extensions

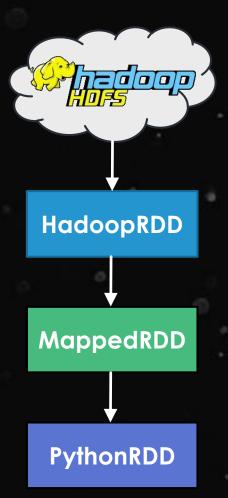
41 files 8,100 loc 6,300 comments PySpark Java API Spark Core Engine (Scala) Standalone Scheduler YARN Local Mesos

PYSPARK ARCHITECTURE



Driver Machine

Worker Machine

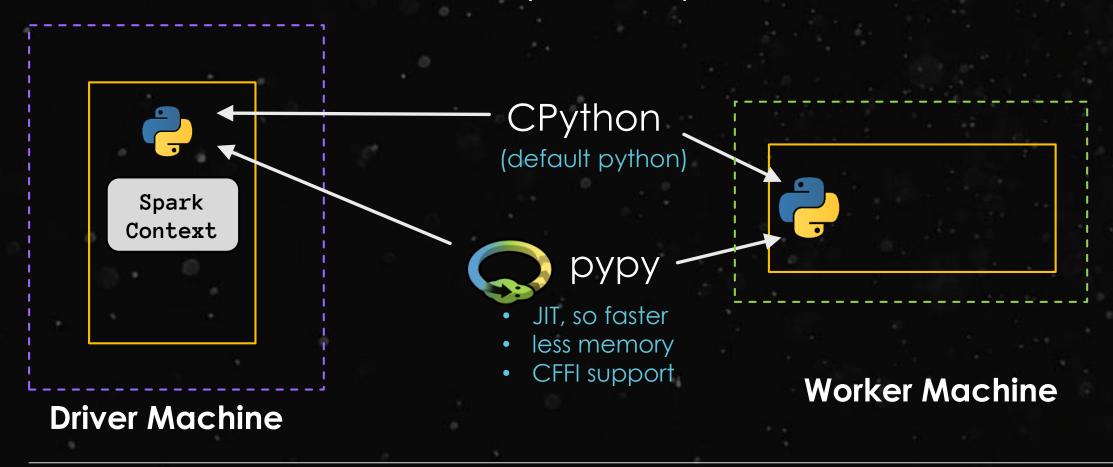


Data is stored as Pickled objects in an RDD[Array[Byte]]

RDD[Array[

(100 KB – 1MB each picked object)

Choose Your Python Implementation



\$ PYSPARK_DRIVER_PYTHON=pypy PYSPARK_PYTHON=pypy ./bin/pyspark
OR

\$ PYSPARK_DRIVER_PYTHON=pypy PYSPARK_PYTHON=pypy ./bin/spark-submit wordcount.py

The performance speed up will depend on work load (from 20% to 3000%).

Here are some benchmarks:

Job	CPython 2.7	PyPy 2.3.1	Speed up
Word Count	41 s	15 s	2.7 x
Sort	46 s	44 s	1.05 x
Stats	174 s	3.6 s	48 x

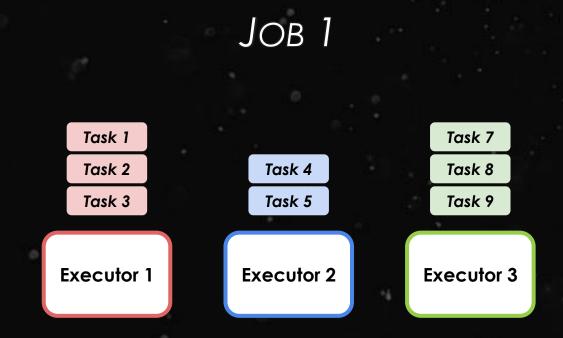
Here is the code used for benchmark:

```
rdd = sc.textFile("text")
def wordcount():
    rdd.flatMap(lambda x:x.split('/'))\
        .map(lambda x:(x,1)).reduceByKey(lambda x,y:x+y).collectAsMap()
def sort():
    rdd.sortBy(lambda x:x, 1).count()
def stats():
    sc.parallelize(range(1024), 20).flatMap(lambda x: xrange(5024)).stats()
```

https://github.com/apache/spark/pull/2144

spark.python.worker.memory 512m Amount of memory to use per python worker process during aggregation, in the same format as JVM memory strings (e.g. 512m, 2g). If the memory used during aggregation goes above this amount, it will spill the data into disks.

EXECUTION MODEL IN Spark

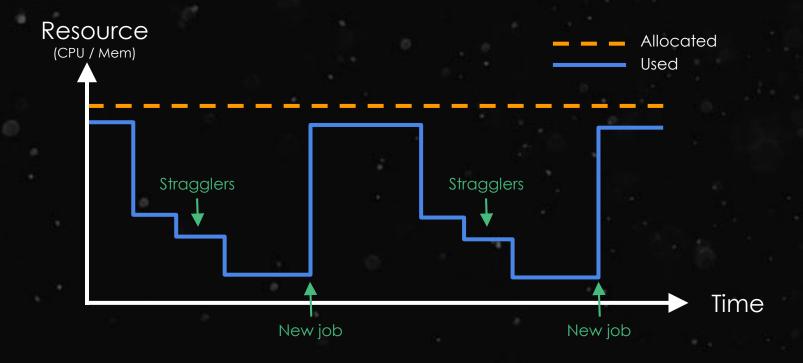


In Spark, each executor is long-running and runs many small tasks

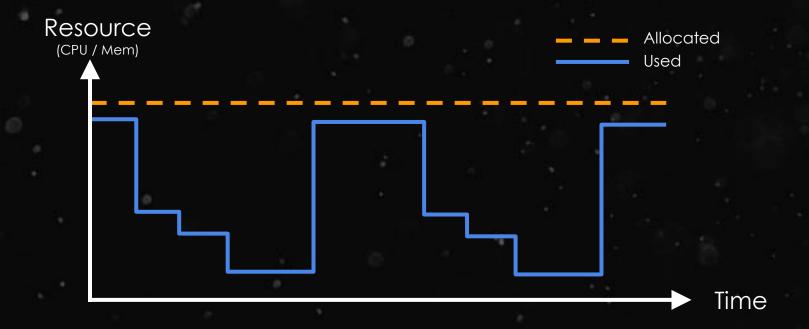
HADOOP MAPREDUCE

In MapReduce, each container is short-lived and runs one large task

STATIC RESOURCE ALLOCATION

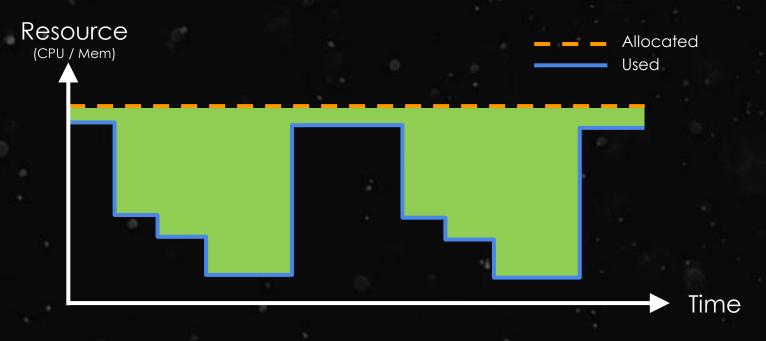


STATIC RESOURCE ALLOCATION



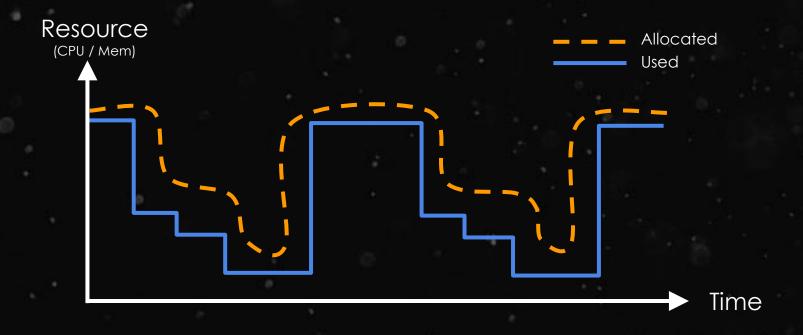
More resources allocated than used...

STATIC RESOURCE ALLOCATION



More resources allocated than used

DYNAMIC RESOURCE ALLOCATION



More efficient utilization of cluster resources

DYNAMIC RESOURCE ALLOCATION

Each Spark application scales the number of executors up and down based on workload

- If executors are idle, remove them
- If we need more executors, request them

DYNAMIC ALLOCATION

```
spark.dynamicAllocation.enabled
spark.dynamicAllocation.minExecutors
spark.dynamicAllocation.maxExecutors
spark.dynamicAllocation.sustainedSchedulerBacklogTimeout (N)
spark.dynamicAllocation.schedulerBacklogTimeout (M)
spark.dynamicAllocation.executorIdleTimeout (K)
```

DYNAMIC ALLOCATION USE CASES

LONG-RUNNING ETL JOBS

E.G. PARSING JSON INTO PARQUET IN \$3

INTERACTIVE APPLICATIONS / SERVER

E.G. Spark shell, Ooyala job server

ANY APPLICATION WITH LARGE SHUFFLES

CASE STUDY

- 100 TB cluster with 1500+ nodes
- 15+ PB S3 warehouse (7 PB Parquet)
- Dynamic allocation with up to 10,000 executors
- Enabled dynamic allocation for all Spark applications*
- Run Spark alongside Hive, Pig, MapReduce
- Used for ad-hoc query and experimentation

CASE STUDY

- 400+ TB cluster with 8,000+ nodes
- 150 PB data warehouse
- Use dynamic allocation with up to 1,500 executors
- Primary use cases are ETL and SQL
- Run Spark alongside Storm, MapReduce, Pig.

DYNAMIC ALLOCATION: FUTURE

• Support for Mesos mode SPARK-4922 (PR ready)

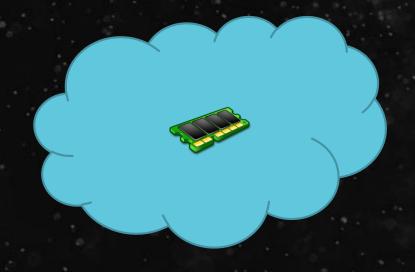
• Support for Standalone mode SPARK-4751 (PR soon)

Better support for caching SPARK-7955 (PR ready)

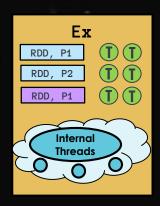
Pluggable scaling heuristics

WHO IS USING DYNAMIC ALLOCATION?

NETFLIX cloudera®



MEMORY AND PERSISTENCE

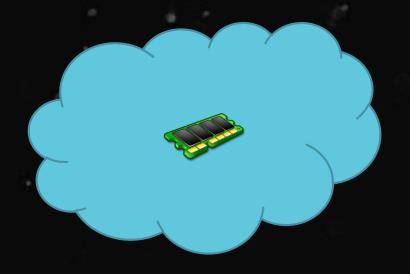


Recommended to use at most only 75% of a machine's memory for Spark

Minimum Executor heap size should be 8 GB

Max Executor heap size depends... maybe 40 GB (watch GC)

Memory usage is greatly affected by storage level and serialization format



Vs.





RDD.cache() == RDD.persist(MEMORY_ONLY)

most CPU-efficient option

Stages

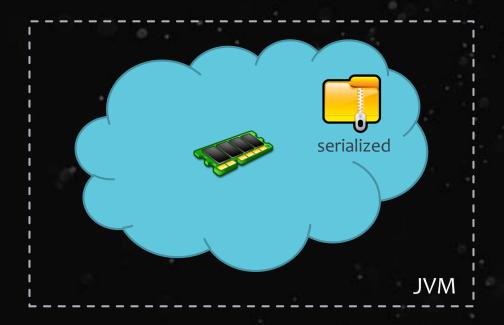
Storage

Environment Executors

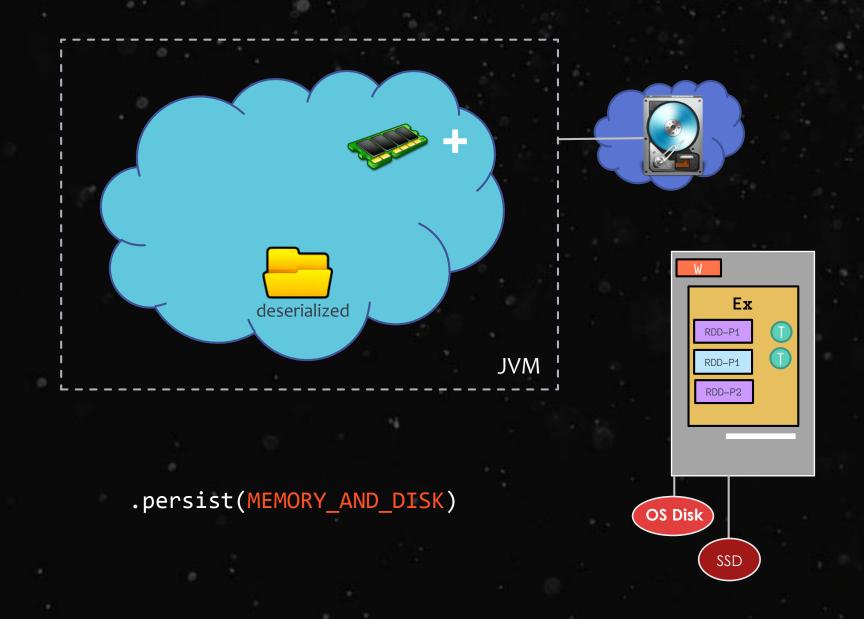
Spark shell application UI

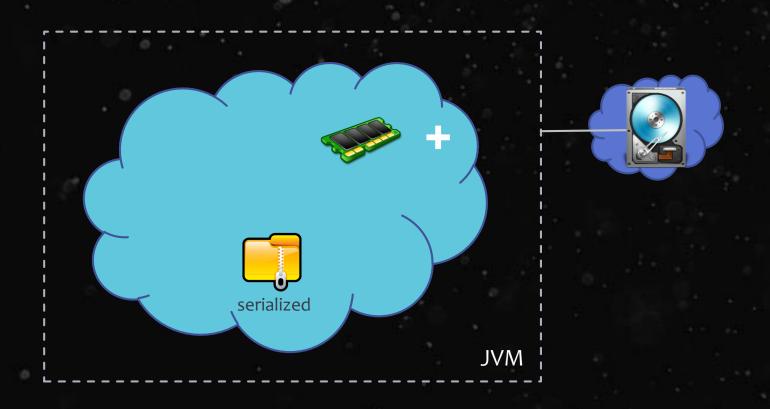
Storage

RDD Name	Storage Level	Cached Partitions	Fraction Cached	Size in Memory	Size on Disk
0	Memory Deserialized 1x Replicated	2	100%	55.6 KB	0.0 B

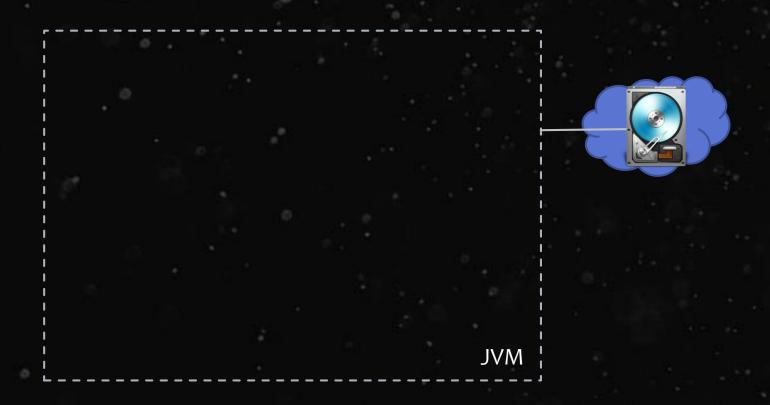


RDD.persist(MEMORY_ONLY_SER)



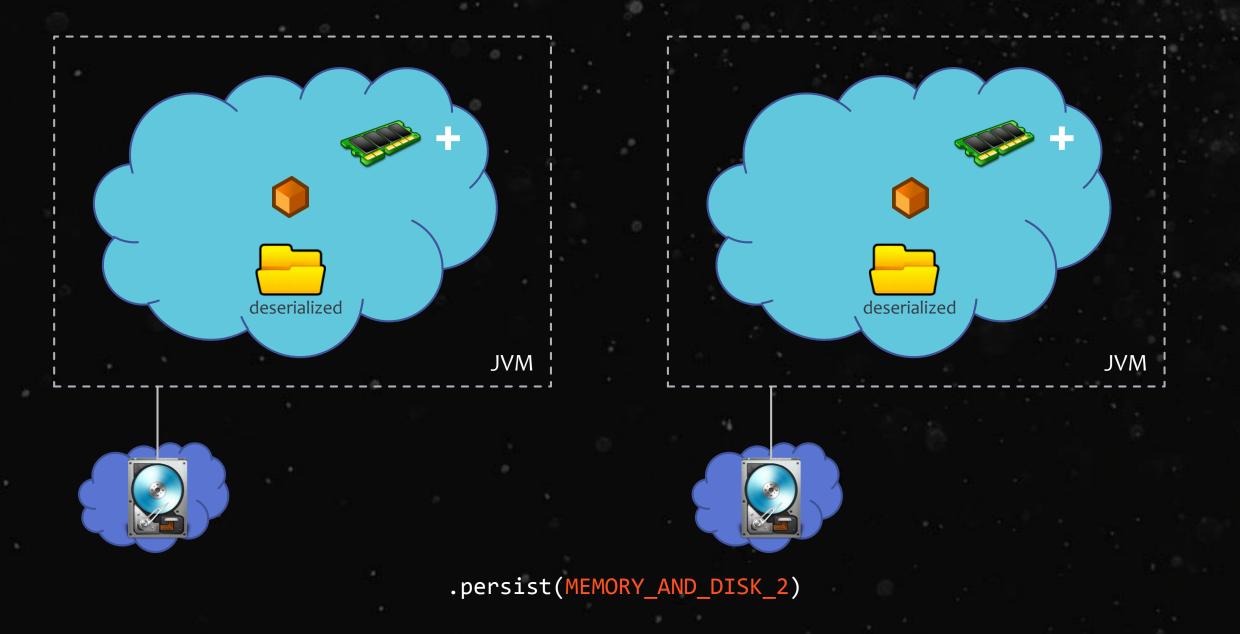


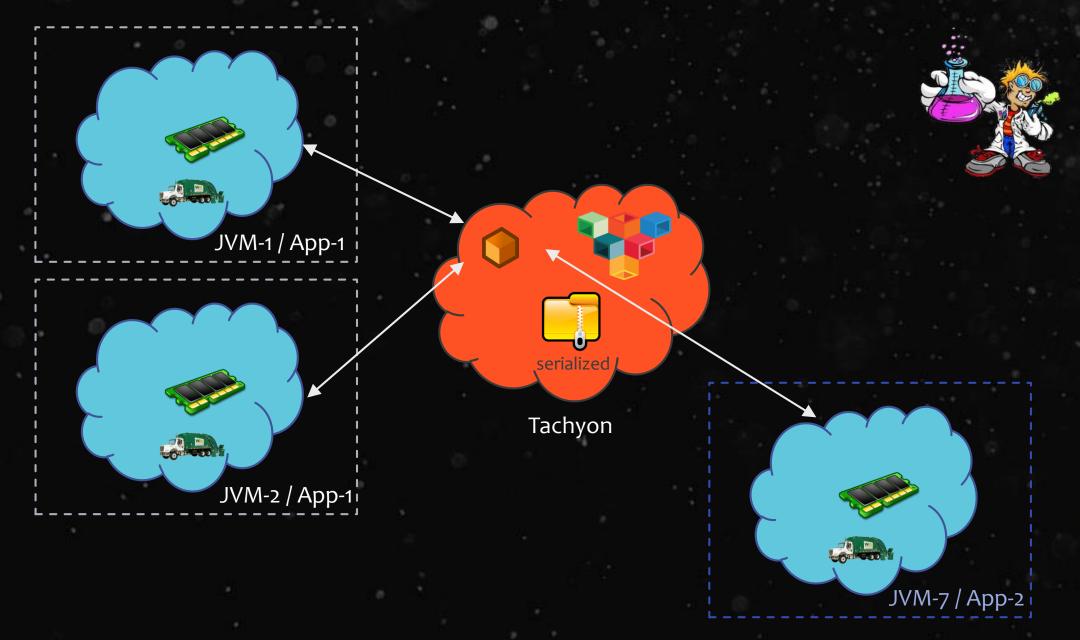
.persist(MEMORY_AND_DISK_SER)



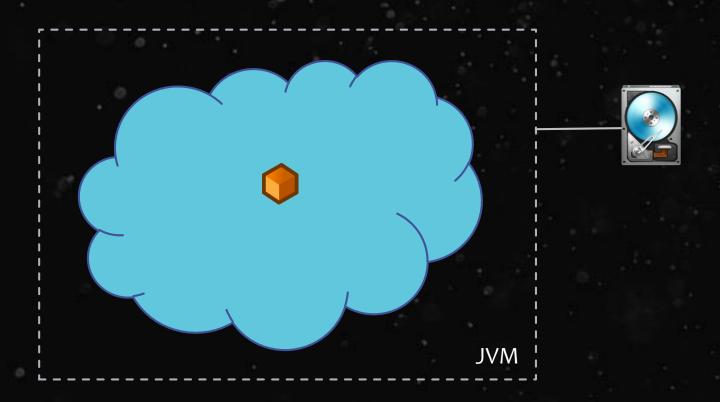
.persist(DISK_ONLY)

RDD.persist(MEMORY_ONLY_2)





.persist(OFF_HEAP)



.unpersist()

Persistence	description
MEMORY_ONLY	Store RDD as deserialized Java objects in the JVM
MEMORY_AND_DISK	Store RDD as deserialized Java objects in the JVM and spill to disk
MEMORY_ONLY_SER	Store RDD as serialized Java objects (one byte array per partition)
MEMORY_AND_DISK_SER	Spill partitions that don't fit in memory to disk instead of recomputing them on the fly each time they're needed
DISK_ONLY	Store the RDD partitions only on disk
MEMORY_ONLY_2, MEMORY_AND_DISK_2	Same as the levels above, but replicate each partition on two cluster nodes
OFF_HEAP	Store RDD in serialized format in Tachyon

PROJECT TUNGSTEN

Bringing Spark Closer to Bare Metal

Project Tungsten will be the largest change to Spark's execution engine since the project's inception.

TLDR:

Problem #1:

- "abcd" takes 4 bytes to store in UTF-8, but JVM takes 48 bytes to store it

Problem #2:

- JVM cannot be as smart as Spark to manage GC b/c Spark knows more about life cycle of memory blocks

Solution:

- Manage memory with Spark using JVM internal API sun.misc.Unsafe, to directly manipulate memory without safety checks (hence "unsafe")

PROJECT TUNGSTEN

Bringing Spark Closer to Bare Metal

Project Tungsten will be the largest change to Spark's execution engine since the project's inception.

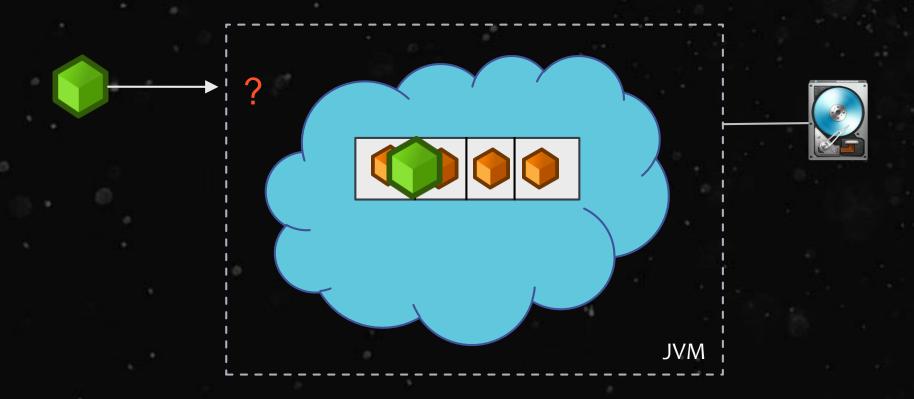
TLDR:

Problem:

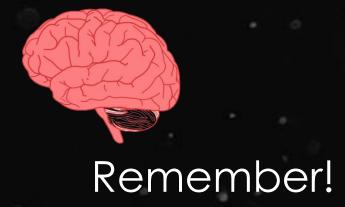
- A large fraction of CPU time is spent waiting for data to be fetched from main memory

Solution:

- Use cache-aware computation to improve speed of data processing via L1/L2/L3 CPU caches



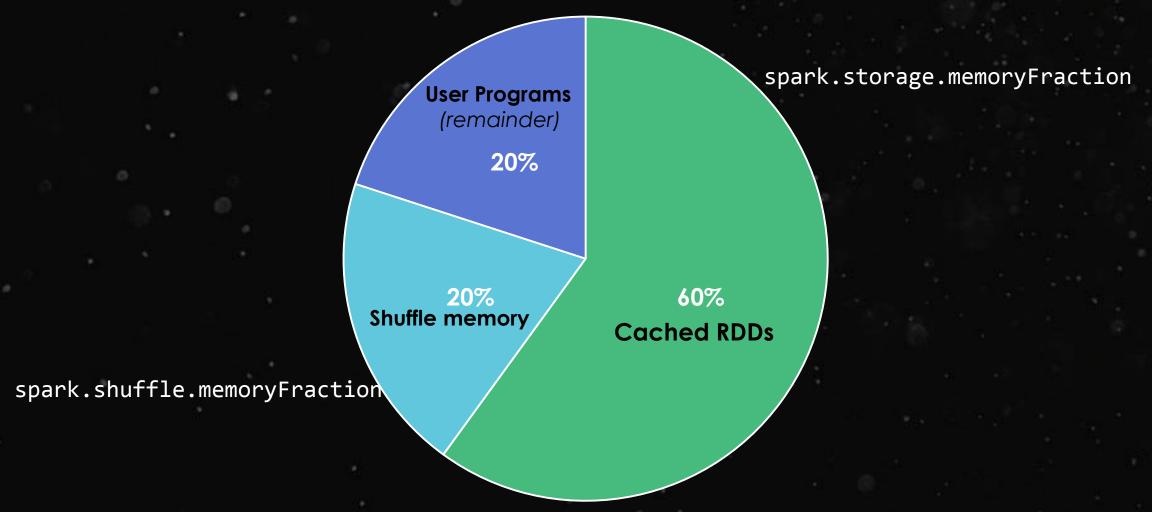
- If RDD fits in memory, choose MEMORY_ONLY
- If not, use MEMORY_ONLY_SER w/ fast serialization library
- Don't spill to disk unless functions that computed the datasets are very expensive or they filter a large amount of data. (recomputing may be as fast as reading from disk)
- Use replicated storage levels sparingly and only if you want fast fault recovery (maybe to serve requests from a web app)



Intermediate data is automatically persisted during shuffle operations

PySpark: stored objects will always be serialized with Pickle library, so it does not matter whether you choose a serialized level.

Default Memory Allocation in Executor JVM





Spark uses memory for:

RDD Storage: when you call .persist() or .cache(). Spark will limit the amount of memory used when caching to a certain fraction of the JVM's overall heap, set by spark.storage.memoryFraction

Shuffle and aggregation buffers: When performing shuffle operations, Spark will create intermediate buffers for storing shuffle output data. These buffers are used to store intermediate results of aggregations in addition to buffering data that is going to be directly output as part of the shuffle.

User code: Spark executes arbitrary user code, so user functions can themselves require substantial memory. For instance, if a user application allocates large arrays or other objects, these will content for overall memory usage. User code has access to everything "left" in the JVM heap after the space for RDD storage and shuffle storage are allocated.

DETERMINING MEMORY CONSUMPTION

- 1. Create an RDD
- 2. Put it into cache
- 3. Look at SparkContext logs on the driver program or Spark UI

logs will tell you how much memory each partition is consuming, which you can aggregate to get the total size of the RDD

INFO BlockManagerMasterActor: Added rdd_0_1 in memory on mbk.local:50311 (size: 717.5 KB, free: 332.3 MB)

DATA SERIALIZATION

Serialization is used when:

SERIALIZATION

Transferring data over the network

Spilling data to disk

Caching to memory serialized

Broadcasting variables

Java serialization

Kryo serialization

- Uses Java's ObjectOutputStream framework
- Works with any class you create that implements java.io.Serializable
- You can control the performance of serialization more closely by extending java.io.Externalizable
- Flexible, but quite slow
- Leads to large serialized formats for many classes

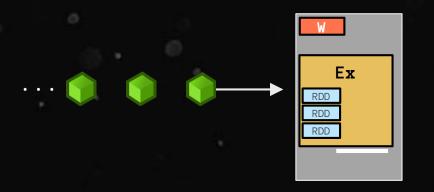
- Recommended serialization for production apps
- Use Kyro version 2 for speedy serialization (10x) and more compactness
- Does not support all Serializable types
- Requires you to register the classes you'll use in advance
- If set, will be used for serializing shuffle data between nodes and also serializing RDDs to disk

conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

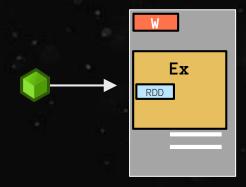
To register your own custom classes with Kryo, use the registerKryoClasses method:

```
val conf = new SparkConf().setMaster(...).setAppName(...)
conf.registerKryoClasses(Seq(classOf[MyClass1], classOf[MyClass2]))
val sc = new SparkContext(conf)
```

- If your objects are large, you may need to increase spark.kryoserializer.buffer.mb config property
- The default is 2, but this value needs to be large enough to hold the *largest* object you will serialize.

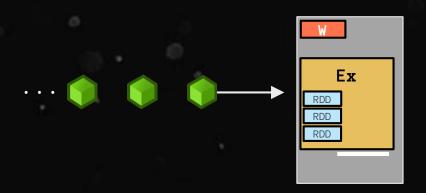


High churn



Low churn

TUNING FOR Spark



Cost of GC is proportional to the # of Java objects

(so use an array of Ints instead of a LinkedList)

High churn

To measure GC impact:

-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps

TUNING

Parallel GC

- -XX:+UseParallelGC
- -XX:ParallelGCThreads=<#>
- Uses multiple threads to do young gen GC
- Will default to Serial on single core machines
- Aka "throughput collector"
- Good for when a lot of work is needed and long pauses are acceptable
- Use cases: batch processing

Parallel Old GC

-XX:+UseParallelOldGC

- Uses multiple threads to do both young gen and old gen GC
- Also a multithreading compacting collector
- HotSpot does compaction only in old gen

CMS GC

- -XX:+UseConcMarkSweepGC
- -XX:ParallelCMSThreads=<#>
- Concurrent Mark Sweep aka "Concurrent low pause collector"
- Tries to minimize
 pauses due to GC by
 doing most of the work
 concurrently with
 application threads
- Uses same algorithm on young gen as parallel collector
- Use cases:

G1 GC

-XX:+UseG1GC

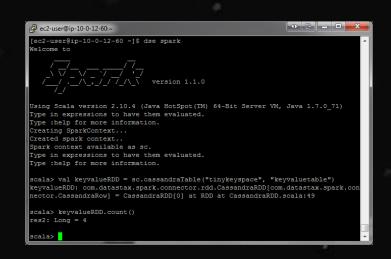
- Garbage First is available starting Java 7
- Designed to be long term replacement for CMS
- Is a parallel, concurrent and incrementally compacting low-pause GC

JOBS → STAGES → TASKS

The key to tuning spark apps is a sound grasp of Spark's internal mechanisms

How does a user program get translated into units of physical execution?

application -> jobs, stages, tasks



Scheduling Mode: FIFO Active Stages: 0 Completed Stages: 12 Failed Stages: 0													
Active Stages (0)													
Stage Id	Description	Submitted Durat		ion Tasks: Succ		eeded/Total		Shuffle Read		Shuffle Write			
Complete	d Stages (12)												
Stage Id Description				Submitted		Duration	Tasks: Succeede	ed/Total	Shuffle Read		Shuffle Write		
10	select count(*) from pokes_cache runJob at FileSinkOperator.scala:187			2014/04/05 20:06:25		595 ms							
11	select count(*) from pokes_cache mapPartitionsWithIndex at Operator.scala:333			2014/04/05 20:06:25		476 ms					29.0 B		
8	select count(*) from pokes runJob at FileSinkOperator.scala:187			2014/04/05 20:06:22		313 ms	313 ms						
9	select count(*) from pokes mapPartitionsWithIndex at Operator.scala:333			2014/04/05 20:06:21		618 ms	618 ms				20.0 B		
6	select count(*) from pokes_cache runJob at FileSinkOperator.scala:187			2014/04/05 20:06:15		209 ms	209 ms						
7	select count(*) from pokes_cache mapPartitionsWithIndex at Operator.scala:333		2014/04/05 20:06:14		346 ms	346 ms				29.0 B			
4	select count(*) from pokes_cache runJob at FileSinkOperator.scala:187		2014/04/05	20:06:12	256 ms								

RDD API EXAMPLE


```
INFO Server started
INFO Bound to port 8080
```

WARN Cannot find srv.conf

input.txt

```
// Read input file
val input = sc.textFile("input.txt")

val tokenized = input
   .map(line => line.split(" "))
   .filter(words => words.size > 0) // remove empty lines

val counts = tokenized // frequency of log levels
   .map(words => (words(0), 1))
   .reduceByKey{ (a, b) => a + b, 2 }
```

RDD API EXAMPLE

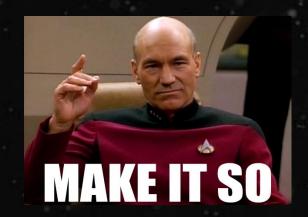
TRANSFORMATIONS

```
sc.textFile().map().filter().map().reduceByKey()
```

DAG VIEW OF RDDS

input tokenized counts

EVALUATION OF THE DAG



DAG's are materialized through a method sc.runJob:

```
def runJob[T, U](
    rdd: RDD[T],
    partitions: Seq[Int],
    func: (Iterator[T]) => U))
: Array[U]
```

- 1. RDD to compute
- 2. Which partitions
- 3. Fn to produce results→ results for each part.

HOW RUNJOB WORKS

input

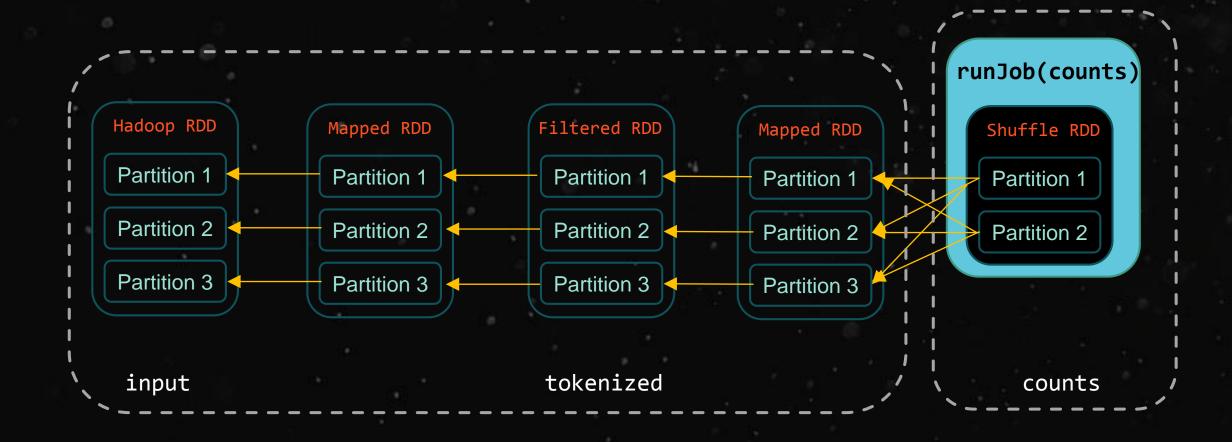
Needs to compute my parents, parents, parents, etc all the way back to an RDD with no dependencies (e.g. HadoopRDD).

tokenized

counts

HOW RUNJOB WORKS

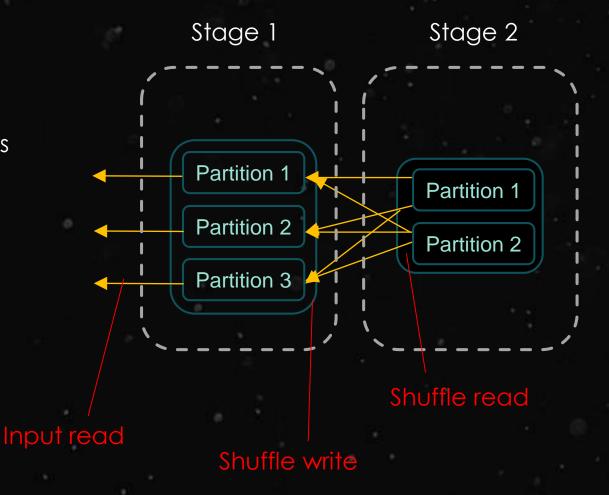
Needs to compute my parents, parents, parents, etc all the way back to an RDD with no dependencies (e.g. HadoopRDD).



STAGE GRAPH

Each task will:

- 1) Read Hadoop input
- 2) Perform maps & filters
- 3) Write partial sums



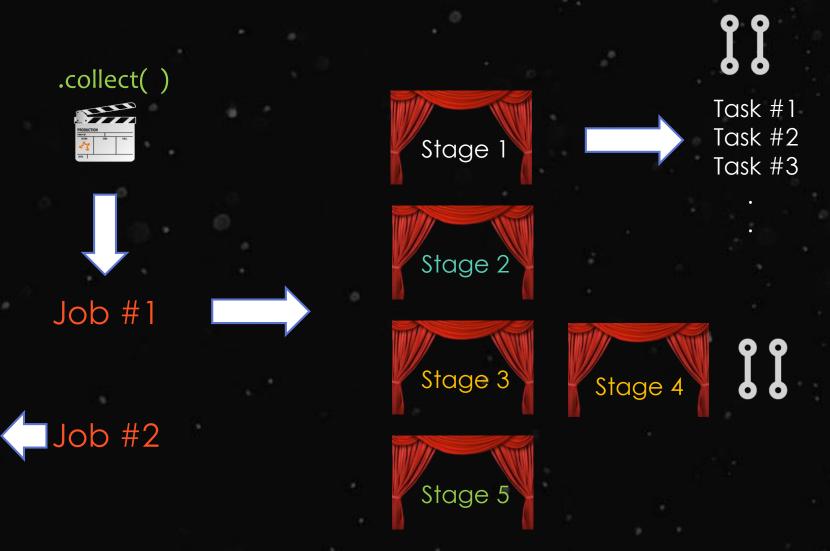
Each task will:

- 1) Read partial sums
- 2) Invoke user function passed to runJob

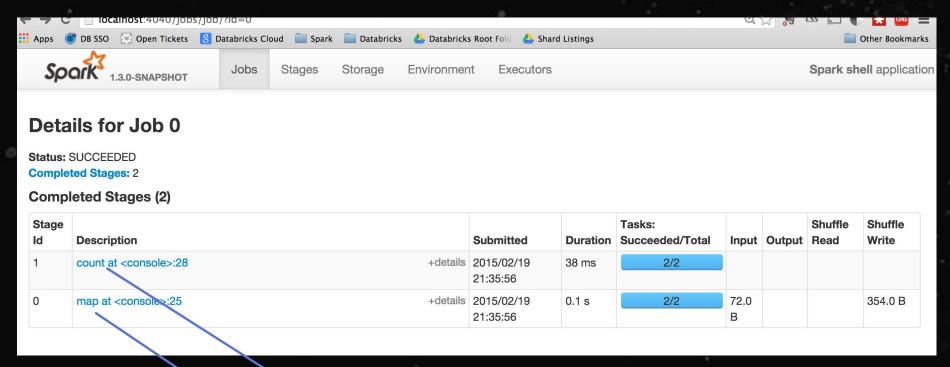
```
scala> counts.toDebugString
res84: String =
(2) ShuffledRDD[296] at reduceByKey at <console>:17
+-(3) MappedRDD[295] at map at <console>:17
     FilteredRDD[294] at filter at <console>:15
    MappedRDD[293] at map at <console>:15
    input.text MappedRDD[292] at textFile at <console>:13
     input.text HadoopRDD[291] at textFile at <console>:13
```

(indentations indicate a shuffle boundary)

UNITS OF PHYSICAL EXECUTION



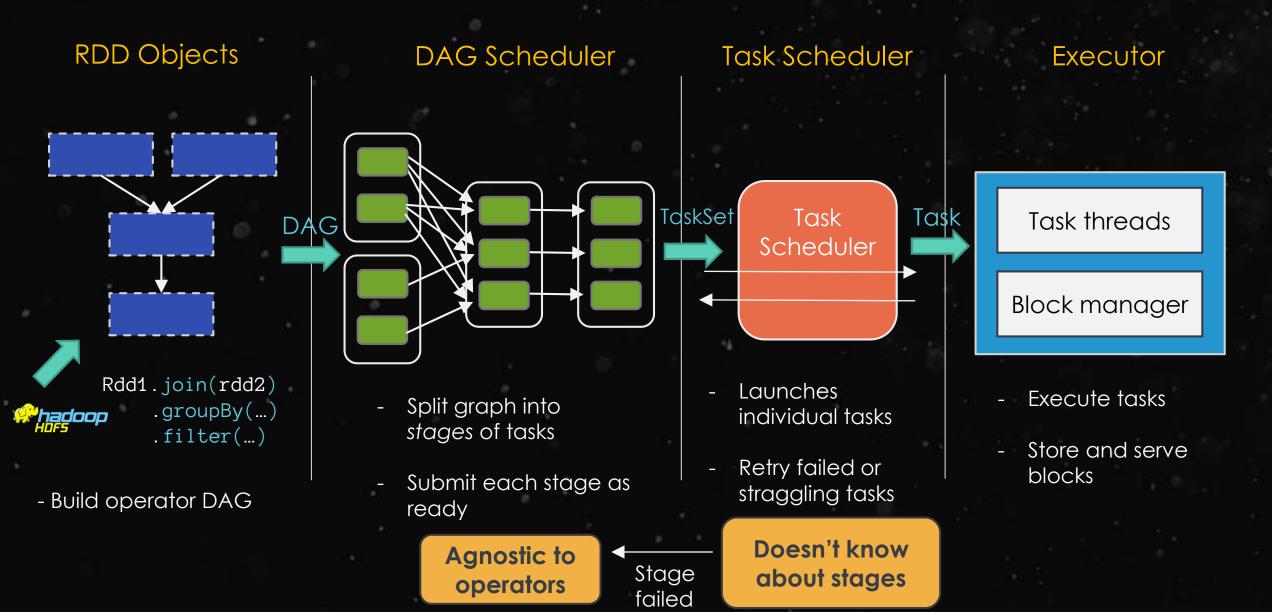
PUTTING IT ALL TOGETHER



Named after action calling runJob

Named after last RDD in pipeline

SCHEDULING PROCESS



Event timeline all jobs page

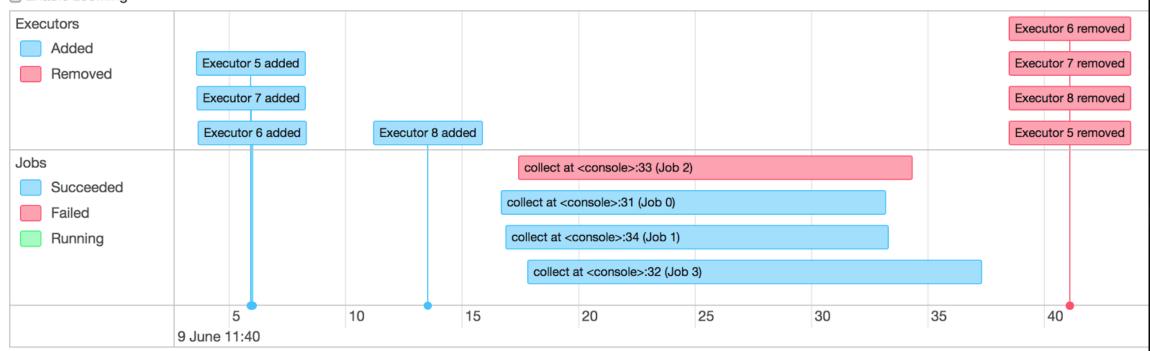
Spark Jobs (?)

Total Uptime: 2.2 min Scheduling Mode: FIFO Completed Jobs: 3

Failed Jobs: 1

▼ Event Timeline

✓ Enable zooming



Event timeline within 1 job

Details for Job 1 Status: SUCCEEDED **Completed Stages: 5 ▼** Event Timeline Enable zooming **Executors** Added Removed collect at <console>:34 (Stage 12.0) Status: SUCCEEDED Submitted: 2015/06/09 18:56:07 Stages map at <console>:24 (Stage 8.0) Completed: 2015/06/09 18:56:07 Completed map at <console>:24 (Stage 9.0) Failed map at <console>:24 (Stage 11.0) Active 50 55 5 10 9 June 11:55 9 June 11:56

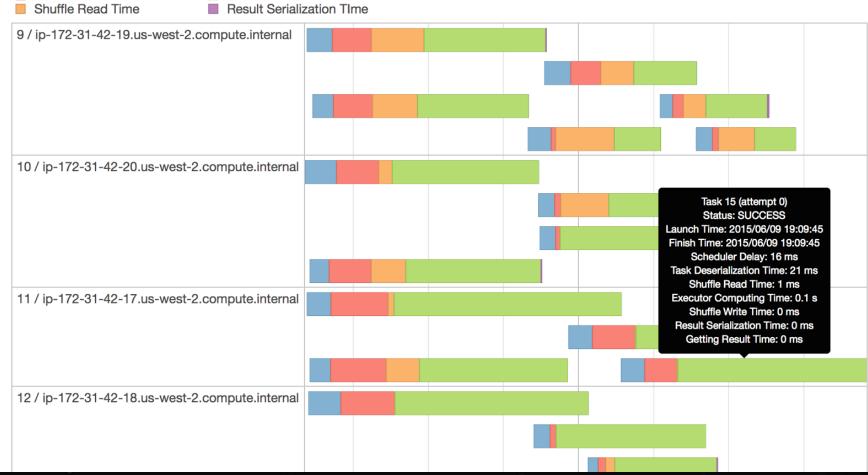
Event timeline within 1 stage

Details for Stage 11 (Attempt 0)

Total Time Across All Tasks: 2 s **Shuffle Read:** 200.2 KB / 13839

- ▶ DAG Visualization
- ▶ Show Additional Metrics
- ▼ Event Timeline
- Enable zooming
- Scheduler DelayTask Deserialization Time
- Executor Computing TimeShuffle Write Time

Getting Result Time

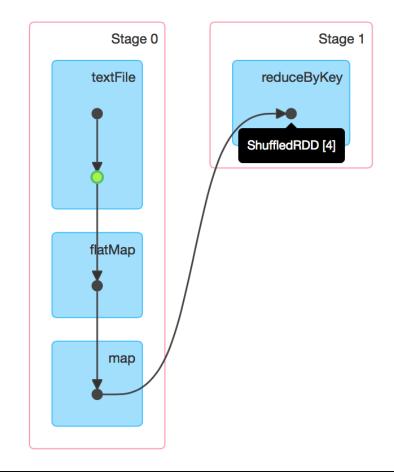



```
sc.textFile("blog.txt")
.cache()
.flatMap { line => line.split(" ") }
.map { word => (word, 1) }
.reduceByKey { case (count1, count2) => count1 + count2 }
.collect()
```

Details for Job 0

Status: SUCCEEDED **Completed Stages:** 2

- **▶** Event Timeline
- **▼ DAG Visualization**



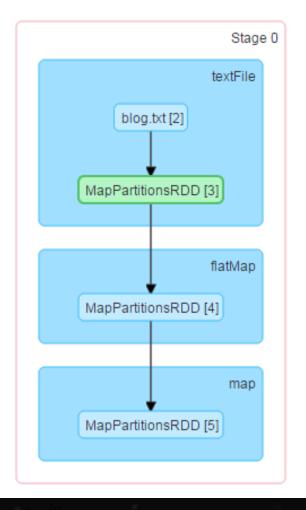
Details for Stage 0 (Attempt 0)

Total Time Across All Tasks: 22 s

Input Size / Records: 195.4 MB / 2668833

Shuffle Write: 13.4 KB / 1318

▼ DAG Visualization



Summary Metrics for 2 Completed Tasks

Metric	Min	25th percentile	Median	75th percentile	Max	
Duration	11 s					
Scheduler Delay	44 ms	44 ms	68 ms	68 ms	68 ms	
Task Deserialization Time	0.6 s					
GC Time	0.8 s	0.8 s	0.9 s	0.9 s	0.9 s	
Result Serialization Time	1 ms					
Getting Result Time	0 ms					
Input Size / Records	97.7 MB / 1334407	97.7 MB / 1334407	97.7 MB / 1334426	97.7 MB / 1334426	97.7 MB / 1334426	
Shuffle Write Size / Records	6.7 KB / 659					

Aggregated Metrics by Executor

Executor ID	Address	Task Time	Total Tasks	Failed Tasks	Succeeded Tasks	Input Size / Records	Shuffle Write Size / Records		
1	ip-172-31-42-18.us-west-2.compute.internal:42607	12 s	1	0	1	97.7 MB / 1334407	6.7 KB / 659		
2	ip-172-31-42-16.us-west-2.compute.internal:53299	12 s	1	0	1	97.7 MB / 1334426	6.7 KB / 659		

Tasks

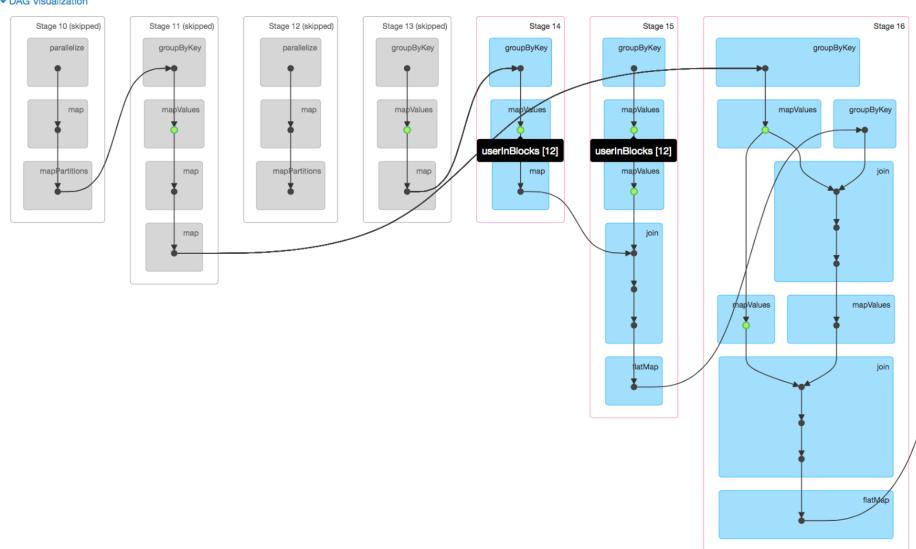
Index	ID	Attempt		Locality Level	Executor ID / Host	Launch Time	Duration		Task Deserialization Time	GC Time	Result Serialization Time	Getting Result Time	Input Size / Records		Shuffle Write Size / Records	Errors
0	0	0	SUCCESS	NODE_LOCAL		2015/06/13 22:34:09	11 s	68 ms	0.6 s	0.8 s	1 ms	0 ms	97.7 MB (hadoop) / 1334426	1 ms	6.7 KB / 659	
1	1	0	SUCCESS	RACK_LOCAL		2015/06/13 22:34:13	11 s	44 ms	0.6 s	0.9 s	1 ms	0 ms	97.7 MB (hadoop) / 1334407	1 ms	6.7 KB / 659	

DAG Visualization for ALS

Details for Job 4

Status: SUCCEEDED Completed Stages: 22 Skipped Stages: 4

- Event Timeline
- ▼ DAG Visualization

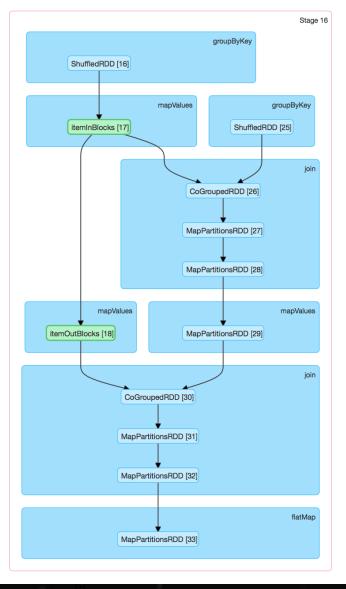


DAG Visualization for ALS (stage page)

Details for Stage 16 (Attempt 0)

Total Time Across All Tasks: 0.1 s Input Size / Records: 1088.0 B / 4 Shuffle Read: 3.2 KB / 16 Shuffle Write: 3.2 KB / 16

▼ DAG Visualization

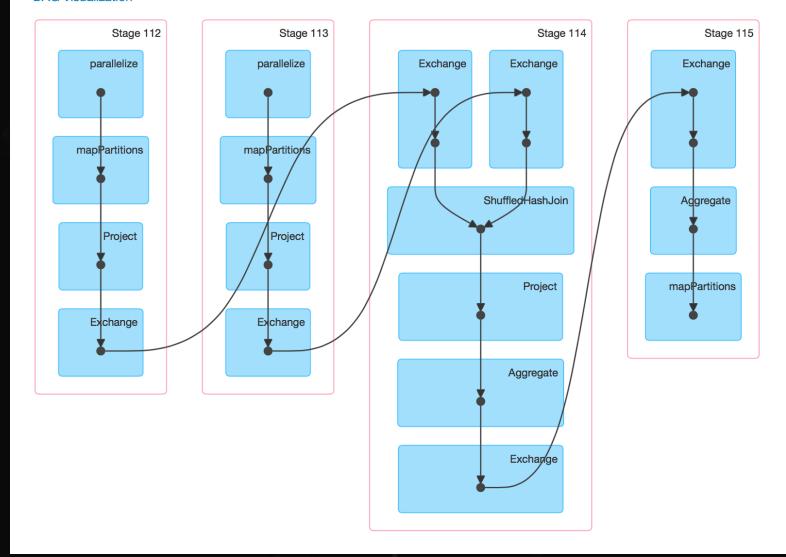


DAG Visualization for SQL broadcast join

Details for Job 8

Status: SUCCEEDED
Completed Stages: 4

- ▶ Event Timeline
- ▼ DAG Visualization



LINEAGE



Figure 1: Lineage graph for the third query in our example. Boxes represent RDDs and arrows represent transformations.

```
lines = spark.textFile("hdfs://...")
errors = lines.filter(_.startsWith("ERROR"))
errors.persist()
```

Resilient Distributed Datasets: A Fault-Tolerant Abstruction

Metri Zaharis, Moshard Chowdisoy, Tathapata Das, Ankor Dave, It Marake McCaules, Michael J. Branklin, Scott Shenket, Ion So

Abdition!
We present Excited Described Disserts IEEE to be seen of the programme from the memory administrate that the programme from the memory computations to highly closed Last Sederal common EEEE are meta-and by the Last Sederal common EEEE are meta-and by the Last Sederal Common EEEE are meta-and by the Last Sederal Common EEEE are meta-and to the confidence of common EEEE are meta-and to the confidence and the confidence and the confidence are memory operations to be used or of men and the confidence and the confidence are to the order of men and the confidence are to the order of men and the confidence are to the order of men and the confidence are to the order of men and the confidence are to the order of men and the confidence are to the order of men and the confidence are to the order of men and the confidence are to the order of men and the confidence are to the order of men and the confidence are to the confidence are the confidence are

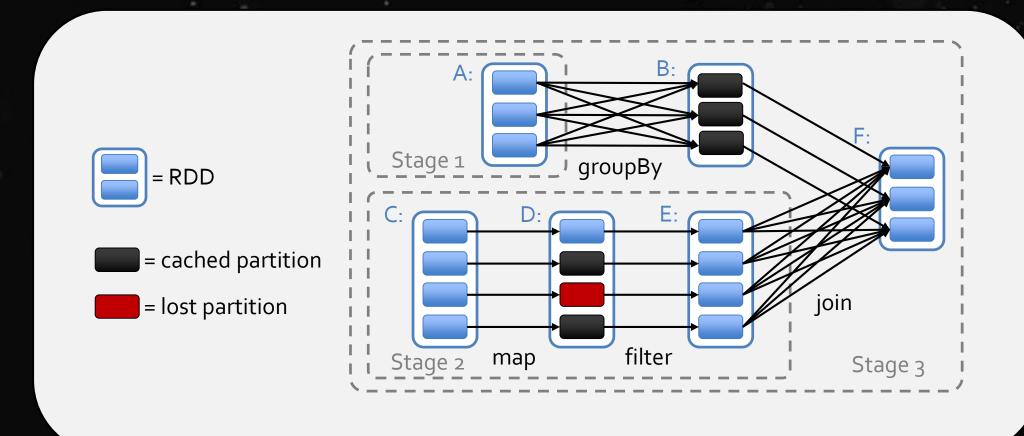
An extraction of the contract of the contract

which do not require. To have implementable that are desirable to the control of begin duties to be considered by the sixth section being it seems?

**Enriche that the control of the con

Note: Similar phenolomy in the comment mengal Note: Similar phenolomy in the comment of the comm

STAGES



LINEAGE

Dependencies: Narrow vs Wide

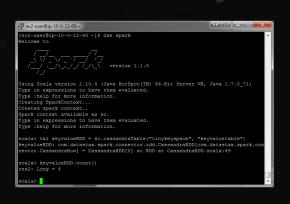
"This distinction is useful for two reasons:

1) Narrow dependencies allow for pipelined execution on one cluster node, which can compute all the parent partitions. For example, one can apply a map followed by a filter on an element-by-element basis.

In contrast, wide dependencies require data from all parent partitions to be available and to be shuffled across the nodes using a MapReduce-like operation.

2) Recovery after a node failure is more efficient with a narrow dependency, as only the lost parent partitions need to be recomputed, and they can be recomputed in parallel on different nodes. In contrast, in a lineage graph with wide dependencies, a single failed node might cause the loss of some partition from all the ancestors of an RDD, requiring a complete re-execution."

To display the lineage of an RDD, Spark provides a toDebugString method:



scala> input.toDebugString

res85: String =

```
(2) data.text MappedRDD[292] at textFile at <console>:13
  | data.text HadoopRDD[291] at textFile at <console>:13

scala> counts.toDebugString
res84: String =
(2) ShuffledRDD[296] at reduceByKey at <console>:17
  +-(2) MappedRDD[295] at map at <console>:17
  | FilteredRDD[294] at filter at <console>:15
  | MappedRDD[293] at map at <console>:15
  | data.text MappedRDD[292] at textFile at <console>:13
  | data.text HadoopRDD[291] at textFile at <console>:13
```


How do you know if a shuffle will be called on a Transformation?

- repartition, join, cogroup, and any of the *By or *ByKey transformations can result in shuffles
- If you declare a numPartitions parameter, it'll probably shuffle
- If a transformation constructs a shuffledRDD, it'll probably shuffle
- combineByKey calls a shuffle (so do other transformations like groupByKey, which actually end up calling combineByKey)

Note that repartition just calls coalese w/ True:

How do you know if a shuffle will be called on a Transformation?

Transformations that use "numPartitions" like distinct will probably shuffle:

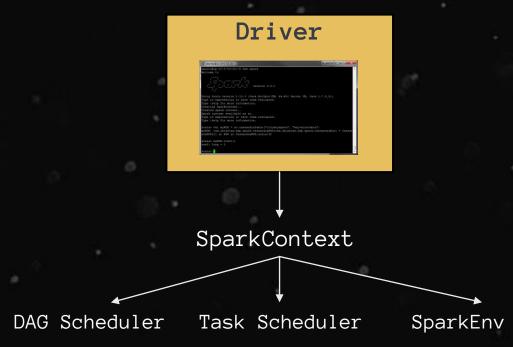
```
def distinct(numPartitions: Int)(implicit ord: Ordering[T] =
   null): RDD[T] =
       map(x => (x, null)).reduceByKey((x, y) => x,
   numPartitions).map(_._1)
```

PERSERVES PARTITIONING

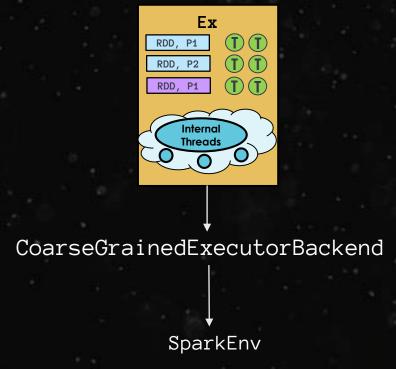
- An extra parameter you can pass a k/v transformation to let Spark know that you will not be messing with the keys at all
- All operations that shuffle data over network will benefit from partitioning
- Operations that benefit from partitioning:
 cogroup, groupWith, join, leftOuterJoin, rightOuterJoin, groupByKey,
 reduceByKey, combineByKey, lookup, . . .

https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/rdd/RDD.scala#L302

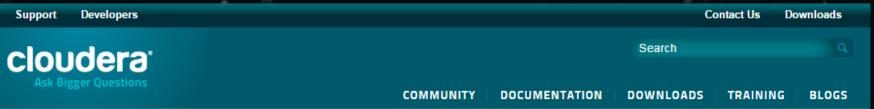
HIGH LEVEL CODE ARCHITECTURE



- cacheManager
- blockManager
- shuffleManager
- securityManager
- broadcastManager
- mapOutputTracker



- cacheManager
- blockManager
- shuffleManager
- securityManager
- broadcastManager
- mapOutputTracker



Hadoop & Big Data Our Customers **FAQs** Blog Accumulo (1) Avro (16) Bigtop (6) Books (11) Careers (14) CDH (150) Cloud (20) Cloudera Labs (4) Cloudera Life (6) Cloudera Manager (73)

Community (208)

How-to: Tune Your Apache Spark Jobs (Part 1)

by Sandy Ryza | March 09, 2015 | m no comments

Learn techniques for tuning your Apache Spark jobs for optimal efficiency.

(Editor's note: Sandy presents on "Estimating Financial Risk with Spark" at Spark Summit East on March 18.)

When you write Apache Spark code and page through the public APIs, you come across words like *transformation*, *action*, and *RDD*. Understanding Spark at this level is vital for writing Spark programs. Similarly, when things start to fail, or when you venture into the web UI to try to understand why your application is taking so long, you're confronted with a new vocabulary of words like *job*, *stage*, and *task*. Understanding Spark at this level is vital for writing *good* Spark programs, and of course by *good*, I mean *fast*. To write a Spark program that will execute efficiently, it is very, very helpful to understand Spark's underlying execution model.

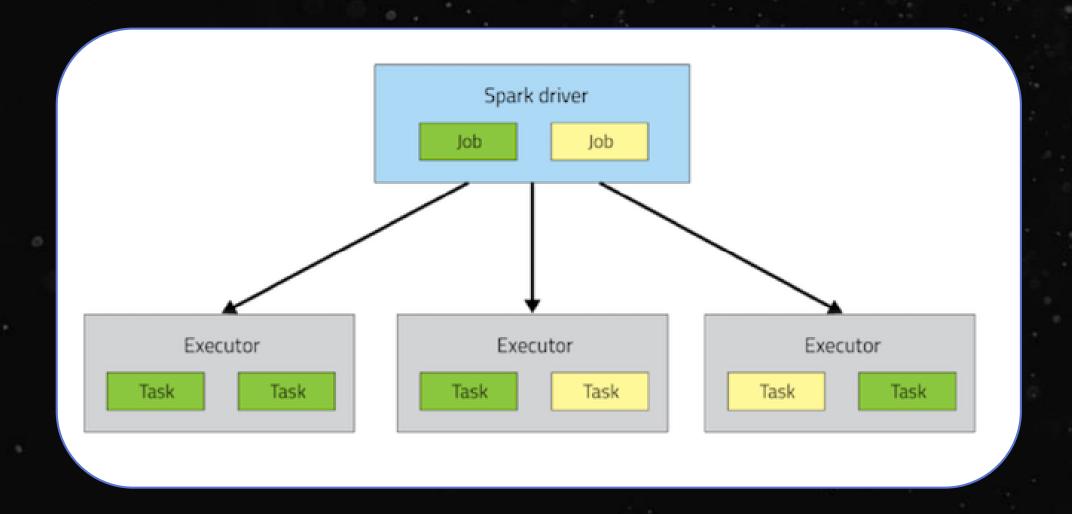
In this post, you'll learn the basics of how Spark programs are actually executed on a cluster. Then, you'll get some practical recommendations about what Spark's execution model means for writing efficient programs.

How Spark Executes Your Program

A Spark application consists of a single *driver* process and a set of *executor* processes scattered across nodes on the cluster.

The driver is the process that is in charge of the high-level control flow of work that needs to be done. The executor processes are responsible for executing this work, in the form of *tasks*, as well as for storing any data that the user chooses to cache. Both the driver and the executors typically stick around for the entire time the application is running, although **dynamic resource allocation** changes that for the latter. A single executor has a number of slots for running tasks, and will run many concurrently throughout its lifetime. Deploying these processes on the cluster is up to the cluster manager in use (YARN, Mesos, or Spark Standalone), but the driver and executor themselves exist in every Spark application.

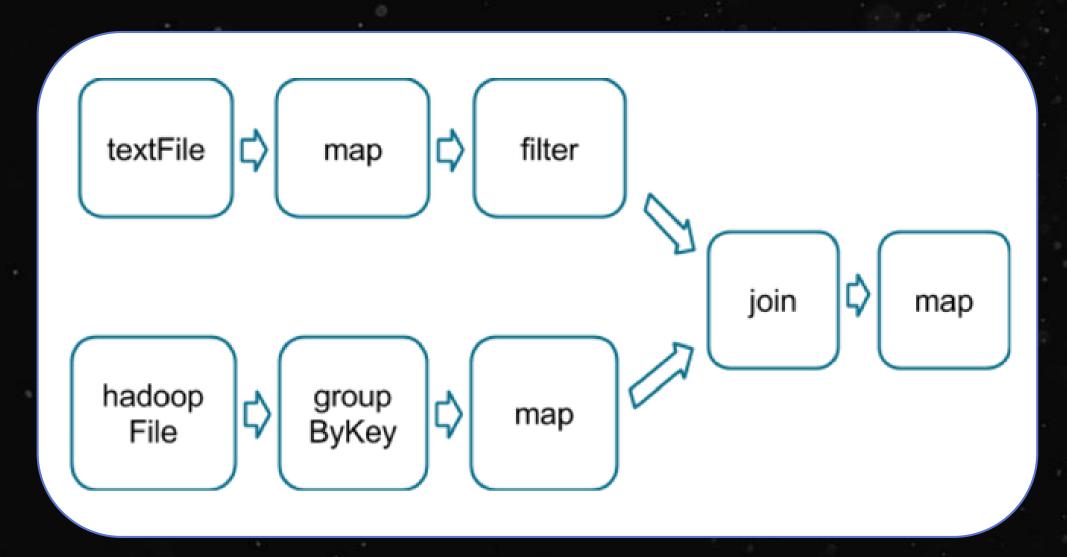
Spark driver



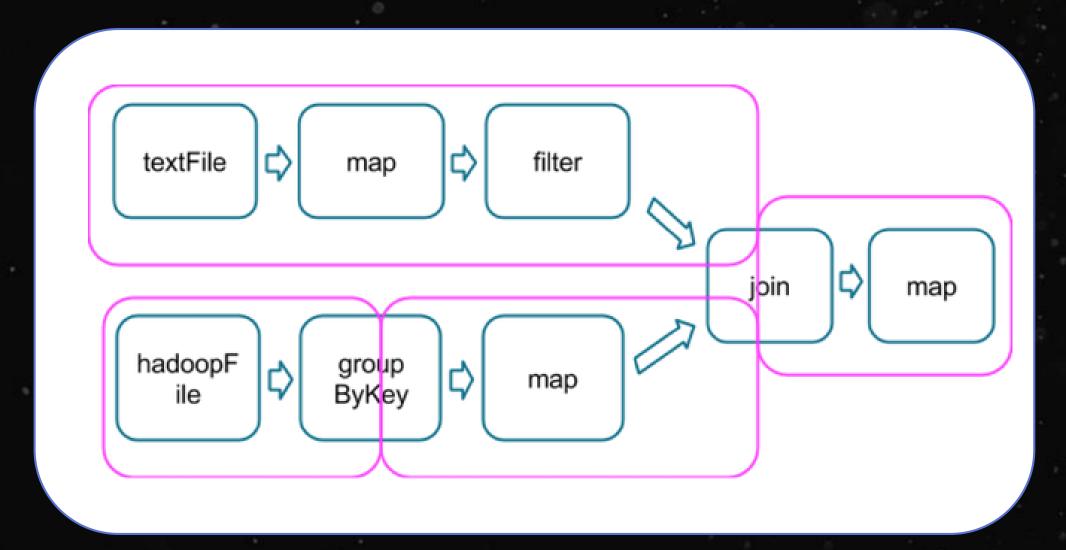
How many Stages will this code require?

```
sc.textFile("someFile.txt").
map(mapFunc).
flatMap(flatMapFunc).
filter(filterFunc).
count()
```

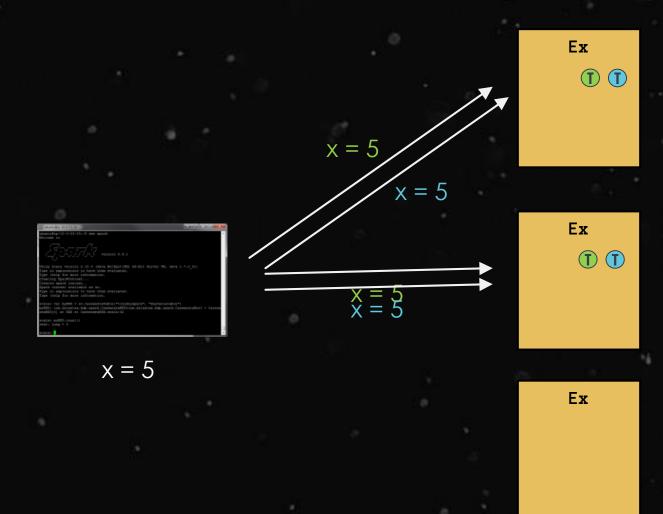
How many Stages will this DAG require?



How many Stages will this DAG require?







USE CASES:

• Broadcast variables – Send a large read-only lookup table to all the nodes, or send a large feature vector in a ML algorithm to all nodes

 Accumulators – count events that occur during job execution for debugging purposes. Example: How many lines of the input file were blank? Or how many corrupt records were in the input dataset?

Spark supports 2 types of shared variables:

• Broadcast variables – allows your program to efficiently send a large, read-only value to all the worker nodes for use in one or more Spark operations. Like sending a large, read-only lookup table to all the nodes.

 Accumulators – allows you to aggregate values from worker nodes back to the driver program. Can be used to count the # of errors seen in an RDD of lines spread across 100s of nodes. Only the driver can access the value of an accumulator, tasks cannot. For tasks, accumulators are write-only.

Broadcast variables let programmer keep a readonly variable cached on each machine rather than shipping a copy of it with tasks

For example, to give every node a copy of a large input dataset efficiently

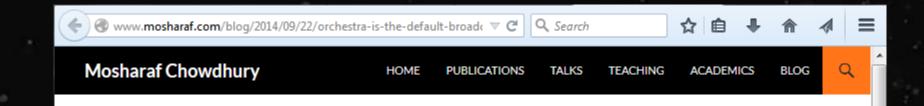
Spark also attempts to distribute broadcast variables using efficient broadcast algorithms to reduce communication cost

Scala:

```
val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar.value
```

Python:

```
broadcastVar = sc.broadcast(list(range(1, 4)))
broadcastVar.value
```



RECENT NEWS

ORCHESTRA IS THE DEFAULT BROADCAST MECHANISM IN APACHE SPARK

③ SEPTEMBER 22, 2014

≜ MOSHARAF

■ LEAVE A COMMENT

With its recent release, Apache Spark has promoted Cornet—the BitTorrent-like broadcast mechanism proposed in Orchestra (SIGCOMM'11)—to become its default broadcast mechanism. It's great to see our research see the light of the real-world! Many thanks to Reynold and others for making it happen.

MLlib, the machine learning library of Spark, will enjoy the biggest boost from this change because of the broadcast-heavy nature of many machine learning algorithms.

Managing Data Transfers in Computer Clusters with Orchestra

Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, Ion Stoica University of California, Berkeley {mosharaf, matei, jtma, jordan, istoica}@cs.berkeley.edu

ABSTRACT

Cluster computing applications like MapReduce and Dryad transfer massive amounts of data between their computation stages. These transfers can have a significant impact on job performance, accounting for more than 50% of job completion times. Despite this impact, there has been relatively little work on optimizing the performance of these data transfers, with networking researchers traditionally focusing on per-flow traffic management. We address this limitation by proposing a global management architecture and a set of algorithms that (1) improve the transfer times of common communication patterns, such as broadcast and shuffle, and (2) allow scheduling policies at the transfer level, such as prioritizing a transfer over other transfers. Using a prototype implementation, we show that our solution improves broadcast completion times by up to 4.5× compared to the status quo in Hadoop. We also show that transfer-level scheduling can reduce the completion time of highpriority transfers by $1.7 \times$.

Categories and Subject Descriptors

C.2 [Computer-communication networks]: Distributed systems— Cloud computing

General Terms

Algorithms, design, performance

Keywords

Data-intensive applications, data transfer, datacenter networks

1 Introduction

The last decade has seen a rapid growth of cluster computing frameworks to analyze the increasing amounts of data collected and generated by web services like Google, Escapook and Vahool. These these clusters, operators aim to maximize the cluster utilization, while accommodating a variety of applications, workloads, and user requirements. To achieve these goals, several solutions have recently been proposed to reduce job completion times [11,29,43], accommodate interactive workloads [29,43], and increase utilization [26,29]. While in large part successful, these solutions have so far been focusing on scheduling and managing computation and storage resources, while mostly ignoring network resources.

However, managing and optimizing network activity is critical for improving job performance. Indeed, Hadoop traces from Facebook show that, on average, transferring data between successive stages accounts for 33% of the running times of jobs with reduce phases. Existing proposals for full bisection bandwidth networks [21, 23, 24, 35] along with flow-level scheduling [10, 21] can improve network performance, but they do not account for collective behaviors of flows due to the lack of job-level semantics.

In this paper, we argue that to maximize job performance, we need to optimize at the level of transfers, instead of individual flows. We define a transfer as the set of all flows transporting data between two stages of a job. In frameworks like MapReduce and Dryad, a stage cannot complete (or sometimes even start) before it receives all the data from the previous stage. Thus, the job running time depends on the time it takes to complete the entire transfer, rather than the duration of individual flows comprising it. To this end, we focus on two transfer patterns that occur in virtually all cluster computing frameworks and are responsible for most of the network traffic in these clusters; shuffle and broadcast. Shuffle captures the many-to-many communication pattern between the map and reduce stages in MapReduce, and between Dryad's stages. Broadcast captures the one-to-many communication pattern employed by iterative optimization algorithms [45] as well as fragment-replicate joins in Hadoop [6].

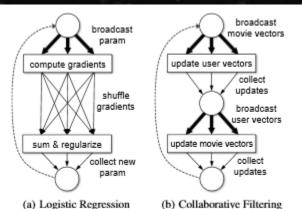


Figure 2: Per-iteration work flow diagrams for our motivating machine learning applications. The circle represents the master node and the boxes represent the set of worker nodes.

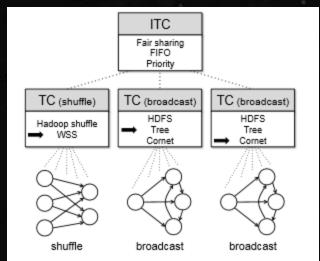
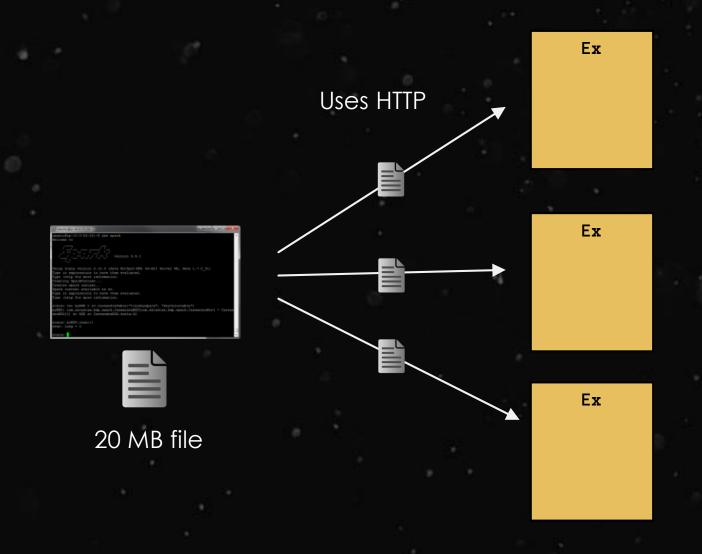
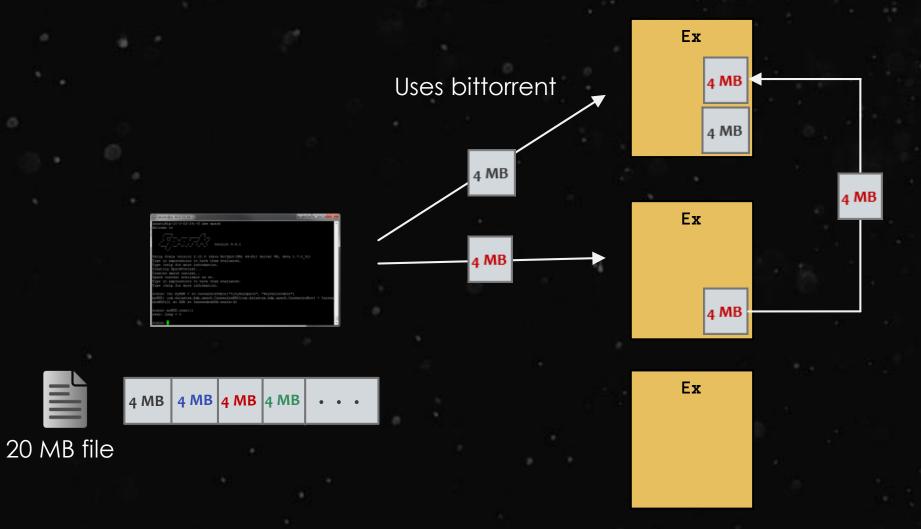


Figure 4: Orchestra architecture. An Inter-Transfer Controller (ITC) manages Transfer Controllers (TCs) for the active transfers. Each TC can choose among multiple transfer mechanisms depending on data size, number of nodes, and other factors. The ITC performs inter-transfer scheduling.

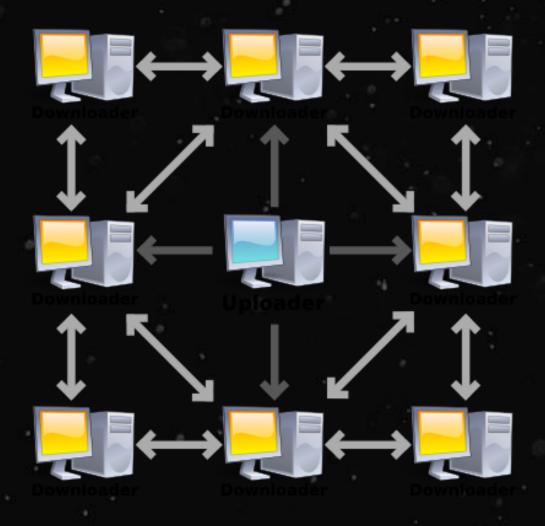
History: OLD TECHNIQUE FOR BROADCAST



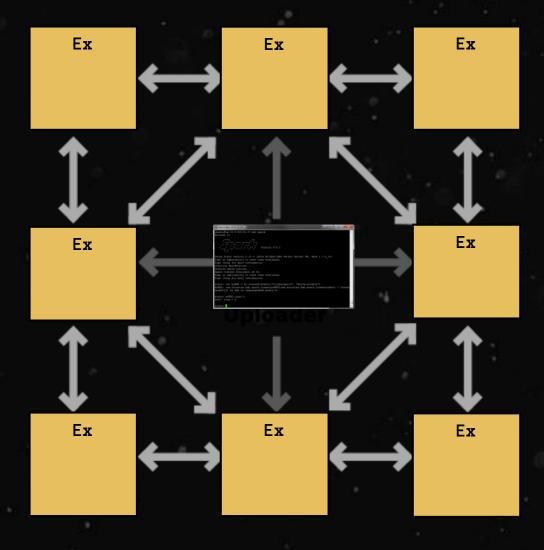
BITTORENT TECHNIQUE FOR BROADCAST



BITTORENT TECHNIQUE FOR BROADCAST



BITTORENT TECHNIQUE FOR BROADCAST



ACCUMULATORS

Accumulators are variables that can only be "added" to through an associative operation

Used to implement counters and sums, efficiently in parallel

Spark natively supports accumulators of numeric value types and standard mutable collections, and programmers can extend for new types

Only the driver program can read an accumulator's value, not the tasks

ACCUMULATORS

Scala:

```
val accum = sc.accumulator(0)
sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)
accum.value
```

Python:

```
accum = sc.accumulator(0)
rdd = sc.parallelize([1, 2, 3, 4])
def f(x):
    global accum
    accum += x

rdd.foreach(f)
accum.value
```


SCALA / PYTHON / JAVA / R

NEXT GEN SHUFFLE

100TB Daytona Sort Competition 2014

	Hadoop MR Record	Spark Record	Spark 1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400 physical	6592 virtualized	6080 virtualized
Cluster disk throughput	3150 GB/s (est.)	618 GB/s	570 GB/s
Sort Benchmark Daytona Rules	Yes	Yes	No
Network	dedicated data center, 10Gbps	virtualized (EC2) 10Gbps network	virtualized (EC2) 10Gbps network
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Sort rate/node	0.67 GB/min	20.7 GB/min 22.5 GB/min	

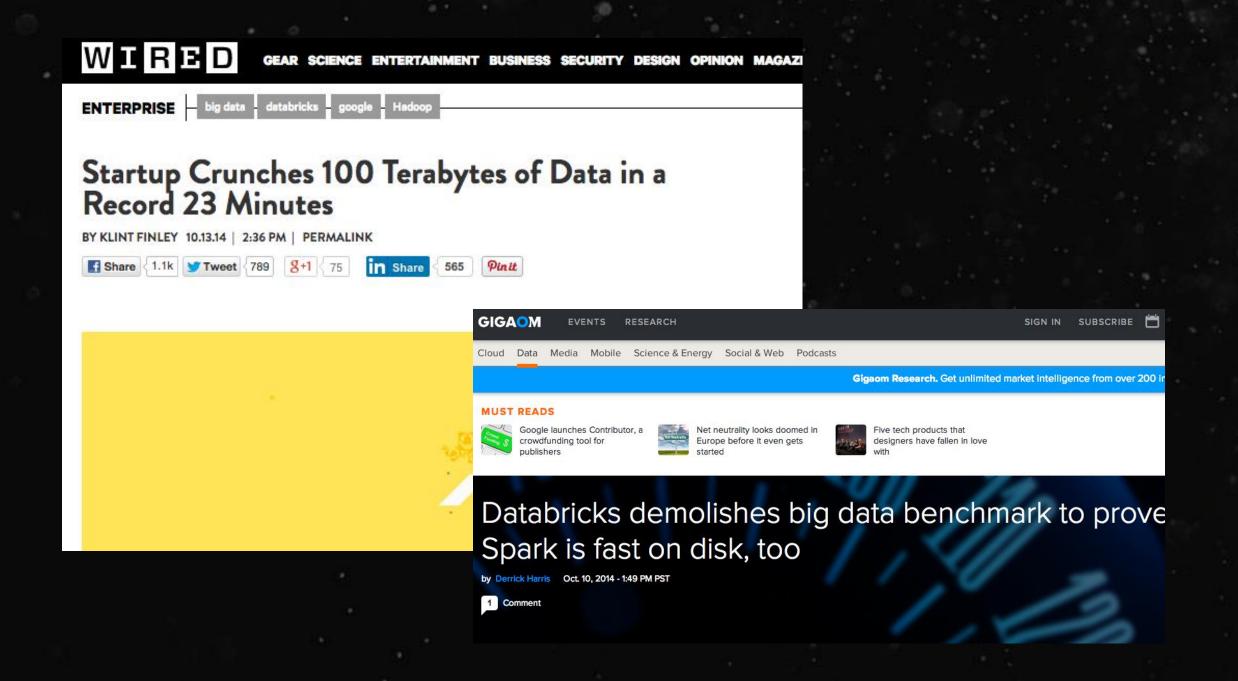
Spark sorted the same data **3X faster**using **10X fewer machines**than Hadoop MR in 2013.

All the sorting took place on disk (HDFS) without using Spark's in-memory cache!

More info:

http://sortbenchmark.org

http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html



WHY SORTING?

- Stresses "shuffle" which underpins everything from SQL to Mllib
- Sorting is challenging b/c there is no reduction in data
- Sort 100 TB = 500 TB disk I/O and 200 TB network

Engineering Investment in Spark:

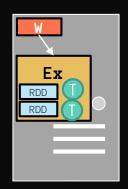
- Sort-based shuffle (SPARK-2045)
- Netty native network transport (SPARK-2468)
- External shuffle service (SPARK-3796)

Clever Application level Techniques:

- GC and cache friendly memory layout
- Pipelining

TECHNIQUE USED FOR 100 TB SORT

- Intel Xeon CPU E5 2670 @ 2.5 GHz w/ 32 cores
- 244 GB of RAM
- 8 x 800 GB SSD and RAID 0 setup formatted with /ext4
- ~9.5 Gbps (1.1 GBps) bandwidth between 2 random nodes
 - Each record: 100 bytes (10 byte key & 90 byte value)
 - OpenJDK 1.7
 - HDFS 2.4.1 w/ short circuit local reads enabled
 - Apache Spark 1.2.0
 - Speculative Execution off
 - Increased Locality Wait to infinite
 - Compression turned off for input, output & network
 - Used Unsafe to put all the data off-heap and managed it manually (i.e. never triggered the GC)



EC2: i2.8xlarge

(206 workers)

- 32 slots per machine
- 6,592 slots total

groupByKey

sortByKey

reduceByKey

spark.shuffle.spill=false

(Affects reducer side and keeps all the data in memory)

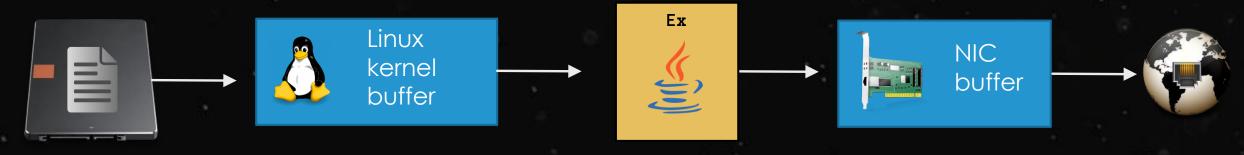
EXTERNAL SHUFFLE SERVICE

- Worker JVM serves files

- Must turn this on for dynamic allocation in YARN
- Node Manager serves files

OLD TECHNIQUE FOR SERVING MAP OUTPUT FILES

- Was slow because it had to copy the data 3 times



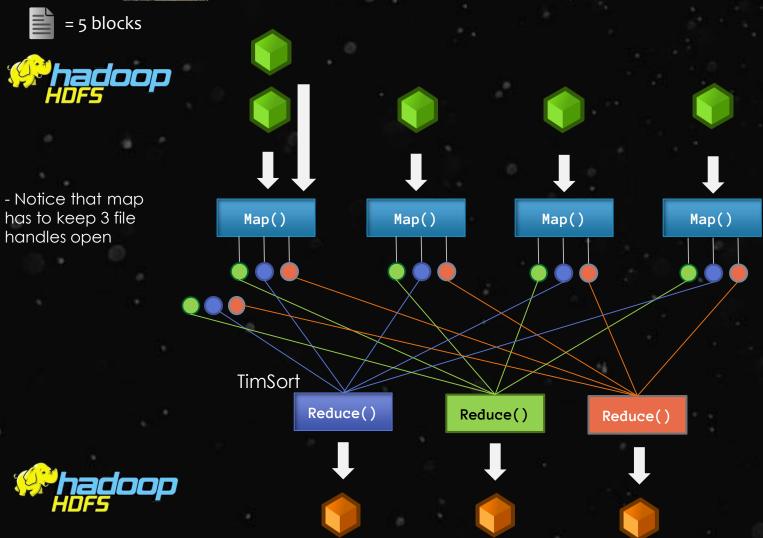
Map output file on local dir

NETTY NATIVE TRANSPORT

- Uses a technique called zero-copy
- Is a map-side optimization to serve data very quickly to requesting reducers



HASH BASED SHUFFLE < 10,000 reducers



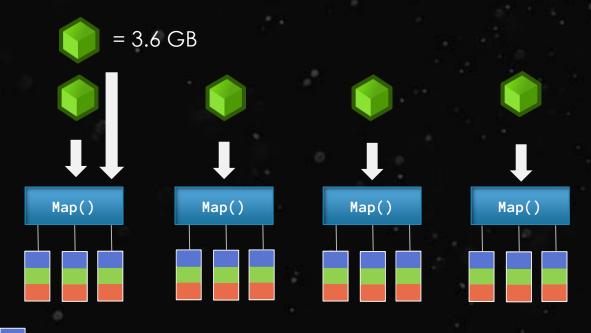
- Entirely bounded by I/O reading from HDFS and writing out locally sorted files

- Mostly network bound

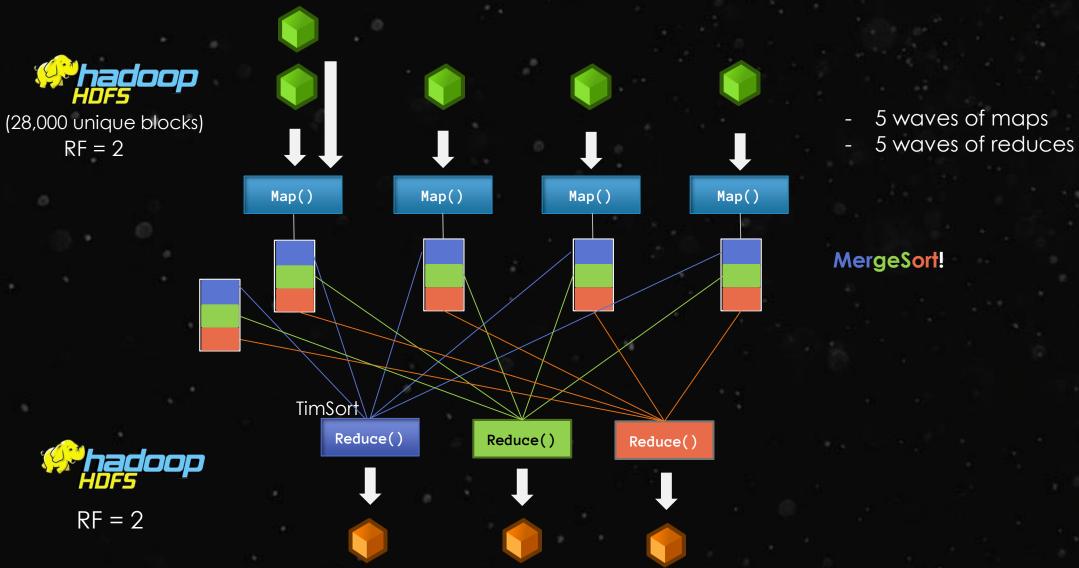
SORT BASED SHUFFLE

250,000+ reducers!

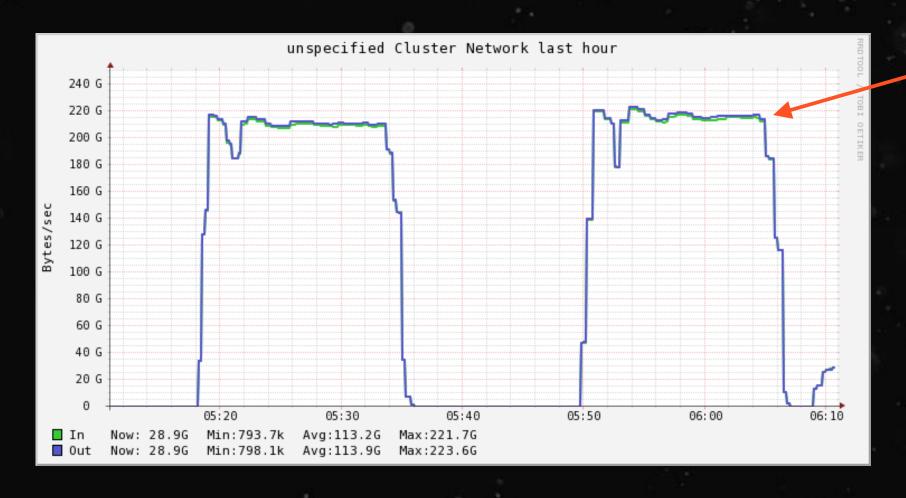
- Only one file handle open at a time



SORT BASED SHUFFLE

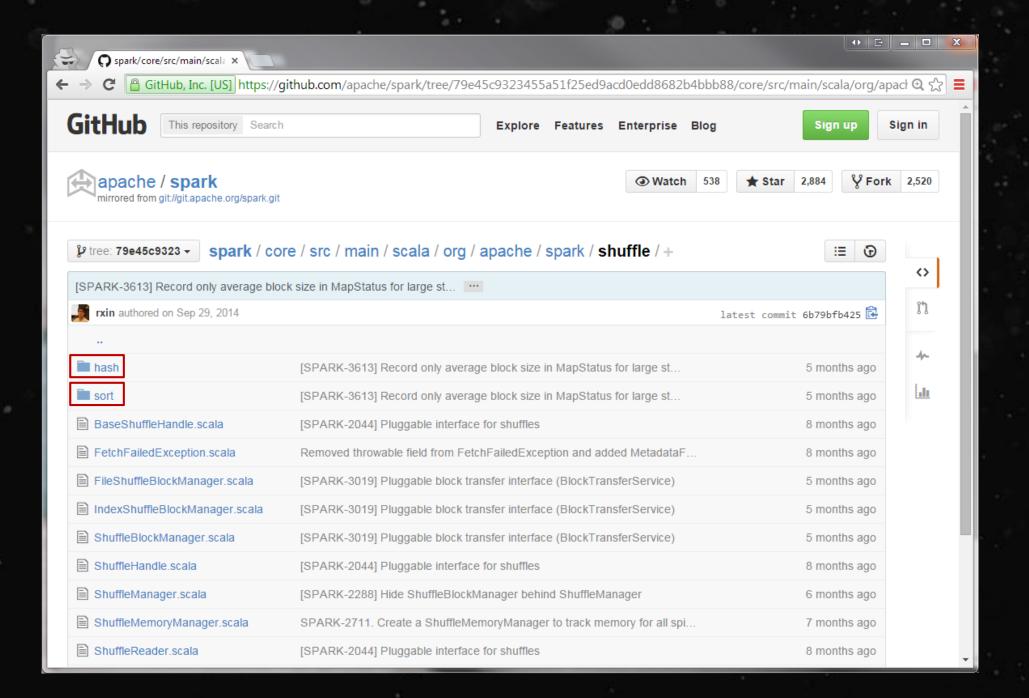


NETWORK TRANSPORT



- Actual final run
- Fully saturated the 10 Gbit link

Sustaining 1.1GB/s/node during shuffle

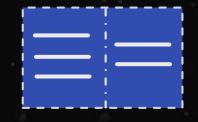


UserID	Name	Age	Location	Pet
28492942	John Galt	32	New York	Sea Horse
95829324	Winston Smith	41	Oceania	Ant
92871761	Tom Sawyer	17	Mississippi	Raccoon
37584932	Carlos Hinojosa	33	Orlando	Cat
73648274	Luis Rodriguez	34	Orlando	Dogs

SPARK SQL

JDBC/ODBC

Your App



COMPANY

All Posts

Partners

Events

Press Releases

DEVELOPER

All Posts

Spark

Spark SOI

Introducing DataFrames in Spark for Large Scale Data Science

February 17, 2015 | by Reynold Xin, Michael Armbrust and Davies Liu

Today, we are excited to announce a new DataFrame API designed to make big data processing even easier for a wider audience.

When we first open sourced Spark, we aimed to provide a simple API for distributed data processing in general-purpose programming languages (Java, Python, Scala). Spark enabled distributed data processing through functional transformations on distributed collections of data (RDDs). This was an incredibly powerful API: tasks that used to take thousands of lines of code to express could be reduced to dozens.

SchemaRDD

- RDD of Row objects, each representing a record
- Row objects = type + col. name of each
- Stores data very efficiently by taking advantage of the schema
- SchemaRDDs are also regular RDDs, so you can run transformations like map() or filter()
- Allows new operations, like running SQL on objects


```
# sqlContext from the previous example is used in this example.
schemaPeople # The SchemaRDD from the previous example.
# SchemaRDDs can be saved as Parquet files, maintaining the schema information.
schemaPeople.saveAsParquetFile("people.parquet")
# Read in the Parquet file created above. Parquet files are self-describing so the schema is preserved.
# The result of loading a parquet file is also a SchemaRDD.
parquetFile = sqlContext.parquetFile("people.parquet")
# Parquet files can also be registered as tables and then used in SQL statements.
parquetFile.registerTempTable("parquetFile");
teenagers = sqlContext.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19")
teenNames = teenagers.map(lambda p: "Name: " + p.name)
for teenName in teenNames.collect():
  print teenName
```


Configuration of Parquet can be done using the setconf method on SQLContext or by running SET key=value commands using SQL.

Property Name	Default	Meaning
spark.sql.parquet.binaryAsString	false	Some other Parquet-producing systems, in particular Impala and older versions of Spark SQL, do not differentiate between binary data and strings when writing out the Parquet schema. This flag tells Spark SQL to interpret binary data as a string to provide compatibility with these systems.
spark.sql.parquet.cacheMetadata	true	Turns on caching of Parquet schema metadata. Can speed up querying of static data.
spark.sql.parquet.compression.codec	gzip	Sets the compression codec use when writing Parquet files. Acceptable values include: uncompressed, snappy, gzip, lzo.
spark.sql.parquet.filterPushdown	false	Turn on Parquet filter pushdown optimization. This feature is turned off by default because of a known bug in Paruet 1.6.0rc3 (PARQUET-136). However, if your table doesn't contain any nullable string or binary columns, it's still safe to turn this feature on.
spark.sql.hive.convertMetastoreParquet	true	When set to false, Spark SQL will use the Hive SerDe for parquet tables instead of the built in support.

- Announced Feb 2015
- Inspired by data frames in R and Pandas in Python
- Works in:

What is a Dataframe?

- a distributed collection of data organized into named columns
- Like a table in a relational database

Features

- Scales from KBs to PBs
- Supports wide array of data formats and storage systems (Hive, existing RDDs, etc.)
- State-of-the-art optimization and code generation via Spark SQL Catalyst optimizer
- APIs in Python, Java

Step 1: Construct a DataFrame

```
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)

df = sqlContext.jsonFile("examples/src/main/resources/people.json")

# Displays the content of the DataFrame to stdout
df.show()
## age name
## null Michael
## 30 Andy
## 19 Justin
```


Step 2: Use the DataFrame

```
# Print the schema in a tree format
 df.printSchema()
 ## root
 ## |-- age: long (nullable = true)
 ## |-- name: string (nullable = true)
# Select only the "name" column
df.select("name").show()
 ## name
 ## Michael
 ## Andy
 ## Justin
 # Select everybody, but increment the age by 1
 df.select("name", df.age + 1).show()
            (age + 1)
 ## name
 ## Michael null
 ## Andy 31
 ## Justin 20
```


SQL Integration

```
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)

df = sqlContext.sql("SELECT * FROM table")
```


SQL + RDD Integration

2 methods for converting existing RDDs into DataFrames:

- (more concise) 1. Use reflection to infer the schema of an RDD that contains different types of objects
- (more verbose) 2. Use a programmatic interface that allows you to construct a schema and then apply it to an existing RDD.

SQL + RDD Integration: via reflection

```
# sc is an existing SparkContext.
from pyspark.sql import SQLContext, Row
sqlContext = SQLContext(sc)
# Load a text file and convert each line to a Row.
lines = sc.textFile("examples/src/main/resources/people.txt")
parts = lines.map(lambda 1: l.split(","))
people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))
# Infer the schema, and register the DataFrame as a table.
schemaPeople = sqlContext.inferSchema(people)
schemaPeople.registerTempTable("people")
```


SQL + RDD Integration: via reflection

```
# SQL can be run over DataFrames that have been registered as a table.
teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")

# The results of SQL queries are RDDs and support all the normal RDD operations.
teenNames = teenagers.map(lambda p: "Name: " + p.name)
for teenName in teenNames.collect():
    print teenName</pre>
```


SQL + RDD Integration: via programmatic schema

DataFrame can be created programmatically with 3 steps:

- 1. Create an RDD of tuples or lists from the original RDD
- 2. Create the schema represented by a **StructType** matching the structure of tuples or lists in the RDD created in the step 1
- 3. Apply the schema to the RDD via createDataFrame method provided by SQLContext

Step 1: Construct a DataFrame

```
# Constructs a DataFrame from the users table in Hive.
users = context.table("users")

# from JSON files in S3
logs = context.load("s3n://path/to/data.json", "json")
```

Step 2: Use the DataFrame

```
# Create a new DataFrame that contains "young users" only
young = users.filter(users.age < 21)</pre>
# Alternatively, using Pandas-like syntax
young = users[users.age < 21]</pre>
# Increment everybody's age by 1
young.select(young.name, young.age + 1)
# Count the number of young users by gender
young.groupBy("gender").count()
# Join young users with another DataFrame called logs
young.join(logs, logs.userId == users.userId, "left_outer")
```



```
TwitterUtils.createStream(...)
    .filter(_.getText.contains("Spark"))
    .countByWindow(Seconds(5))
```


- Scalable

- High-throughput
- Fault-tolerant

Kafka

Flume

HDFS

\$3

Kinesis

Twitter

HDFS / S3

Cassandra

HBase

Dashboards

Databases

Complex algorithms can be expressed using:

- Spark transformations: map(), reduce(), join(), etc
- MLlib + GraphX
- SQL

Batch

Realtime

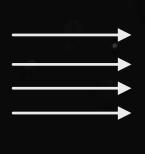
One unified API

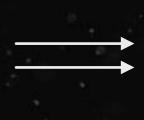
Tathagata Das (TD)

- Lead developer of Spark Streaming + Committer on Apache Spark core
- Helped re-write Spark Core internals in 2012 to make it 10x faster to support Streaming use cases
- On leave from UC Berkeley PhD program
- Ex: Intern @ Amazon, Intern @ Conviva, Research
 Assistant @ Microsoft Research India
- 1 guy; does not scale

- Scales to 100s of nodes
- Batch sizes as small as half a second
- End to end Processing latency as low as 1 second
- Exactly-once semantics no matter what fails

USE CASES (live statistics)





Page views

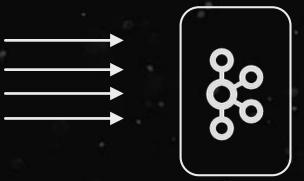
Kafka for buffering

Spark for processing

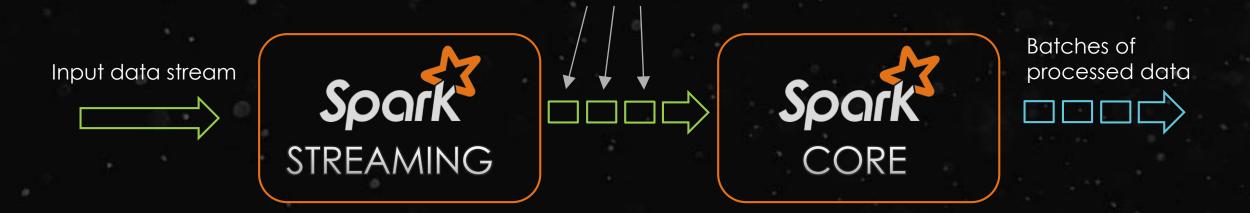
Smart meter readings

Live weather data

USE CASES (Anomaly Detection)



Batches every X seconds



Batches every X seconds

DSTREAM

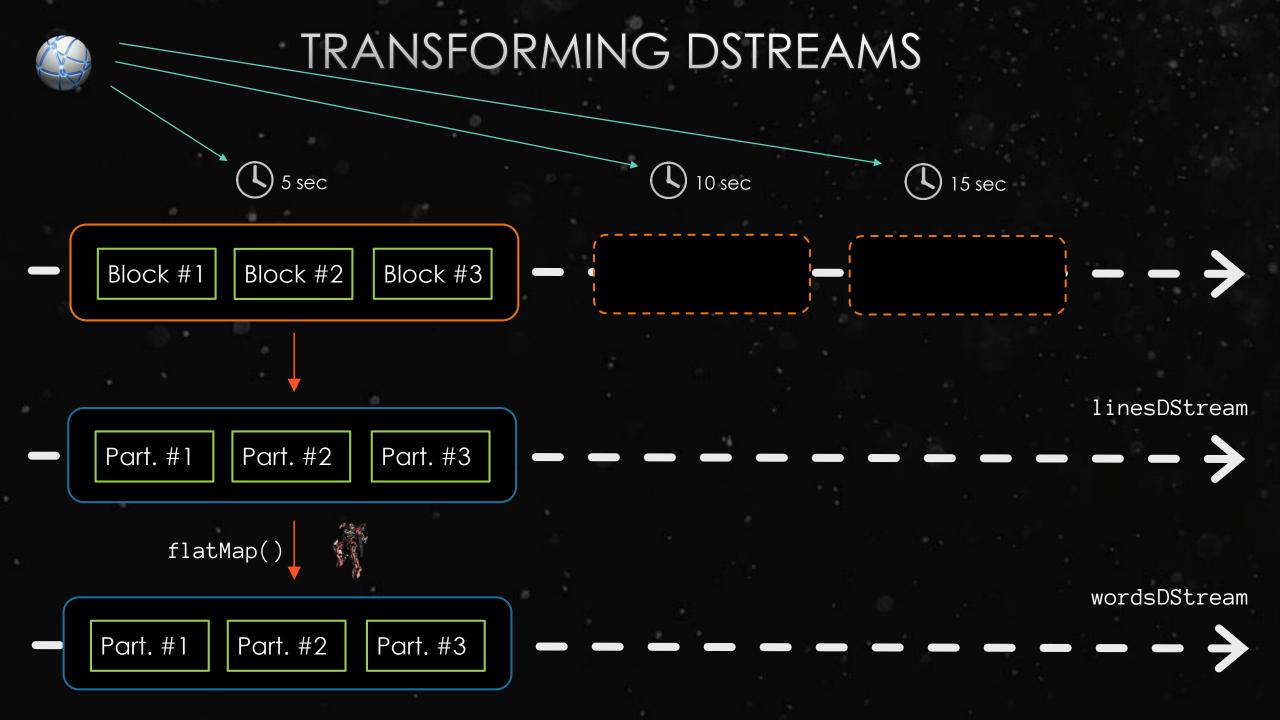
(Discretized Stream)

Batch interval = 5 seconds

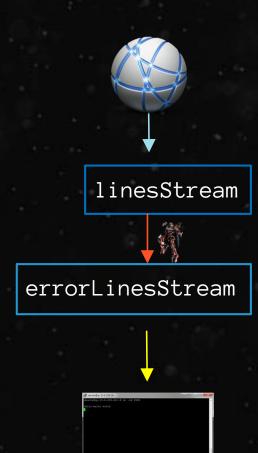
One RDD is created every 5 seconds

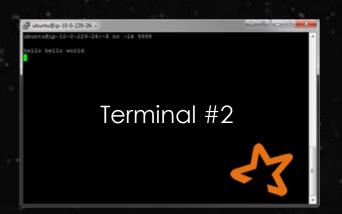
DStreams can be created from:

- 1) External input sources
- 2) Applying transformations to other DStreams



```
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.Duration
// Create a StreamingContext with a 1-second batch size from a SparkConf
val ssc = new StreamingContext(conf, Seconds(1))
// Create a DStream using data received after connecting to port 7777 on the local machine
val linesStream = ssc.socketTextStream("localhost", 7777)
// Filter our DStream for lines with "error"
val errorLinesStream = linesStream.filter(_.contains("error"))
// Print out the lines with errors
errorLinesStream.print()
// Start our streaming context and wait for it to "finish"
ssc.start()
// Wait for the job to finish
ssc.awaitTermination()
```





\$ nc localhost 7777

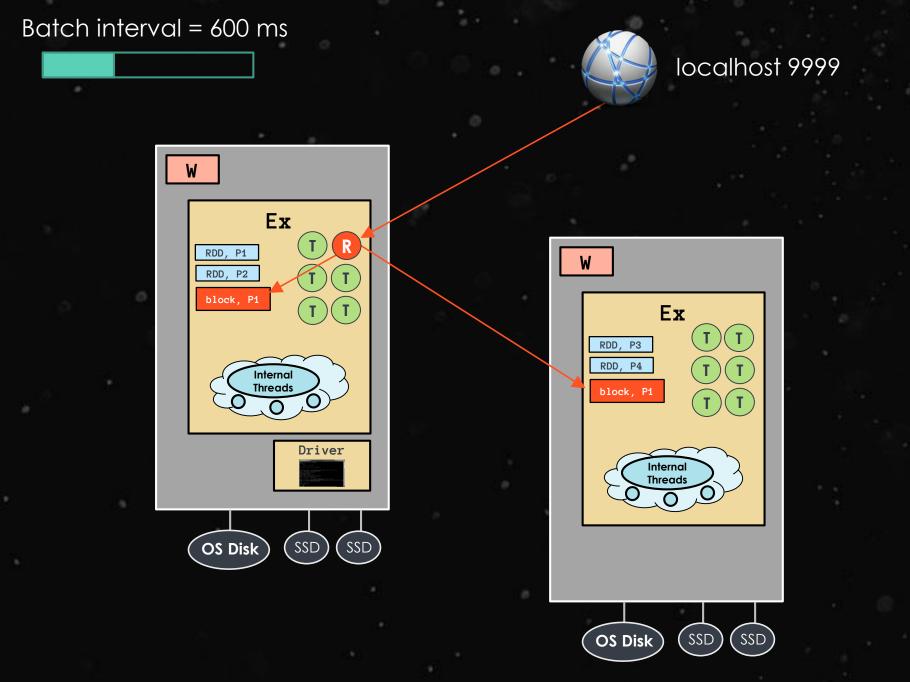
all is good there was an error good good

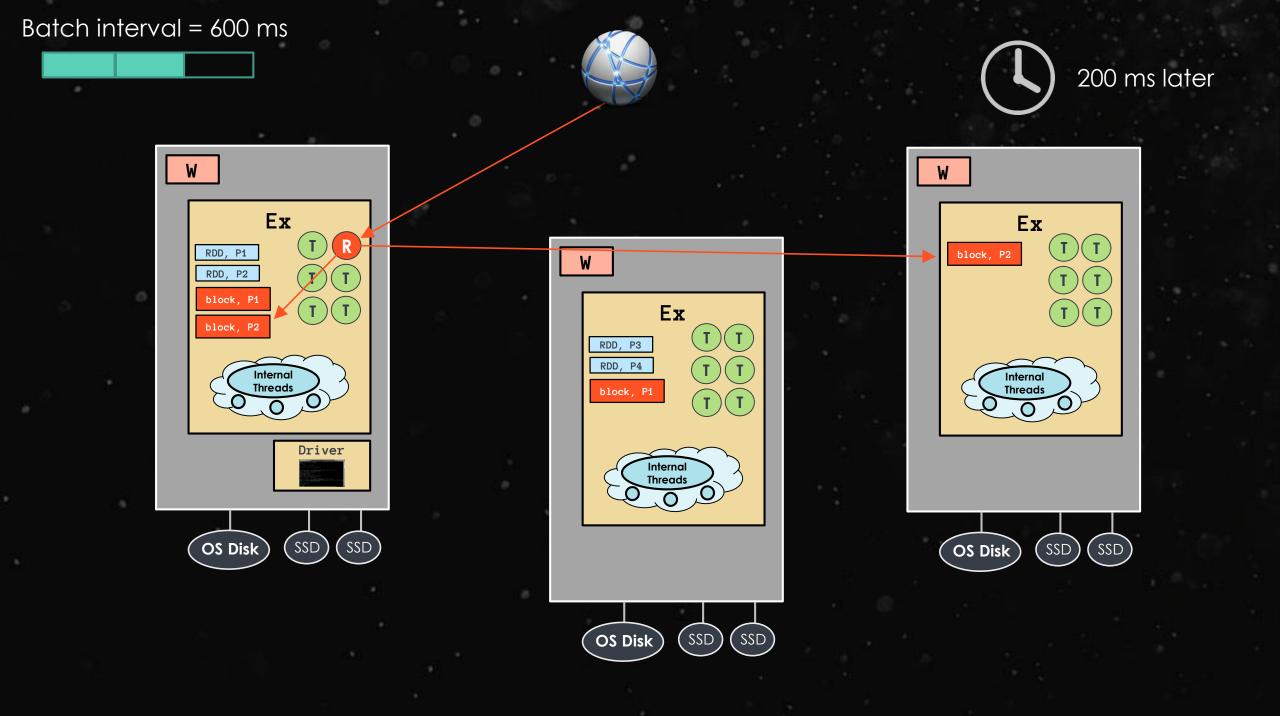
error 4 happened all good now

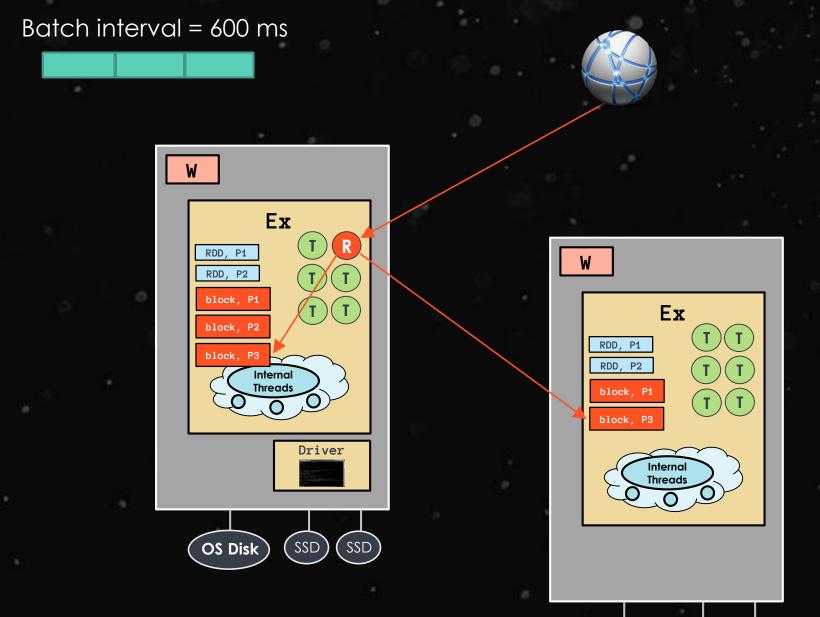
error 4 happened

Remember!

- Once a <u>StreamingContext</u> has been started, no new streaming computations can be added to it
- Once a <u>StreamingContext</u> has been stopped, it cannot be restarted
- Only one StreamingContext can be active in a JVM at a time
- Stop() on StreamingContext also stops the SparkContext. (You can stop only the StreamingContext by setting the optional parameter stopSparkContext to false)
- A SparkContext can be reused to create multiple StreamingContexts, as long as the previous StreamingContext is stopped (without stopping the SparkContext)





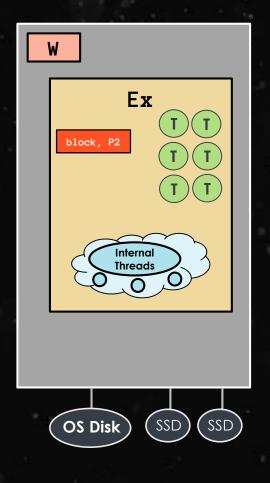


OS Disk

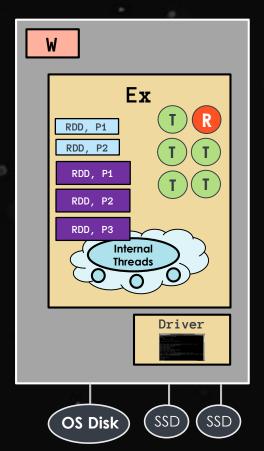
(SSD)

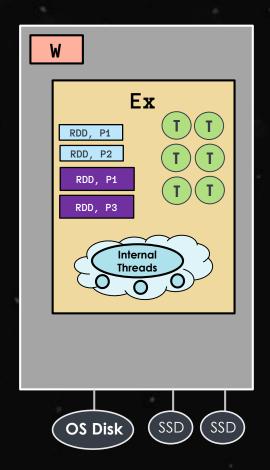
(SSD)

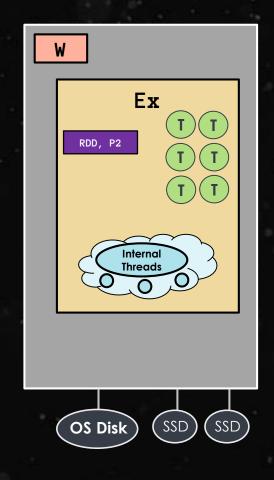




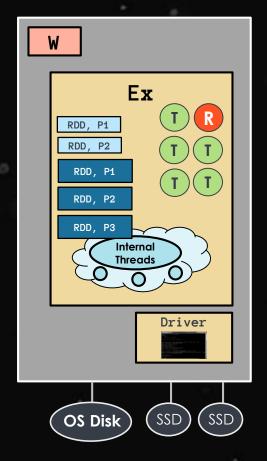
Batch interval = 600 ms

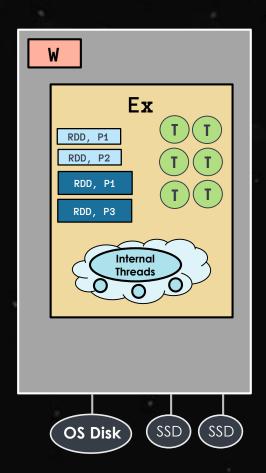


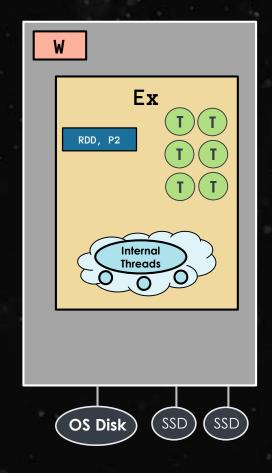




Batch interval = 600 ms







Streaming

Started at: Wed Oct 22 06:11:53 PDT 2014 Time since start: 27 minutes 20 seconds

Network receivers: 1 Batch interval: 1 second Processed batches: 1641 Waiting batches: 0

Statistics over last 100 processed batches

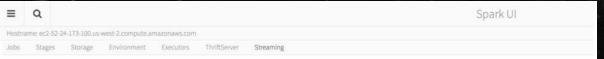
Receiver Statistics

Receiver	Status	Location	Records in last batch [2014/10/22 06:39:14]		Median rate [records/sec]	Maximum rate [records/sec]	Last Error
TwitterReceiver-0	ACTIVE	localhost	39	0	61	151	-

Batch Processing Statistics

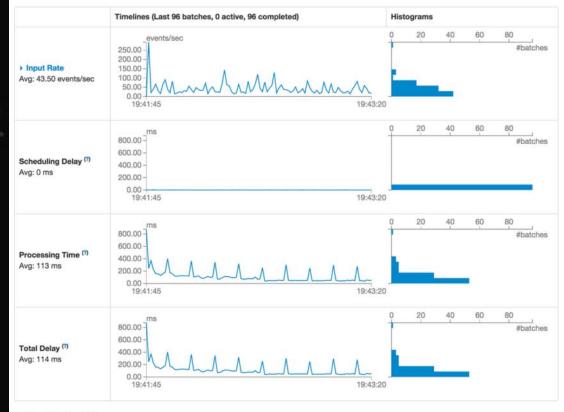
Metric	Last batch	Minimum	25th percentile	Median	75th percentile	Maximum
Processing Time	31 ms	5 ms	39 ms	56 ms	457 ms	2 seconds 289 ms
Scheduling Delay	0 ms	0 ms	0 ms	0 ms	1 ms	803 ms
Total Delay	31 ms	31 ms	40 ms	57 ms	499 ms	2 seconds 289 ms

New UI for Streaming



Streaming Statistics

Running batches of 1 second for 1 minute 36 seconds since 2015/06/08 19:41:44 (96 completed batches, 4176 records)



Active Batches (0)

2015/06/08 19:43:16

Batch Time	Input Size	Scheduling Delay (7)					
Completed Batches (last 96 out	t of 96)						
Batch Time	Input Size	Scheduling Delay (7)					
2015/06/08 19:43:20	19 events	0 ms					
2015/06/08 19:43:19	19 events	0 ms					
2015/06/08 19:43:18	44 events	0 ms					
2015/06/08 19:43:17	59 events	0 ms					

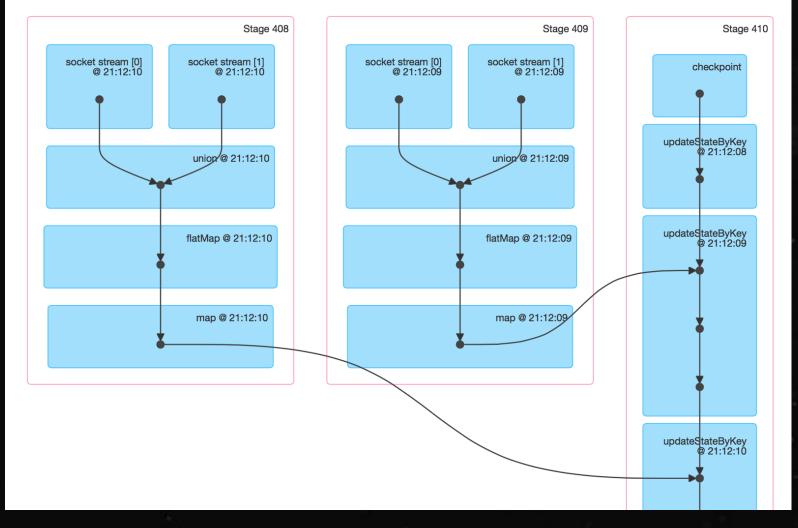
21 events

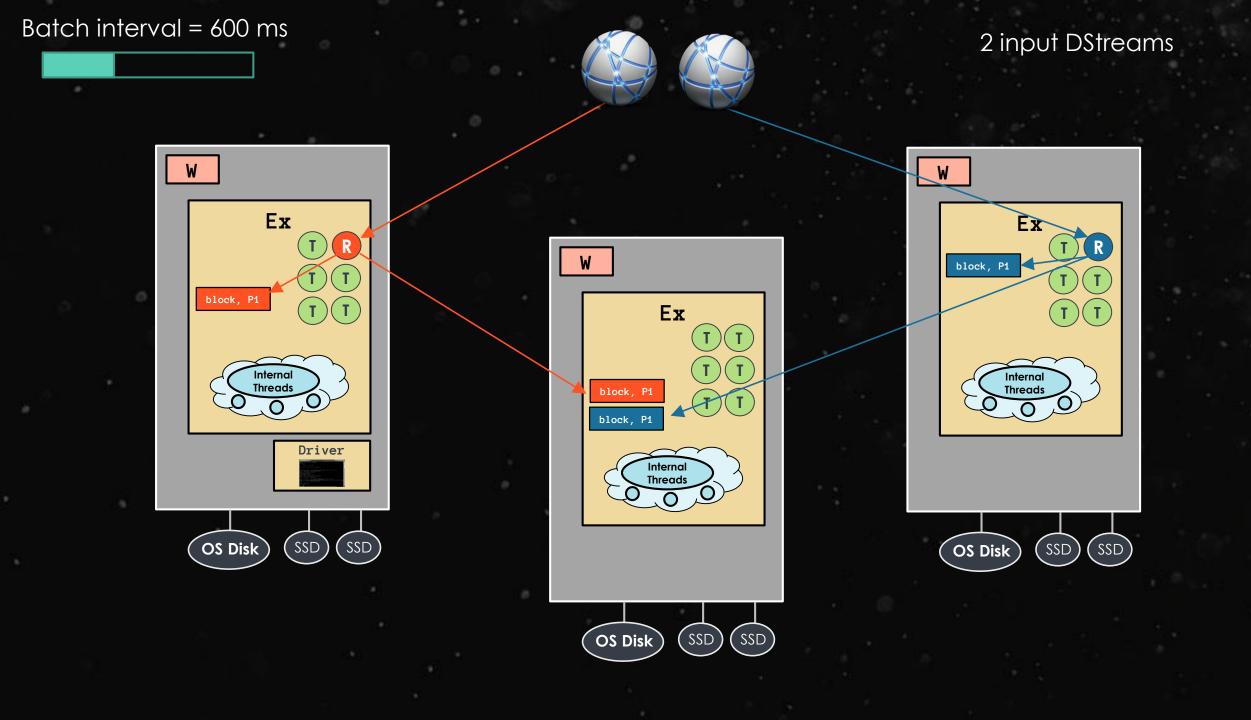
DAG Visualization for Streaming

Details for Job 66

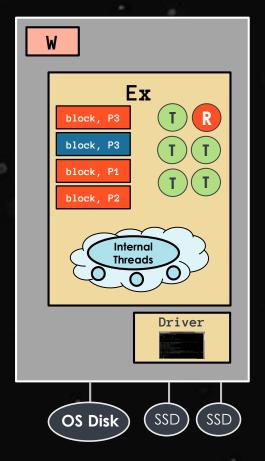
Status: SUCCEEDED Completed Stages: 1 Skipped Stages: 2

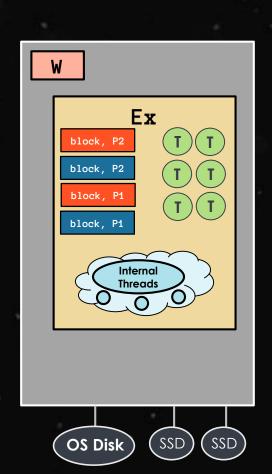
- ▶ Event Timeline
- ▼ DAG Visualization

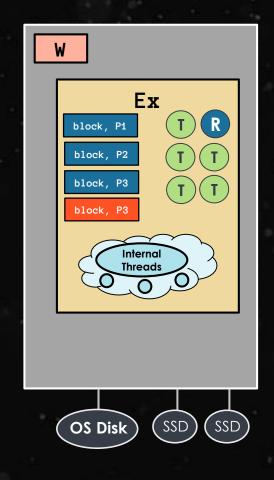


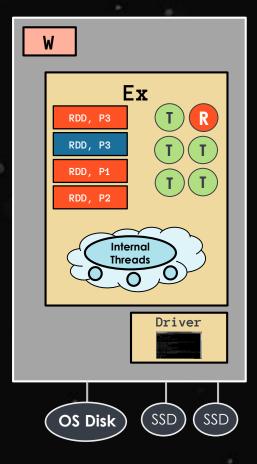


Batch interval = 600 ms

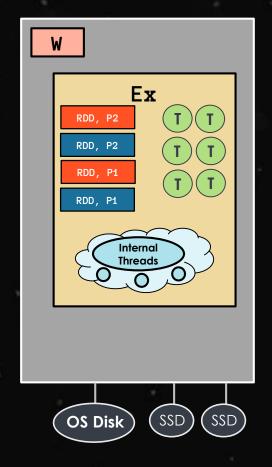


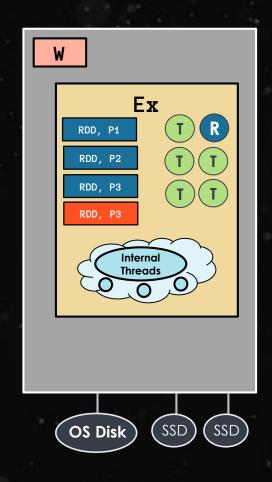


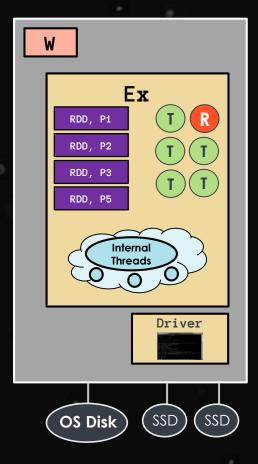




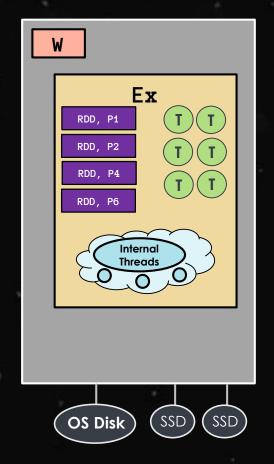
Materialize!

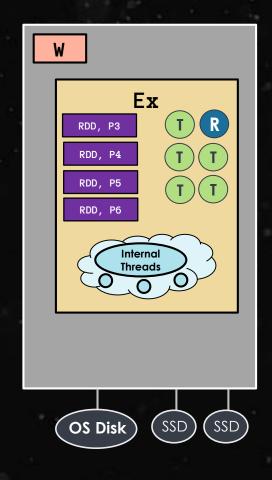






Union!





```
val numStreams = 5

val kafkaStreams = (1 to numStreams).map { i => KafkaUtils.createStream(...) }

val unifiedStream = streamingContext.union(kafkaStreams)

unifiedStream.print()
```


Stream-stream Joins


```
val stream1: DStream[String, String] = ...
val stream2: DStream[String, String] = ...
val joinedStream = stream1.join(stream2)
```


- File systems
- Socket Connections

Sources directly available in StreamingContext API

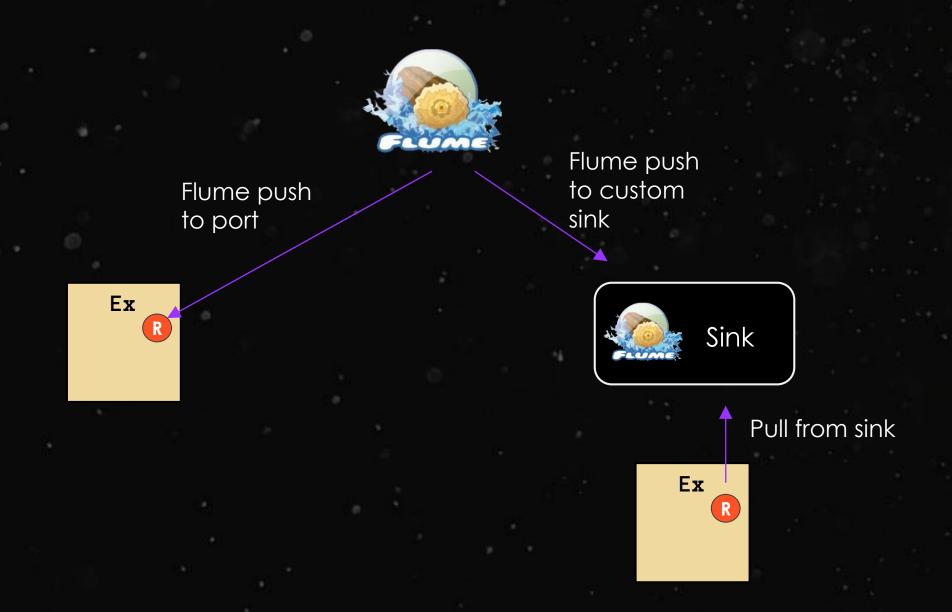
- Kafka
- Flume
- Twitter

Requires linking against extra dependencies

- Anywhere

Requires implementing user-defined receiver

val logData = ssc.textFileStream(logDirectory)



Overview

Programming Guides ▼

API Docs▼

Deploying ▼

More ▼

Spark Streaming + Flume Integration Guide

Apache Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. Here we explain how to configure Flume and Spark Streaming to receive data from Flume. There are two approaches to this.

Approach 1: Flume-style Push-based Approach

Flume is designed to push data between Flume agents. In this approach, Spark Streaming essentially sets up a receiver that acts an Avro agent for Flume, to which Flume can push the data. Here are the configuration steps.

General Requirements

Choose a machine in your cluster such that

- When your Flume + Spark Streaming application is launched, one of the Spark workers must run on that machine.
- · Flume can be configured to push data to a port on that machine.

Due to the push model, the streaming application needs to be up, with the receiver scheduled and listening on the chosen port, for Flume to be able push data.

Configuring Flume

Configure Flume agent to send data to an Avro sink by having the following in the configuration file.

agent sinks - avrosinl

Overview

Programming Guides ▼

API Docs▼

Deploying ▼

More **▼**

Spark Streaming + Kafka Integration Guide

Apache Kafka is publish-subscribe messaging rethought as a distributed, partitioned, replicated commit log service. Here we explain how to configure Spark Streaming to receive data from Kafka.

1. **Linking:** In your SBT/Maven project definition, link your streaming application against the following artifact (see Linking section in the main programming guide for further information).

```
groupId = org.apache.spark
artifactId = spark-streaming-kafka_2.10
version = 1.2.0
```

2. Programming: In the streaming application code, import Kafkautils and create input DStream as follows.

Scala

Java

import org.apache.spark.streaming.kafka._

val kafkaStream = KafkaUtils.createStream(

TRANSFORMATIONS ON DSTREAMS

```
map(f(x))
                                                    reduce(f(x))
                                                                                     union(otherStream)
updateStateByKey(f(x))^*
                                flatMap(f(x))
                                                                 filter(f(x))
    join(otherStream, [numTasks])
                                                                                      COGTOUP(otherStream, [numTasks])
                                                                 RDD
                                                           transform(f(x))
                        repartition(numPartitions)
                                                                                        count()
                                                                 RDD
      reduceAByKey(f(x), [numTasks])
                                                      countByValue()
```

TRANSFORMATIONS ON DSTREAMS

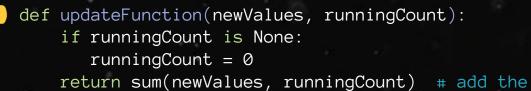
```
(word, 1)
pairs
                   (cat, 1)
```

 $updateStateByKey(f(x))^*$: allows you to maintain arbitrary state while continuously updating it with new information

To use:

- 1) Define the state (an arbitrary data type)
- 2) Define the state update function (specify with a function how to update the state using the previous state and new values from the input stream)

To maintain a running count of each word seen in a text data stream (here running count is an integer type of state):

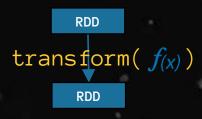


new values with the previous running count # to get the new count

runningCounts = pairs.updateStateByKey(updateFunction)

Requires a checkpoint directory to be configured

TRANSFORMATIONS ON DSTREAMS



: can be used to apply any RDD operation that is not exposed in the DStream API.

spamInfoRDD = sc.pickleFile(...) # RDD containing spam information

join data stream with spam information to do data cleaning cleanedDStream = wordCounts.transform(lambda rdd:

 $\verb"rdd.join(spamInfoRDD).filter(...))$

For example:

- Functionality to join every batch in a data stream with another dataset is not directly exposed in the DStream API.
- If you want to do real-time data cleaning by joining the input data stream with pre-computed spam information and then filtering based on it.

Window Length: 3 time units

WINDOW OPERATIONS

Sliding Interval: 2 time units

* Both of these must be multiples of the batch interval of the source DSTream

time 1 he im time 2

RDD @ (3)

time 3

time 4

RDD @ 🕓 5

time 5

time 6

Original RDD 1 RDD 4 RDD 2 RDD 3 RDD 5 RDD 6 **DStream** Windowed RDD X RDD Y **DStream**

COMMON WINDOW OPERATIONS

```
window(windowLength, slideInterval)
                                                        countByValueAndWindow(windowLength, slideInterval, [numTasks])
       countByWindow(windowLength, slideInterval)
reduceByWindow(f(x), windowLength, slideInterval)
       reduceByKeyAndWindow(f_{(x)}, windowLength, slideInterval, [numTasks])
       reduceByKeyAndWindow( f_{(X)} , \chi^{(X)} , windowLength, slideInterval, [numTasks])
```

API Docs

- <u>PairDStreamFunctions</u>

DStream

OUTPUT OPERATIONS ON DSTREAMS

```
\label{eq:print} \begin{aligned} & \text{foreachRDD}(\ \textit{f(x)}\ ) \\ & \text{saveAsTextFile}(\ \text{prefix}, \ [\text{suffix}]\ ) \end{aligned}
```

saveAsHadoopFiles(prefix, [suffix])

databricks