Towards the True Elasticity
of Spark

Michael Le and Min Li

IBM, T.J. Watson Research Center

Spark

summit2c

Auto-Scaling

« Detects changes of resource usage in current workloads —
Dynamically allocate/de-allocate resources
« Meets SLA requirements at reduced cost
« Existing auto-scaling approaches react slowly and often miss
optimization opportunities
 YARN and Mesos have initial auto-scaling support, yet how
workloads can benefit from the capability? F-=--=--

Spcniz Spoﬁzz Spoﬁzz Spoﬁzz '-: Spqr‘l’g I

Spofl’(?
summit2015

Main Focus

* Analyze how scaling affects Spark workloads

— Is simply adding new resources sufficient for performance
improvement?

« Analyze pros/cons of current Spark auto-scaling mechanism
— Are there rooms for performance improvement?

.‘Jpcar‘lgZ
summit2015

Agenda

Evaluation setup

Impact of scaling
Auto-scaling in Spark
Lessons and future work

Spor‘f(z
summit2015

Experimental Setup

« Baseline setup (6 nodes):

* Node: 4 CPUs, 8GB, 100 GB HDDs

* YARN executor: 3GB, 1CPU

* Mesos executor: 6GB and 4CPUs
* 4 benchmarks (SparkBench®):

— Kmeans (input 37GB)

— Page Rank (input 1.1GB)

— Spark SQL: SQL queries (input 39GB)

— Logistic Regression (input 47GB)
« Scaling up: add 4 new nodes “instantaneously”

Soarks Wait ~45 seconds after benchmark run
?ummltzow

« Scale down — wait 3min after benchmark run
M’ ; * httgs:“bitbucket.org‘lm0926‘sgarkbench

Mechanisms for Scaling

* Scale up — add new node “instantaneously” (VM already
provisioned)

— Run YARN node manager or Mesos slave daemon
— New nodes are Task nodes (no HDFS component)
— Scale down — kill resource manager processes

« Spark on YARN - set total executors for app higher than
available in cluster to ensure executors get launched

sea®® Spark on Mesos — make use of new resource offers from

summit20i1s

m Mesos

Agenda

* Impact of scaling
* Auto-scaling in Spark
* Lessons and future work

<<

Seucryr’r%tzow

-~

Runtime — Spark on YARN

Benchmark Runtime Runtime Runtime
(baseline) (scale out) Reduction

Kmeans 54min 44sec 29min 26sec 46%
Page Rank 9min 28sec 8min 18sec 12.3%
Spark SQL queries 15min 45sec 13min 11sec 16.3%
LogisticRegression 13min 10sec 12min 55sec 2%
P .. .
Seark, . Similar behavior seen on Mesos

Why the variation?

* Delay scheduling preventing tasks to be scheduled on

new node
Benchmark Total | % tasks locality | % tasks wait>3s | % tasks on new
tasks preference | to be scheduled nodes
RACK or ANY
KMeans 7800 0.4% 3.5% 24.5%
Page Rank 21600 0% 0.01% 13.5%
Spark SQL 9805 3% 0.2% 11.8%
LogisticRegression 6637 0% 0.1% 1.5%
Spor‘l'g

summit2015

- OO OO

Tuning Spark for Scaling

 locality wait time

— How soon to change locality preference of tasks in
stage

e resource revive interval

— How soon to inform scheduler a resource that has not
been used is still available

Spor‘lzz
summit2015

Runtime — Tuning Spark

Benchmark Runtime Runtime Runtime (scale Runtime (scale | Runtime (scale
(baseline) (scale out) out- revive | out- locality wait | out-locality wait
interval 100ms) time 100ms) time Oms)
KMeans 54min 44sec 29min 26sec 30min 39sec 11min 32sec 14min 1sec
Page Rank 9min 28sec 8min 18sec 8min 35sec 7min 35sec 5min 57sec
Spark SQL queries 15min 45sec 13min 11sec 12min 55sec 11min 40sec 19min 57sec
LogisticRegression 13min 10sec 12min 55sec 12min 43sec 6min 54sec 9min 12sec
Benchmark % tasks on new | % tasks on new node | % tasks on new node
node (locality wait (locality wait time (locality wait time
time 3s) 100ms) Oms)
KMeans 24.5% 39.1% 38%
e Page Rank 13.5% 16.1% 39%
Seark, Spark SQL queries 11.8% 22.6% 39%

LogisticRegression 1.5% 38% 39%

KMeans - CPU Utilization Per Node

10.112.80.209 CPU last custom

10.112.80.209 CPU last custom
100

10.112.80.209 CPU last custom
- 100

100

50 50

Percent
Percent

50

Percent

0

0 0
23:00 23:20 23:40 08:35 08:40

10:20 10:25 10:30

Base line (1 of the 6 base nodes) Scale out (locality wait - 100ms) Scale out (locality wait - Oms)

1 of the 6 base nodes 1 of the 6 base nodes
10.112.80.216 CPU last custom 10.112.80.215 CPU last custom
100 100
U 5o g 50
5 i
0 0
08:35 08:40 10:20 10: 25 10:30
Spaik’ Scale out (locality wait - 100ms) - -
summit2015 y Scale out (locality wait - Oms)
1 of the 4 new nodes

1 of the 4 new nodes

KMeans - Network Utilization

10 MB shuffle read
12 MB shuffle write

unspecified Cluster Network last custom
600 M f
500 M
400 M
300 M
200 M
100 M

Bytes/sec

0 -
23:00 23:20 23:40
@ In Now:113.5k Min: 42.2k Avg: 29.6M Max:568.8M
W Out Now:397.9k Min: 27.3k Avg: 28.9M Max:549.2M

10 MB shuffle read
11 MB shuffle write

unspecified Cluster Network last custom
1000 M

800 M
600 M
400 M

Bytes/sec

200 M

0
08:30 08:35 08:40
B In Now:521.6k Min: 42.4k Avg:163.6M Max:909.7M

M Out Now:951.7k Min: 32.4k Avg:159.0M Max:881.6M

10 MB shuffle read
12 MB shuffle write

unspecified Cluster Network last custom

goo Mt
700 M
600 M
500 M
400 M
300 M
200 M
100 M
0

Bytes/sec

10:20 10:25 10:30
B In Now: 33.6M Min: 47.0k Avg:164.3M Max:783.5M
M Out Now: 21.5M Min: 36.7k Avg:160.8M Max:759.7M

Baseline

<<

Spark

Scale out (locality wait - 100ms)

Scale out (locality wait - Oms)

summitzoe - Greater bandwidth consumption due to transferring of RDD partitions

KMeans - Memory Ultilization

unspecified Cluster Memory last custom unspecified Cluster Memory last custom
50 G 80 G
40 G 201G
60 G
g ¢ £ oo
& 206 & 306
10 G 20 G
10 G
o o
23: 00 : 23:40 08:35
| Use Now @ 3.5G 3.5G Avg: 39.8G Max: 43.1G | Use Now : 54.7G Min: 6. 0G Avg: 60. 5G Max: 72.9G
B Share Now: 0.0 0.0 Avg: 0.0 Max: 0.0 M Share Now: 0.0 Min: 0.0 Avag: 0.0 Max: 0.0
B Cache Now: 2.8G 1.5G Avg: 3.2G Max: 14 . 8G @ Cache Now: 3.5G Min: 1.9G Avg: 8.1G Max: 30.1G
O Buffer Now: 82.2M in: 49.2M Avg: 320.5M Max: 493.7M O Buffer Now: 283.4M Min: 278.1M Avg: 870.8M Max: 1.9G
O Free Now: 39.5G : 226.5M Avg: 2.66G Max: 39.5G O Free Now: 18.0G Min: 850.4M Avag: Cia 'z 5 Max: 31.3G
W Swap Now : 1.4G a 1.0G Avag: 1.8G Max: 2.0G B Swap Now : 2.2G Min: 803.9M Avg: 1.7G Max: 2.3G
B Total Now: 45.9G 45.9G Avg: 45.9G Max: 45.9G W Total Now: 76. 66 Min: 45.9G Avg: 75.4G Max: 76. 66

Baseline KMeans — scale out (locality wait - 100ms)

unspecified Cluster Memory last custom

90 G
80 G S S S —
70 G
- 60 G
z 50 G
= 406G
306G
20 G
10 G
o
10:20 10: 25
m Use Now : 5.8G Min: 3.0G Avg: 52.8G Max: 69.5G
M Share Now: 0.0 Min: 0.0 Avag: 0.0 Max: 0.0
"\z @ Cache Now: 8.4G Min: 1.1G Avg: 7.4G Max: 20.3G
O Buffer Now: 149.06M Min: 94.8M Awvg: 145.5M Max: 180.5M
SpQrK I:Ig:ee N'c:d: széztic M;q: 15226 Axg: 1432‘5;5 Mﬁx: 62&2&
|| =] Ofed' & . ain: . vag: . ax: .
summit2oi1s B Total Now: 76.60 Min: 45.9G Avg: 74.5G Max: 76.6G

KMeans — scale out (locality wait - Oms)

PageRank - CPU Utilization

10.112.80.209 CPU last custom
100

50

10.112.80.209 CPU last custom
100

50 B

10.112.80.209 CPU last custom
100

50

Percent
Percent
Percent

0 0 0
23:45 23:50 16:20 16:25 09:20

Base line (1 of the 6 nodes) Scale out (locality wait - 100ms) Scale out (locality wait - Oms)

1 of the 6 nodes 1 of the 6 nodes

10.112.80.216 CPU last custom 10.112.80.215 CPU last custom

100 100
+ +
|- [=
o o

c 21 o 50
LY w
[« [«

0 0

16:20 16:25 09:20
Si orkz
gbnunnzow

Scale out (locality wait - 100ms)

Scale out (locality wait - Oms)
_ 1 of the 4 new nodes

1 of the 4 new nodes

PageRank - Network Utilization

15.50 GB shuffle read
16.71 GB shuffle write

unspecified Cluster Network last custom

504
40H
v
LY
o 30H
o
£ 20M
>
s
101

23:45 23:50
H In Now: 16.3M Min: 38.7k Avg: 26.3M Max: 43.5M

M Out Now: 16.06M Min: 33.5k Avg: 26.1M Max: 43.3M

16.07 GB shuffle read
16.71 GB shuffle write

unspecified Cluster Network last custom

gomt
70N
60 M
50N
40 M
30N
20N
10 M
0

Bytes/sec

16:20 16:25

H In Now: 42.1M Min: 31.5k Avg: 46.0M Max: 70.5M
M Out Now: 42.4M Min: 30.5k Avg: 44.9M Max: 77.0M

16.10 GB shuffle read
16.73 GB shuffle write

unspecified Cluster Network last custom

,

120 M
100 M
80 M
60 M
40 M
20M

0

Bytes/sec

09:20

H In Now: 39.5M Min: 61.7k Avg: 75.5M Max:125.0M
M Out Now: 41.6M Min: 36.3k Avg: 73.8M Max:121.2M

Baseline

<<

Spark

Scale out (locality wait - 100ms)

Scale out (locality wait - Oms)

summitzoe - Greater bandwidth consumption due to transferring of RDD partitions

PageRank - Memory Utilization

unspecified Cluster Memory last custom unspecified Cluster Memory last custom
s0 G T 80 G
FeSTSTTTTT-
40 G ZO1G
60 G
o 30 G o 50 G
< <. 40 G
= 20 G & 30 G
10 G 20 G
10 G
o o
23:45 EPE AN Y
M Use Now : 10. 8G Min: 3.7G Avg: 23.1G Max: 31.8G | Use Now : 13. 9G Min: 2.7G Avg: 32.8G Max: 45.2G
M Share Now: 0.0 Min: 0.0 Avg: 0.0 Max: 0.0 M Share Now : 0.0 Min: 0.0 Avg: 0.0 Max: 0.0
B Cache Now: 1.4G Min: 730.0M Avg: 7.4G Max: ASMSG @ Cache Now : 5.7G Min: 899.7M Avg: 10.2G Max: 18. 0G
O Buffer Now: 183.0M Min: 134.2M Avg: 170.7M Max: 191.2M O Buffer Now: 276.38M Min: 137.0M Avg: 240.8aM Max: 279.4M
O Free Now: 33.5G Min: 685.7M Avg: 15. 3G Max: 41.4G O Free NOw : 56.7G Min: 13.2G Avag: 30. 1G Max: 56.7G
B Swap Now : 1.5G Min: 1.5G Avg: 1.5G Max: 1.6G W Swap Now : 2.2G Min: 2.2G Avg: 2.4G Max: 2.4G
m Total NOow : 45. 9G Min: 45. 9G Avg: 45, 9G Max: 45. 9G W Total NOow : 76. 66 Min: 45. 9G Avg: 73.4G Max: 76. 66
. .
Baseline Scale out (locality wait - 100ms)
unspecified Cluster Memory last custom
80 G
70 G
60 G
v 50 G
a
= 40 G
@ 30 G
20 G
10 G
o
Use Now : 8.3G Min: 6. 0G Avag: 35.9G Max: 49.1G
Share Now: 0.0 Min: 0.0 Avg: 0.0 Max: 0.0
B Cache Now: 8.4G Min: Zla'=ls Avag: 12.4G Max: 21.2G
"‘z O Buffer Now: 998.4M Min: 608.5M Awvg: 952.4M Max: 998.4M
O Free Now : 58.9G Min: 5.2G Avag: 26.7G Max: 58.9G
pr B Swap Now : 3.1G Min: 3.1G Avag: 3.1G Max: 3.1G
summit>01s B Total Now: 76.66 Min: 63.8G Awvg: 75.9G Max: 76.66

Scale out (locality wait - Oms)

SQL — Network Utilization

unspecified Cluster Network last custom unspecified Cluster Network last custom
F 5 F
200 M
80 M
T 6O M — g —=OM
wi wi
~ ~
B 40m g 100M
+ +
& &
20 M - | 50 M
0 » 0 »
15:35 15:40 15:45 10:45 10:50 10:55 11: 00 11: 05
[In Now:224.1k Min: 47.1k Avg: 28.4M Max: 86.2M @ In Now: 7.4M Min: 65.0k Avg: 58.2M Max:131.5M
B Out Now:728.4k Min: 33.7k Avg: 27.7M Max: 86.0M B Out Now: 6.5M Min: 30.5k Avg: 55.8M Max:122.4M

Scale out (locality wait - 100ms) Scale out (locality wait - Oms)

<<

Spark

summit20i1s

LogisticRegression — Network Utilization

unspecified Cluster Network last custom unspecified Cluster Network last custom
Y FS
200 M 120 M
o 150 M o 100 M
o &, 80 M
~ ~
w100 M o 60 M
5 5 aom
@ 50M (-]
20 M
0 > 0 >
12:55 09:35 09:40
E In Now: 3.5M Min: 33.6k Avg: 42.6M Max:128.1M E In Now: 12.7M Min: 66.5k Avg: 41.9M Max:117.9M
[Out Now: 3.8M Min: 28.4k Avg: 41.4M Max:124.4M [Out Now: 11.9M Min: 32.1k Avg: 39.9M Max:120.2M

Scale out (locality wait - 100ms) Scale out (locality wait - Oms)

<<

Spark

summit20i1s

Take-aways

* Locality wait time is key to improvement
— Tune during runtime?

— Adjust during scaling to force use of new
nodes

* Need to consider gains from running task
. On new nodes vs. network bandwidth used
?ucr'nrmklmow

Scaling Down

Benchmark Runtime — Baseline Runtime —
(10 nodes) Scale in

KMeans 11min 54sec 49min 13sec
PageRank 11min 41sec 13min 12sec
Spark SQL 12min 50sec 15min 52sec
LogisticRegression 10min 20sec 14min 7sec

& Re-execution overhead worst for some workloads

Seucryr’r%tzow

- OO OO

Scaling Down with Mesos/YARN

* Prevent Spark from scheduling more tasks on
nodes that are selected to removed

— Mesos fine-grained, simply not offer resource
from node selected for removal

— Mesos coarse-grained and YARN, requires
cooperation from Spark to not schedule new
tasks on nodes selected for removal

s Shutdown node once tasks are drained

M . — What to do about stored shuffle data?

Agenda

* Auto-scaling in Spark
* |Lessons and future work

<<

Seucryr’r%tzow

-~

Existing Auto-scaling Mechanism

* Dynamic Executor Allocation (DEA)
— Works only with YARN

— Spark request new executors after a fixed time interval
when there are still pending tasks

— Number of requested executors grow exponentially
« Works but does have some potential inefficiency

Spor‘lzz
summit2015

Improving Auto-scaling

* Main reason tasks are not scheduled on new node
Is data locality preferences

— Delay scheduling preventing tasks from being
run on new node

* Approach:

— Change locality wait time dynamically during
application runtime

— |deally, reduce locality walit time at point of scale
Spaik’ out, then after stabilizes, revert to previous

summit20i1s

| ~locality wait time value

Improving Auto-scaling Detalls

 |deally: tasks spread evenly among all executors

— average # of tasks per executor:
T = Total tasks / # executors

 t =# of tasks per executor,

 If t,<alpha™T, for s seconds, then change locality
wait time

* If t is still below threshold after r seconds from first
change of locality time, then remove executor

« |f no executors below threshold, reset locality wait

Spark

summlt2075time to initial Value

Dynamically Adjusting Locality Wait Time at
Runtime with Dynamic Allocator Execution

Benchmark Runtime % tasks on new Runtime % tasks on new
(scale out w/ node (locality (scale out w/ node (dynamic

DEA) wait time 3s) | DEA and runtime | locality wait time)
adjustment of
locality wait time)

KMeans 32min 15sec 28.6% 20min 35sec 35%
PageRank 12min 2sec 12.9% 11min 23sec 14%
Spark SQL 12min 48sec 11.5% 12min 26sec 16%

Logistic 11min 58sec 0.7% 12min 16sec 3.3%
Regression

e Parameters: alpha = 30%, s = 5sec, new locality wait time = 100ms

seucryt’r%tzms

Mechanism helps at increasing % tasks on new nodes

Simple Auto-scaling Improvements

Existing Description Drawbacks Proposal
Mechanism

When to scale? Backlogged tasks Request CPU CPU/memory of more than 50%
exist for n secs resources when nodes are greater than a threshold t
Tasks might be 1/0 (e.g., 98%) over n seconds
bound
How many more Increase Initially under request n% of the task queue length
VMs? exponentially number

of executors until
configured max or #

of pending tasks
Whether to scale Always scale if above Scaling unnecessary Option1: According to the ratio of
(still beneficial)? condition met if near end or short unprocessed data: e.g., < 80%.
runtime Rough estimation of job execution

time: proportional to the data
process rate

<<

S‘s)u(rnn';"r(ntzms Option2: Model driven — predict

‘ runtime based on previous runs

Agenda

« Lessons and future work

<<

seucryr’r%tzow

-~

Lessons

* Nalive scaling can help but effectiveness varies greatly
across different workloads

* Why some workloads do not respond well to scaling?
— Delay scheduling preventing new nodes to be utilized
* Dynamic executor allocation works but can be improved

— Dynamically changing locality wait time can be
effective

2 Overhead of transferring RDD partitions can reduce

Spa . I
M

Future Work

« Study scaling effects given multiple
simultaneous workloads

* Implement better support for scaling down
 Enhance DEA to make use of resource
monitors and job runtime prediction

<<

S?ucr'n%(lmow

Backup

K
mmit2015

Sguo

Delay Scheduling

* Intended for fixed-size clusters running
multiple workloads with short tasks

 Emphasis on scheduling task on nodes
containing data
— Wait short time for resources to free up
on nodes containing data rather than run
o task on node available now but further

| IQ away from data

Resource Managers + Auto-scaling

* Resource management
— different frameworks can coexist

— high resource utilization
* Facilitates on-demand resource allocation — support

elastic services il

Spor‘l'g
summit2015

Brief Intro: YARN

VResouroeManager RM — NodeManager
Cclient } Cliont — RM [Scheduler] = \\
@ [AMService])
l : * ___
[A I [—WL [_'A‘S I Umbilical V[ml%ntainer\
[Node Manager] [Node Manager] [Node Manager]
L t J
 Resource Manager (RM) controls resource allocation
Sgucr;'r‘lgz

Application Master (AM) negotiates with RM for
mos resources and launch executors to run jobs

Brief Intro: Mesos

sgr?gc?:lzr schh;::ﬂer Z(;oubéfue:‘e ' ° F k h d I t
- Framework schedulers accept or
\ m_/ giié&‘;aa;‘" reject offered resource
moster | | ‘masier | |_maser_| * Resource preferences are
el I communicated to Mesos thru common
Mesos slave| | Mesos slave Mesos slave
vadoop | | et Iml - APls
[task]
« Coarse-grained mode
FramOwOr 1 ~FrameworkZ — Mesos launches one long-running Spark
B S et lnz] ’ executor on each node to execute all Spark
P) tasks

 Fine-grained mode
— Mesos launches executor for each Spark

<fw1, task1, 2cpu, 1gb, ... > t k
<fw1, task2, 1cpu, 2gb. ... >] aS

< ____Slave1____ [“Slave 2]
Spar } ___Executor __ Executor
sumI | § Task i Task_ L

Runtime — Spark on Mesos
| Benchmark| Runtime (baseline) | Runtime (scale out)

Fine-grained KMeans 92min 54sec 35min 37sec
Page Rank 19min 29sec 16min 55 sec

Spark SQL queries 24min 45sec 19min 7sec

LogisticRegression 14min 43sec 14min 39sec

Coarse-grained KMeans 89min 24sec 11min 49sec
Page Rank 8min 29sec 7min 41sec

Spark SQL queries 10min 32sec 8min 30sec

LogisticRegression 10min 57sec 7min 56sec

Spoﬁ'g
summit2015

