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Auto-Scaling 
•  Detects changes of resource usage in current workloads →  

        Dynamically allocate/de-allocate resources 
•  Meets SLA requirements at reduced cost 
•  Existing auto-scaling approaches react slowly and often miss 

optimization opportunities 
•  YARN and Mesos have initial auto-scaling support, yet how 

workloads can benefit from the capability? 

Infrastructure as a Service"
Resource Manager (YARN/Mesos)"



Main Focus 
•  Analyze how scaling affects Spark workloads 

–  Is simply adding new resources sufficient for performance 
improvement? 

•  Analyze pros/cons of current Spark auto-scaling mechanism 
–  Are there rooms for performance improvement? 



Agenda 
•  Introduction 
•  Evaluation setup 
•  Impact of scaling 
•  Auto-scaling in Spark 
•  Lessons and future work 



Experimental Setup 
•  Baseline setup (6 nodes): 

•  Node: 4 CPUs, 8GB, 100 GB HDDs 
•  YARN executor: 3GB, 1CPU   
•  Mesos executor: 6GB and 4CPUs 

•  4 benchmarks (SparkBench*): 
–  Kmeans (input 37GB) 
–  Page Rank (input 1.1GB) 
–  Spark SQL: SQL queries (input 39GB) 
–  Logistic Regression (input 47GB) 

•  Scaling up: add 4 new nodes “instantaneously” 
•  Wait ~45 seconds after benchmark run 

•  Scale down – wait 3min after benchmark run 
*	
  h6ps://bitbucket.org/lm0926/sparkbench	
  



Mechanisms for Scaling 
•  Scale up – add new node “instantaneously” (VM already 

provisioned) 
–  Run YARN node manager or Mesos slave daemon 
–  New nodes are Task nodes (no HDFS component) 

–  Scale down – kill resource manager processes 
•  Spark on YARN – set total executors for app higher than 

available in cluster to ensure executors get launched 
•  Spark on Mesos – make use of new resource offers from 

Mesos 



Agenda 
•  Introduction 
•  Evaluation setup 
•  Impact of scaling 
•  Auto-scaling in Spark 
•  Lessons and future work 



Runtime – Spark on YARN 

Benchmark! Runtime 
(baseline)!

Runtime !
(scale out)!

Runtime 
Reduction!

Kmeans" 54min 44sec" 29min 26sec" 46%"
Page Rank" 9min 28sec" 8min 18sec" 12.3%"

 Spark SQL queries" 15min 45sec" 13min 11sec" 16.3%"
LogisticRegression" 13min 10sec" 12min 55sec" 2%"

Similar behavior seen on Mesos 



Why the variation? 
•  Delay scheduling preventing tasks to be scheduled on 

new node 

Benchmark! Total 
tasks!

% tasks locality 
preference 

RACK or ANY!

% tasks wait >3s 
to be scheduled!

% tasks on new 
nodes!

KMeans" 7800" 0.4%" 3.5%" 24.5%"
Page Rank" 21600" 0%" 0.01%" 13.5%"
Spark SQL" 9805" 3%" 0.2%" 11.8%"

LogisticRegression" 6637" 0%" 0.1%" 1.5%"



Tuning Spark for Scaling 
•  locality wait time 

–  How soon to change locality preference of tasks in 
stage 

•  resource revive interval 
–  How soon to inform scheduler a resource that has not 

been used is still available 



Runtime – Tuning Spark 
Benchmark! Runtime 

(baseline)!
Runtime 

(scale out)!
Runtime (scale 

out– revive 
interval 100ms)!

Runtime (scale 
out– locality wait 

time 100ms)!

Runtime (scale 
out–locality wait 

time 0ms)!
KMeans" 54min 44sec" 29min 26sec" 30min 39sec" 11min 32sec" 14min 1sec"

Page Rank" 9min 28sec" 8min 18sec" 8min 35sec" 7min 35sec" 5min 57sec"
Spark SQL queries" 15min 45sec" 13min 11sec" 12min 55sec" 11min 40sec" 19min 57sec"
LogisticRegression" 13min 10sec" 12min 55sec" 12min 43sec" 6min 54sec" 9min 12sec"

Benchmark! % tasks on new 
node (locality wait 

time 3s)!

% tasks on new node 
(locality wait time 

100ms)!

% tasks on new node 
(locality wait time 

0ms)!
KMeans" 24.5%" 39.1%" 38%"

Page Rank" 13.5%" 16.1%" 39%"
Spark SQL queries" 11.8%" 22.6%" 39%"
LogisticRegression" 1.5%" 38%" 39%"



KMeans - CPU Utilization Per Node 

Scale out (locality wait - 100ms) 
1 of the 4 new nodes 

Base line (1 of the 6 base nodes) Scale out (locality wait - 100ms) 
1 of the 6 base nodes 

Scale out (locality wait - 0ms) 
1 of the 6 base nodes 

Scale out (locality wait - 0ms) 
1 of the 4 new nodes 



KMeans - Network Utilization 
10 MB shuffle read 
12 MB shuffle write 

Baseline 

10 MB shuffle read 
11 MB shuffle write 

Scale out (locality wait - 100ms) 

Greater bandwidth consumption due to transferring of RDD partitions 

Scale out (locality wait - 0ms) 

10 MB shuffle read 
12 MB shuffle write 



KMeans - Memory Utilization 

Baseline KMeans – scale out (locality wait - 100ms) 

KMeans – scale out (locality wait - 0ms) 



PageRank - CPU Utilization 

Scale out (locality wait - 100ms) 
1 of the 4 new nodes 

Base line (1 of the 6 nodes) Scale out (locality wait - 100ms) 
1 of the 6 nodes 

Scale out (locality wait - 0ms) 
1 of the 4 new nodes 

Scale out (locality wait - 0ms) 
1 of the 6 nodes 



PageRank - Network Utilization 
15.50 GB shuffle read 
16.71 GB shuffle write 

Baseline 

16.07 GB shuffle read 
16.71 GB shuffle write 

Scale out (locality wait - 100ms) 

Greater bandwidth consumption due to transferring of RDD partitions 

16.10 GB shuffle read 
16.73 GB shuffle write 

Scale out (locality wait - 0ms) 



PageRank - Memory Utilization 

Baseline Scale out (locality wait - 100ms) 

Scale out (locality wait - 0ms) 



SQL – Network Utilization 

Scale out (locality wait - 0ms) Scale out (locality wait - 100ms) 



LogisticRegression – Network Utilization 

Scale out (locality wait - 0ms) Scale out (locality wait - 100ms) 



Take-aways 
•  Locality wait time is key to improvement 

– Tune during runtime? 
– Adjust during scaling to force use of new 

nodes 
•  Need to consider gains from running task 

on new nodes vs. network bandwidth used 



Scaling Down 
Benchmark" Runtime – Baseline 

(10 nodes)"
Runtime – "
Scale in"

KMeans" 11min 54sec" 49min 13sec"

PageRank" 11min 41sec" 13min 12sec"

Spark SQL" 12min 50sec" 15min 52sec"

LogisticRegression" 10min 20sec" 14min 7sec"

Re-execution overhead worst for some workloads 



Scaling Down with Mesos/YARN 
•  Prevent Spark from scheduling more tasks on 

nodes that are selected to removed 
– Mesos fine-grained, simply not offer resource 

from node selected for removal 
– Mesos coarse-grained and YARN, requires 

cooperation from Spark to not schedule new 
tasks on nodes selected for removal 

•  Shutdown node once tasks are drained 
– What to do about stored shuffle data? 



Agenda 
•  Introduction 
•  Background 
•  Evaluation setup 
•  Impact of scaling 
•  Auto-scaling in Spark 
•  Lessons and future work 



Existing Auto-scaling Mechanism 
•  Dynamic Executor Allocation (DEA) 

–  Works only with YARN 
–  Spark request new executors after a fixed time interval 

when there are still pending tasks 
–  Number of requested executors grow exponentially 

•  Works but does have some potential inefficiency 



Improving Auto-scaling 
•  Main reason tasks are not scheduled on new node 

is data locality preferences 
–  Delay scheduling preventing tasks from being 

run on new node 
•  Approach: 

–  Change locality wait time dynamically during 
application runtime 

–  Ideally, reduce locality wait time at point of scale 
out, then after stabilizes, revert to previous 
locality wait time value 



Improving Auto-scaling Details 
•  Ideally: tasks spread evenly among all executors 

–  average # of tasks per executor:  
•  T = Total tasks / # executors 

•  ti = # of tasks per executori 
•  If ti < alpha*T, for s seconds, then change locality 

wait time 
•  If ti is still below threshold after r seconds from first 

change of locality time, then remove executor 
•  If no executors below threshold, reset locality wait 

time to initial value 



Dynamically Adjusting Locality Wait Time at 
Runtime with Dynamic Allocator Execution 

Benchmark! Runtime  
(scale out w/ 

DEA)!
!

% tasks on new 
node (locality 
wait time 3s)!

Runtime!
(scale out w/ 

DEA and runtime 
adjustment of 

locality wait time)!

% tasks on new 
node (dynamic 

locality wait time)!

KMeans" 32min 15sec" 28.6%" 20min 35sec" 35%"
PageRank" 12min 2sec" 12.9%" 11min 23sec" 14%"
Spark SQL" 12min 48sec" 11.5%" 12min 26sec" 16%"

Logistic 
Regression"

11min 58sec" 0.7%" 12min 16sec" 3.3%"

Parameters: alpha = 30%, s = 5sec, new locality wait time = 100ms 
 
Mechanism helps at increasing % tasks on new nodes 



Simple Auto-scaling Improvements 
Existing 
Mechanism 

Description Drawbacks Proposal 

When to scale? Backlogged tasks 
exist for n secs 

Request CPU 
resources when 
Tasks might be I/O 
bound 

CPU/memory of more than 50% 
nodes are greater than a threshold t 
(e.g., 98%) over n seconds 

How many more 
VMs? 

Increase 
exponentially number 
of executors until 
configured max or # 
of pending tasks 

Initially under request n% of the task queue length 

Whether to scale 
(still beneficial)? 

Always scale if above 
condition met 

Scaling unnecessary 
if near end or short 
runtime 

Option1: According to the ratio of 
unprocessed data:  e.g., < 80%. 
Rough estimation of job execution 
time:  proportional to the data 
process rate 

Option2: Model driven – predict 
runtime based on previous runs 
 



Agenda 
•  Introduction 
•  Evaluation setup 
•  Impact of scaling 
•  Auto-scaling in Spark 
•  Lessons and future work 



Lessons 
•  Naïve scaling can help but effectiveness varies greatly 

across different workloads 
•  Why some workloads do not respond well to scaling? 

–  Delay scheduling preventing new nodes to be utilized 
•  Dynamic executor allocation works but can be improved 

–  Dynamically changing locality wait time can be 
effective 

•  Overhead of transferring RDD partitions can reduce 
benefit of scaling 



Future Work 
•  Study scaling effects given multiple 

simultaneous workloads 
•  Implement better support for scaling down 
•  Enhance DEA to make use of resource 

monitors and job runtime prediction 



Backup 



Delay Scheduling 
•  Intended for fixed-size clusters running 

multiple workloads with short tasks 
•  Emphasis on scheduling task on nodes 

containing data 
– Wait short time for resources to free up 

on nodes containing data rather than run 
task on node available now but further 
away from data 



Resource Managers + Auto-scaling 
•  Resource management  
→ different frameworks can coexist  

        → high resource utilization 
•  Facilitates on-demand resource allocation – support 

elastic services 

Infrastructure as a Service"

Resource Manager (YARN/
Mesos)"



Brief Intro: YARN 

•  Resource Manager (RM) controls resource allocation 
•  Application Master (AM) negotiates with RM for 

resources and launch executors to run jobs 



Brief Intro: Mesos 
•  Framework schedulers accept or 
reject offered resource 
•  Resource preferences are 
communicated to Mesos thru common 
APIs 

•  Coarse-grained mode 
–  Mesos launches one long-running Spark 

executor on each node to execute all Spark 
tasks 

•  Fine-grained mode 
–  Mesos launches executor for each Spark 

task 



Runtime – Spark on Mesos 
Benchmark! Runtime (baseline)! Runtime (scale out)!

Fine-grained" KMeans" 92min 54sec" 35min 37sec"
Page Rank" 19min 29sec" 16min 55 sec"

Spark SQL queries" 24min 45sec" 19min 7sec"
LogisticRegression" 14min 43sec" 14min 39sec"

Coarse-grained" KMeans" 89min 24sec" 11min 49sec"
Page Rank" 8min 29sec" 7min 41sec"

 Spark SQL queries" 10min 32sec" 8min 30sec"
LogisticRegression" 10min 57sec" 7min 56sec"


