
Towards the True Elasticity
of Spark

Michael Le and Min Li
IBM,	
 T.J.	
 Watson	
 Research	
 Center	

Auto-Scaling
•  Detects changes of resource usage in current workloads →

 Dynamically allocate/de-allocate resources
•  Meets SLA requirements at reduced cost
•  Existing auto-scaling approaches react slowly and often miss

optimization opportunities
•  YARN and Mesos have initial auto-scaling support, yet how

workloads can benefit from the capability?

Infrastructure as a Service"
Resource Manager (YARN/Mesos)"

Main Focus
•  Analyze how scaling affects Spark workloads

–  Is simply adding new resources sufficient for performance
improvement?

•  Analyze pros/cons of current Spark auto-scaling mechanism
–  Are there rooms for performance improvement?

Agenda
•  Introduction
•  Evaluation setup
•  Impact of scaling
•  Auto-scaling in Spark
•  Lessons and future work

Experimental Setup
•  Baseline setup (6 nodes):

•  Node: 4 CPUs, 8GB, 100 GB HDDs
•  YARN executor: 3GB, 1CPU
•  Mesos executor: 6GB and 4CPUs

•  4 benchmarks (SparkBench*):
–  Kmeans (input 37GB)
–  Page Rank (input 1.1GB)
–  Spark SQL: SQL queries (input 39GB)
–  Logistic Regression (input 47GB)

•  Scaling up: add 4 new nodes “instantaneously”
•  Wait ~45 seconds after benchmark run

•  Scale down – wait 3min after benchmark run
*	
 h6ps://bitbucket.org/lm0926/sparkbench	

Mechanisms for Scaling
•  Scale up – add new node “instantaneously” (VM already

provisioned)
–  Run YARN node manager or Mesos slave daemon
–  New nodes are Task nodes (no HDFS component)

–  Scale down – kill resource manager processes
•  Spark on YARN – set total executors for app higher than

available in cluster to ensure executors get launched
•  Spark on Mesos – make use of new resource offers from

Mesos

Agenda
•  Introduction
•  Evaluation setup
•  Impact of scaling
•  Auto-scaling in Spark
•  Lessons and future work

Runtime – Spark on YARN

Benchmark! Runtime
(baseline)!

Runtime !
(scale out)!

Runtime
Reduction!

Kmeans" 54min 44sec" 29min 26sec" 46%"
Page Rank" 9min 28sec" 8min 18sec" 12.3%"

 Spark SQL queries" 15min 45sec" 13min 11sec" 16.3%"
LogisticRegression" 13min 10sec" 12min 55sec" 2%"

Similar behavior seen on Mesos

Why the variation?
•  Delay scheduling preventing tasks to be scheduled on

new node

Benchmark! Total
tasks!

% tasks locality
preference

RACK or ANY!

% tasks wait >3s
to be scheduled!

% tasks on new
nodes!

KMeans" 7800" 0.4%" 3.5%" 24.5%"
Page Rank" 21600" 0%" 0.01%" 13.5%"
Spark SQL" 9805" 3%" 0.2%" 11.8%"

LogisticRegression" 6637" 0%" 0.1%" 1.5%"

Tuning Spark for Scaling
•  locality wait time

–  How soon to change locality preference of tasks in
stage

•  resource revive interval
–  How soon to inform scheduler a resource that has not

been used is still available

Runtime – Tuning Spark
Benchmark! Runtime

(baseline)!
Runtime

(scale out)!
Runtime (scale

out– revive
interval 100ms)!

Runtime (scale
out– locality wait

time 100ms)!

Runtime (scale
out–locality wait

time 0ms)!
KMeans" 54min 44sec" 29min 26sec" 30min 39sec" 11min 32sec" 14min 1sec"

Page Rank" 9min 28sec" 8min 18sec" 8min 35sec" 7min 35sec" 5min 57sec"
Spark SQL queries" 15min 45sec" 13min 11sec" 12min 55sec" 11min 40sec" 19min 57sec"
LogisticRegression" 13min 10sec" 12min 55sec" 12min 43sec" 6min 54sec" 9min 12sec"

Benchmark! % tasks on new
node (locality wait

time 3s)!

% tasks on new node
(locality wait time

100ms)!

% tasks on new node
(locality wait time

0ms)!
KMeans" 24.5%" 39.1%" 38%"

Page Rank" 13.5%" 16.1%" 39%"
Spark SQL queries" 11.8%" 22.6%" 39%"
LogisticRegression" 1.5%" 38%" 39%"

KMeans - CPU Utilization Per Node

Scale out (locality wait - 100ms)
1 of the 4 new nodes

Base line (1 of the 6 base nodes) Scale out (locality wait - 100ms)
1 of the 6 base nodes

Scale out (locality wait - 0ms)
1 of the 6 base nodes

Scale out (locality wait - 0ms)
1 of the 4 new nodes

KMeans - Network Utilization
10 MB shuffle read
12 MB shuffle write

Baseline

10 MB shuffle read
11 MB shuffle write

Scale out (locality wait - 100ms)

Greater bandwidth consumption due to transferring of RDD partitions

Scale out (locality wait - 0ms)

10 MB shuffle read
12 MB shuffle write

KMeans - Memory Utilization

Baseline KMeans – scale out (locality wait - 100ms)

KMeans – scale out (locality wait - 0ms)

PageRank - CPU Utilization

Scale out (locality wait - 100ms)
1 of the 4 new nodes

Base line (1 of the 6 nodes) Scale out (locality wait - 100ms)
1 of the 6 nodes

Scale out (locality wait - 0ms)
1 of the 4 new nodes

Scale out (locality wait - 0ms)
1 of the 6 nodes

PageRank - Network Utilization
15.50 GB shuffle read
16.71 GB shuffle write

Baseline

16.07 GB shuffle read
16.71 GB shuffle write

Scale out (locality wait - 100ms)

Greater bandwidth consumption due to transferring of RDD partitions

16.10 GB shuffle read
16.73 GB shuffle write

Scale out (locality wait - 0ms)

PageRank - Memory Utilization

Baseline Scale out (locality wait - 100ms)

Scale out (locality wait - 0ms)

SQL – Network Utilization

Scale out (locality wait - 0ms) Scale out (locality wait - 100ms)

LogisticRegression – Network Utilization

Scale out (locality wait - 0ms) Scale out (locality wait - 100ms)

Take-aways
•  Locality wait time is key to improvement

– Tune during runtime?
– Adjust during scaling to force use of new

nodes
•  Need to consider gains from running task

on new nodes vs. network bandwidth used

Scaling Down
Benchmark" Runtime – Baseline

(10 nodes)"
Runtime – "
Scale in"

KMeans" 11min 54sec" 49min 13sec"

PageRank" 11min 41sec" 13min 12sec"

Spark SQL" 12min 50sec" 15min 52sec"

LogisticRegression" 10min 20sec" 14min 7sec"

Re-execution overhead worst for some workloads

Scaling Down with Mesos/YARN
•  Prevent Spark from scheduling more tasks on

nodes that are selected to removed
– Mesos fine-grained, simply not offer resource

from node selected for removal
– Mesos coarse-grained and YARN, requires

cooperation from Spark to not schedule new
tasks on nodes selected for removal

•  Shutdown node once tasks are drained
– What to do about stored shuffle data?

Agenda
•  Introduction
•  Background
•  Evaluation setup
•  Impact of scaling
•  Auto-scaling in Spark
•  Lessons and future work

Existing Auto-scaling Mechanism
•  Dynamic Executor Allocation (DEA)

–  Works only with YARN
–  Spark request new executors after a fixed time interval

when there are still pending tasks
–  Number of requested executors grow exponentially

•  Works but does have some potential inefficiency

Improving Auto-scaling
•  Main reason tasks are not scheduled on new node

is data locality preferences
–  Delay scheduling preventing tasks from being

run on new node
•  Approach:

–  Change locality wait time dynamically during
application runtime

–  Ideally, reduce locality wait time at point of scale
out, then after stabilizes, revert to previous
locality wait time value

Improving Auto-scaling Details
•  Ideally: tasks spread evenly among all executors

–  average # of tasks per executor:
•  T = Total tasks / # executors

•  ti = # of tasks per executori
•  If ti < alpha*T, for s seconds, then change locality

wait time
•  If ti is still below threshold after r seconds from first

change of locality time, then remove executor
•  If no executors below threshold, reset locality wait

time to initial value

Dynamically Adjusting Locality Wait Time at
Runtime with Dynamic Allocator Execution

Benchmark! Runtime  
(scale out w/

DEA)!
!

% tasks on new
node (locality
wait time 3s)!

Runtime!
(scale out w/

DEA and runtime
adjustment of

locality wait time)!

% tasks on new
node (dynamic

locality wait time)!

KMeans" 32min 15sec" 28.6%" 20min 35sec" 35%"
PageRank" 12min 2sec" 12.9%" 11min 23sec" 14%"
Spark SQL" 12min 48sec" 11.5%" 12min 26sec" 16%"

Logistic 
Regression"

11min 58sec" 0.7%" 12min 16sec" 3.3%"

Parameters: alpha = 30%, s = 5sec, new locality wait time = 100ms

Mechanism helps at increasing % tasks on new nodes

Simple Auto-scaling Improvements
Existing
Mechanism

Description Drawbacks Proposal

When to scale? Backlogged tasks
exist for n secs

Request CPU
resources when
Tasks might be I/O
bound

CPU/memory of more than 50%
nodes are greater than a threshold t
(e.g., 98%) over n seconds

How many more
VMs?

Increase
exponentially number
of executors until
configured max or #
of pending tasks

Initially under request n% of the task queue length

Whether to scale
(still beneficial)?

Always scale if above
condition met

Scaling unnecessary
if near end or short
runtime

Option1: According to the ratio of
unprocessed data: e.g., < 80%.
Rough estimation of job execution
time: proportional to the data
process rate

Option2: Model driven – predict
runtime based on previous runs

Agenda
•  Introduction
•  Evaluation setup
•  Impact of scaling
•  Auto-scaling in Spark
•  Lessons and future work

Lessons
•  Naïve scaling can help but effectiveness varies greatly

across different workloads
•  Why some workloads do not respond well to scaling?

–  Delay scheduling preventing new nodes to be utilized
•  Dynamic executor allocation works but can be improved

–  Dynamically changing locality wait time can be
effective

•  Overhead of transferring RDD partitions can reduce
benefit of scaling

Future Work
•  Study scaling effects given multiple

simultaneous workloads
•  Implement better support for scaling down
•  Enhance DEA to make use of resource

monitors and job runtime prediction

Backup

Delay Scheduling
•  Intended for fixed-size clusters running

multiple workloads with short tasks
•  Emphasis on scheduling task on nodes

containing data
– Wait short time for resources to free up

on nodes containing data rather than run
task on node available now but further
away from data

Resource Managers + Auto-scaling
•  Resource management
→ different frameworks can coexist

 → high resource utilization
•  Facilitates on-demand resource allocation – support

elastic services

Infrastructure as a Service"

Resource Manager (YARN/
Mesos)"

Brief Intro: YARN

•  Resource Manager (RM) controls resource allocation
•  Application Master (AM) negotiates with RM for

resources and launch executors to run jobs

Brief Intro: Mesos
•  Framework schedulers accept or
reject offered resource
•  Resource preferences are
communicated to Mesos thru common
APIs

•  Coarse-grained mode
–  Mesos launches one long-running Spark

executor on each node to execute all Spark
tasks

•  Fine-grained mode
–  Mesos launches executor for each Spark

task

Runtime – Spark on Mesos
Benchmark! Runtime (baseline)! Runtime (scale out)!

Fine-grained" KMeans" 92min 54sec" 35min 37sec"
Page Rank" 19min 29sec" 16min 55 sec"

Spark SQL queries" 24min 45sec" 19min 7sec"
LogisticRegression" 14min 43sec" 14min 39sec"

Coarse-grained" KMeans" 89min 24sec" 11min 49sec"
Page Rank" 8min 29sec" 7min 41sec"

 Spark SQL queries" 10min 32sec" 8min 30sec"
LogisticRegression" 10min 57sec" 7min 56sec"

