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And	
  you	
  are?	
  

•  Apache	
  Board	
  of	
  Directors	
  involved	
  in	
  
–  OODT	
  (VP,	
  PMC),	
  Tika	
  (PMC),	
  Nutch	
  (PMC),	
  Incubator	
  
(PMC),	
  SIS	
  (PMC),	
  Gora	
  (PMC),	
  Airavata	
  (PMC)	
  

•  Chief	
  Architect,	
  
Instrument	
  and	
  Science	
  
Data	
  Systems	
  SecLon	
  at	
  
NASA	
  JPL	
  in	
  Pasadena,	
  CA	
  
USA	
  

•  SoPware	
  Architecture/
Engineering	
  Prof	
  at	
  Univ.	
  
of	
  Southern	
  California	
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I	
  work	
  here	
  



Instrument	
  &	
  	
  
Ground	
  Data	
  Systems	
  
(Sec6on	
  398)	
  

•  Largest	
  SecLon	
  on	
  Lab	
  
•  250+	
  people	
  
•  Data	
  Science,	
  Machine	
  Learning,	
  	
  

VisualizaLon,	
  OperaLons	
  groups	
  
•  OCO-­‐2,	
  NPP	
  Sounder	
  PEATE,	
  SMAP,	
  

MER,	
  MSL,	
  Mars	
  2020,	
  Image	
  	
  
Processing	
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Instrument	
  and	
  Ground	
  Systems:	
  
Earth	
  Monitoring	
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Some	
  “Big	
  Data”	
  Grand	
  Challenges	
  I’m	
  
interested	
  in	
  

•  How	
  do	
  we	
  handle	
  700	
  TB/sec	
  of	
  data	
  coming	
  off	
  the	
  wire	
  when	
  we	
  
actually	
  have	
  to	
  keep	
  it	
  around?	
  
–  Required	
  by	
  the	
  Square	
  Kilometre	
  Array	
  

•  Joe	
  scien6st	
  says	
  I’ve	
  got	
  an	
  IDL	
  or	
  Matlab	
  algorithm	
  that	
  I	
  will	
  not	
  
change	
  and	
  I	
  need	
  to	
  run	
  it	
  on	
  10	
  years	
  of	
  data	
  from	
  the	
  Colorado	
  
River	
  Basin	
  and	
  store	
  and	
  disseminate	
  the	
  output	
  products	
  
–  Required	
  by	
  the	
  Western	
  Snow	
  Hydrology	
  project	
  

•  How	
  do	
  we	
  compare	
  petabytes	
  of	
  climate	
  model	
  output	
  data	
  in	
  a	
  
variety	
  of	
  formats	
  (HDF,	
  NetCDF,	
  Grib,	
  etc.)	
  with	
  petabytes	
  of	
  remote	
  
sensing	
  data	
  to	
  improve	
  climate	
  models	
  for	
  the	
  next	
  IPCC	
  assessment?	
  
–  Required	
  by	
  the	
  5th	
  IPCC	
  assessment	
  and	
  the	
  Earth	
  System	
  Grid	
  and	
  NASA	
  

•  How	
  do	
  we	
  catalog	
  all	
  of	
  NASA’s	
  current	
  planetary	
  science	
  data?	
  
–  Required	
  by	
  the	
  NASA	
  Planetary	
  Data	
  System	
  

Image	
  Credit:	
  h2p://www.jpl.nasa.gov/news/news.cfm?release=2011-­‐295	
  
Copyright	
  2012.	
  Jet	
  Propulsion	
  Laboratory,	
  California	
  InsLtute	
  of	
  Technology.	
  US	
  
Government	
  Sponsorship	
  Acknowledged.	
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Task Title PI Section 

1   Power Minimization in Signal 
Processing for Data-Intensive Science 

Larry 
D’Addario 

335 

2   Machine Learning for Smart Triage of 
Big Data 

Kiri 
Wagstaff 

388 

3   Archiving, Processing and 
Dissemination for the Big Date Era 

Chris 
Mattmann 

388 

4   Knowledge driven Automated Movie 
Production Environment distribution and 
Display (AMPED) Pipeline 

Eric  
De Jong 

3223 

 Big Data Strategic Initiative 

•  Apply lower-efficient digital architectures to future 
JPL flight instrument developments and proposals.  

•  Expand and promote JPL expertise with machine 
learning algorithm development for real-time triage. 

•  Utilize intelligent anomaly classification algorithms 
in other fields, including data-intensive industry. 

•  Build on JPL investments in large data archive 
systems to capture role in future science facilities. 

•  Enhance the efficiency and impact of JPL’s data 
visualization and knowledge extraction programs. 

Initiative Leader:  Chris Mattmann 
Steering Committee Leader:  Joseph Lazio 
 

Initial Major Milestones for FY13 Date 

Report on end-to-end power optimization of instruments Jun 2013 

Hierarchical classification method for VAST and ChemCam Jan 2013 

Demonstrate smart compression for Hyperion and CRISM Mar 2013 

Cloud computing research and scalability experiments Feb 2013 

Data formats and text, metadata extraction in big data sys. Aug 2013 

Develop AMPED pipeline and install in VIP Center Dec 2012 

Future Opportunities:  Mission and instrument competitions, data-
intensive industries, LSST, future radio observatories.   

JPL Concept:  Big data technology for data triage, archiving, etc. 

Key Challenges this work enables:  Broaden JPL business base         
    (relevant to 1X, 3X, 4X, 7X, 8X, 9X Directorates) 

Initiative Long Term Objectives 
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The	
  Square	
  Kilometre	
  Array	
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Credit:	
  Andrew	
  Hart	
  



How	
  did	
  I	
  get	
  involved	
  with	
  
Spark?	
  



•  Grab the principals behind the leading 
infrastructure/viz technologies 
-  Shove them in a tight space 
-  Provide beer coffee and snacks 
-  Provide awesome data  

and challenges 
-  Provide infrastructure and 

connectivity 
•  Check in every day and 1x a week 
•  Wall of Shame/Fame 
•  New Challenges Each Week 
•  Midterm Presentations 

•  Peanut Gallery 
•  Make people talk/socialize 
•  Put that all together 

DARPA	
  XDATA	
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DARPA	
  XDATA:	
  AnalyLcs	
  +	
  Viz	
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Met	
  these	
  fine	
  people	
  

•  Ion	
  Stoica	
  
CEO,	
  DataBricks	
  
Co-­‐Director,	
  
AMP	
  Lab	
  

•  Ma2	
  Massie	
  
Dev	
  Manager,	
  
AMP	
  Lab	
  

•  Dr.	
  Chris	
  White,	
  DARPA	
  
XDATA	
  PM	
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The Apache Software 
Foundation 

•  Largest open source 
software development  
entity in the world 
–  Over 2600+ committers 
–  Over 4200+ contributors 
–  Over 400+ members 

•  100+ Top Level Projects 
–  57 Incubating 
–  32 Lab Projects 

•  12 retired projects in the “Attic” 
•  Over 1.2 million revisions 
•  501(c)3 non-profit organization incorporated in Delaware 

- Over 10M successful requests 
served a day across the world 
 
- HTTPD web server used on 
100+ million web sites (52+% 
of the market) 
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Apache	
  Maturity	
  Model	
  
•  Start	
  out	
  

with	
  	
  
IncubaLon	
  

•  Grow	
  	
  
community	
  

•  Make	
  	
  
releases	
  

•  Gain	
  interest	
  
•  Diversify	
  

•  When	
  the	
  project	
  is	
  ready,	
  graduate	
  into	
  
–  Top-­‐Level	
  Project	
  (TLP)	
  
–  Sub-­‐project	
  of	
  TLP	
  

•  Increasingly,	
  Sub-­‐projects	
  are	
  discouraged	
  compared	
  to	
  TLPs	
  

14	
  SparkSummit	
  15-­‐Jun-­‐15	
  



Apache	
  is	
  a	
  well	
  recognized	
  brand	
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Why	
  Spark	
  and	
  NASA?	
  



Where	
  does	
  Spark	
  fit	
  into	
  science?	
  

U.S.	
  NaLonal	
  Climate	
  Assessment	
  
(pic	
  credit:	
  Dr.	
  Tom	
  Painter)	
  

SKA	
  South	
  Africa:	
  Square	
  Kilometre	
  Array	
  
(pic	
  credit:	
  Dr.	
  Jasper	
  Horrell,	
  Simon	
  Ratcliffe	
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NASA	
  Science	
  &	
  Architecture	
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Science Data File Formats 
•  Hierarchical Data Format (HDF) 

–  http://www.hdfgroup.org  
–  Versions 4 and 5 
–  Lots of NASA data is in 4, newer NASA data in 5 
–  Encapsulates  

•  Observation (Scalars, Vectors, Matrices, NxMxZ…) 
•  Metadata (Summary info, date/time ranges, spatial 

ranges) 

–  Custom readers/writers/APIs in many languages 
•  C/C++, Python, Java 
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Science Data File Formats 
•  network Common Data Form (netCDF) 

–  www.unidata.ucar.edu/software/netcdf/   
–  Versions 3 and 4 
–  Heavily used in DOE, NOAA, etc. 
–  Encapsulates  

•  Observation (Scalars, Vectors, Matrices, NxMxZ…) 
•  Metadata (Summary info, date/time ranges, spatial 

ranges) 

–  Custom readers/writers/APIs in many languages 
•  C/C++, Python, Java 

–  Not Hierarchical representation: all flat 
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OCO-­‐1	
  Workflow	
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Credit:	
  B.	
  Chafin	
  



NPP	
  Sounder	
  PEATE	
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Data-­‐Reuse	
  Between	
  Stages	
  
•  All	
  of	
  these	
  science	
  data	
  pipelines	
  

– Read/Write	
  NetCDF,	
  HDF	
  files	
  
– Write	
  to	
  distributed	
  file	
  systems	
  (only	
  recently	
  
HDFS,	
  GlusterFS,	
  etc.)	
  

•  Have	
  Lming	
  constraints	
  
•  Include	
  jobs	
  with	
  varying	
  Lming	
  	
  

– Some	
  early	
  compleLng	
  jobs	
  (<1ms)	
  
– Some	
  long	
  running	
  jobs	
  

•  What	
  does	
  this	
  sound	
  like?	
  SPARK	
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Apache OODT 
•  Entered “incubation” at the Apache 

Software Foundation in 2010 
•  Selected as a top level Apache Software 

Foundation project in January 2011 
•  Developed by a community of participants 

from many companies, universities, and 
organizations 

•  Used for a diverse set of science data 
system activities in planetary science, 
earth science, radio astronomy, 
biomedicine, astrophysics, and more 

OODT Development & user community includes:  

25 

http://oodt.apache.org 
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SciSpark	
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MoLvaLon	
  for	
  SciSpark	
  

•  Experiment	
  with	
  in	
  memory	
  and	
  frequent	
  data	
  
reuse	
  operaLons	
  
– Regridding,	
  InteracLve	
  AnalyLcs	
  such	
  as	
  MCC	
  
search,	
  and	
  variable	
  clustering	
  (min/max)	
  over	
  
decadal	
  datasets	
  could	
  benefit	
  from	
  in-­‐memory	
  
tesLng	
  (rather	
  than	
  frequent	
  disk	
  I/O)	
  

– Data	
  IngesLon	
  (preparaLon,	
  formaong)	
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Architecture	
  of	
  SciSpark	
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Scientific RDD Creation

SciSpark

HDFS / 
Shark

Scala 
(split) Map Save / 

Cache

Split by 
Time

Split by 
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Load 
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Load 
NetCDF Regrid Metrics

Data Scientists / 
Expert Usrs

Scientists / Decision Makers / 
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Data Centers/
SystemsRCMES obs4MIPs ESGF ExArch DAACs
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model skill varies strongly for metrics. UC and UCT that

exhibit the largest bias (Fig. 2k) also yield large RMSE

(Fig. 2l); however, DMI, which shows relatively small
bias, is one of the two that show the largest RMSE. All

RCMs also consistently yield higher skill in simulating

precipitation distribution over land surfaces for winter than
for summer (Fig. 3a).

The ENS bias (Fig. 4a) is characterized by wet (dry)

biases in the climatologically dry (wet) regions. This indi-
cates a weakness in representing the precipitation contrast

across the African landscape that would have deleterious

effects in representing everything from regional atmospheric
circulation to the coupling with land and vegetation pro-

cesses. To consider model biases in relation to typical

anomalous conditions, we normalize the ENS bias by the
interannual variability of the CRU precipitation over the

18-year period (rt). The ± 1rt range approximately coin-

cides with the 68 % CI. In this case, the values remain
within the ±1 range over most of Africa (Fig. 4b), i.e., the

magnitude of the ENS bias is less than the local interannual

variability. To consider the systematic bias relative to the
expected precipitation values, the ENS bias is normalized by

the CRU annual-mean value (Fig. 4c). In this case, the

normalized ENS bias is \20 % of the CRU in the region
between 20!S and 10!N. Both normalized ENS biases are

large in the dry/marginally-dry regions including northern

Sahara, eastern Horn of Africa, and Arabia Peninsula.
Figure 5 presents the precipitation annual cycle (Lieb-

mann et al. 2012) in 10 out of the 21 sub-regions; two in
the northern Africa coast (Fig. 5a, f), four in the west

Africa (Fig. 5b–e) and four in the east Africa (Fig. 5g–j)

regions. An annual cycle plot for the entire 21 sub-regions
is presented in Supplemental Figure 2a, b (http://rcmes.jpl.

nasa.gov/publications/figures/Kim-Climate_Dynamics-2012

). Two green lines in Fig. 5a–j represent the ±1rt range

about the observation. All RCMs well simulate the sea-

sonality of precipitation, at least in its phase. Despite large

inter-RCM variations, ENS agrees reasonably with CRU in
most sub-regions. For the Mediterranean regions (Figs. 5a,

f), ENS is within the ±1rt range for most of the year. ENS

also closely agrees with CRU, both in seasonality and
magnitude, in most of the western Africa regions. Fidelity

of ENS in these east Africa regions is generally lower than

in the west coast region. In the Ethiopian Highlands and
Eastern Horn of Africa, all RCMs overestimate CRU and

ENS is outside the ±1rt range throughout a year. The

RCM skill in simulating the annual cycle is summarized for
all sub-regions using portrait diagrams. The normalized

RMSE (Fig. 5k) reveals that model skill varies according

to regions. RMSE remains\70 % of CRU for most RCMs
in most sub-regions except the northeastern Africa (eastern

Horn of Africa) and eastern Arabia Peninsula (R10, R20,

R21), coastal Western Sahara (R05), and eastern inland
Sahara (R06) regions. Most RCMs also simulate the phase

of the annual cycle measured by the correlation coeffi-

cients, reasonably well except for R10, R20, and R21
where RMSE is also large (Fig. 5l). Results in Fig. 5 show

that RCM skill varies according to regional climate as these

regions of poor performance are characterized by arid cli-
mate. Among these, the regions in northeastern Africa and

eastern Arabia Peninsula (regions 10, 20, and 21) are

affected by the Arabian-Sea monsoon (e.g., Segele et al.
2009). This may imply that in addition to shortcomings in

model physics for simulating precipitation in these dry
regions, the seasonal moisture flux from the Indian Ocean

associated with the movement of the Indian Ocean ITCZ

(Liebmann et al. 2012) may not be well represented via the
lateral boundary forcing. Evaluation of the large-scale

forcing will be subjects for future studies. Figure 5k, l also

show that ENS is consistently among the best performers.

(a) Precipitation (b) Temperature

Fig. 3 The standardized deviations and spatial pattern correlations between the CRU data and the individual model results for the boreal summer
(June–July–August; blue) and winter (December–January–February; red) over the land surface: a precipitation and b temperature

Systematic model errors

123

Author's personal copy

eastern regions. This west-to-east gradient is reversed in
the Southern Hemisphere (SH) subtropical region. All

RCMs simulate these observed features, but with varying

fidelity (Supplemental Figure 1; http://rcmes.jpl.nasa.gov/
publications/figures/Kim-Climate_Dynamics-2012). The

model bias (Fig. 2a–j) varies strongly among these RCMs.

It also shows systematic regional variations across all or a
majority of these RCMs. All or most RCMs generate wet

biases in South Africa and sub-Sahara (Sahel) region and

dry biases in the northwestern Sahara, northern Madagas-
car Island, southeastern Africa coast, and interior Arabia

Peninsula regions. Precipitation biases in the tropics vary

among RCMs. The spatial variation of the annual-mean
precipitation is evaluated for the mean (Fig. 2k), pattern

correlation, and standardized deviation (Fig. 2l) over the

land area. The distance between REF and individual points
in the Taylor diagram corresponds to RMSE (Taylor 2001).

All RCMs well simulate the overland-mean precipitation

amount (Fig. 2k) with typical biases \10 % of CRU,
except UC and UCT. The spatial pattern agrees closely

with CRU with correlation coefficients 0.8–0.95 (Fig. 2l).

Most RCMs overestimate the magnitude of spatial vari-
ability (standardized deviations). ENS yields smaller

RMSE than all RCMs within ENS (Fig. 2l). The measured

mm/day

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(k) (l)

Fig. 2 The biases in the simulated annual-mean precipitation (mm/
day) against the CRU data for the individual models (a–j). The
overland-mean precipitation (k) and the spatial pattern correlations

and standardized deviations (l) with respect to the CRU data over the
land surface. The red square in (l) indicates the multi-RCM ensemble

J. Kim et al.

123
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Extract, Transform and Load (ETL)

Sci Spark User Interface



Sci	
  Spark	
  –	
  VisualizaLon	
  (D3	
  and	
  friends)	
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Query Storage

Raster
Vector
Text

Filtering

Gora 
(storage framework)

Solr 
(indexing framework)

web 
pages index

HBase/Hadoop

Tika
(parsing framework)

Pr
ot

oc
ol 

La
ye

r

•  Tika,	
  Nutch,	
  Blaze,	
  Bokeh,	
  Solr,	
  Tangelo	
  



Use	
  Cases	
  

•  (A)	
  MulL-­‐stage	
  generaLon	
  to	
  generate	
  Lme-­‐
split	
  data	
  

•  (B)	
  MulL-­‐stage	
  operaLon	
  to	
  select	
  data	
  from	
  
Shark,	
  and	
  cluster	
  by	
  deviaLon	
  from	
  mean	
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Climate	
  Metrics	
  on	
  SciSpark	
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SciSpark	
  –	
  just	
  geong	
  started	
  

•  Funded	
  NASA	
  AIST14	
  award	
  to	
  construct	
  
•  SciSpark	
  	
  climate	
  scenarios	
  

– Climate	
  extremes	
  /	
  impact	
  analysis	
  and	
  clustering	
  
– Mesocale	
  ConvecLve	
  Complex	
  Search	
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SKA/Astronomy	
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Go Where the Science is Best!
Deploy Where there is No Infrastructure
Reconfigure as Needed to Optimize Performance
Simplify by Using Raw Voltage Capture



DARPA	
  Memex	
  

•  Domain	
  Specific	
  search	
  of	
  audio/video/media	
  
•  Focused	
  crawling;	
  interacLve	
  crawling	
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Conclusions	
  

•  Lots	
  of	
  places	
  in	
  science	
  and	
  NASA	
  for	
  Spark	
  
•  Great	
  connecLons	
  already	
  
•  ExisLng	
  Apache	
  projects	
  to	
  integrate	
  
upstream	
  

•  Downstream	
  use	
  cases	
  
•  Come	
  chat	
  with	
  me	
  today!	
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Thank	
  you!	
  

chris.a.ma2mann@nasa.gov	
  
@chrisma2mann/Twi2er	
  
h2p://sunset.usc.edu/

~ma2mann/	
  	
  

Credit:	
  Vala	
  Afshar,	
  Extreme	
  Networks	
  


