
USE OF SPARK MLLIB
FOR PREDICTING
OFFLINING OF DIGITAL
MEDIA

Christopher Burdorf

NBCUniversal

 OVERVIEW

λ Problem Definition
λ Cluster Configurations
λ Parameters
λ MLLib libraries utilized
λ Results
λ Conclusions

Problem Definition

λ Digital media files distributed internationally 24/7 over internet to
cable TV channels in APAC, Europe, and Asia.
λ TV Shows, Commercials
λ Fast Isilon storage fills up frequently, thus offlining is necessary to
create space for new files
λ Multiple parameters are used to pick candidates
λ Previous system works well, but is slow and has large overhead

Cluster Configurations

λ Development
- 1 Linux System with 16 cores and 16 Gigs RAM
- 3 Mac OS Systems each with 8 cores and 16 Gigs RAM
- Mesos cluster manager

λ Production
- 3 Linux systems with 32 cores and 64 Gigs of RAM
- Mesos master and slaves running in Docker containers
- 

Features/Parameters

λ File size
λ File age
λ Days since last airing
λ Days until next airing
λ Immediately remove files that have not been scheduled for
more than 3 weeks (was 2 weeks to start with).

K-Means Clustering

,
where xi(j) -cj is a chosen distance measure between a data point and the cluster centre , is an indicator of the

distance of the n data points from their respective cluster centers.

K means clustering results

λ Attempted with multiple centroid points
λ No meaningful clusters for any sets of data attempted
λ Results appeared to be tied to the nature of the data
λ Multiple parameters created difficulties

Naive Bayes classifier

λ From Bayes theorem: p(C_k|x)=(p(C_k)p(x|C_k))/p(x)
λ  posterior = (prior X likelihood)/evidence
λ Thus, the attempt was to classify media files for removal or
retention on the file system based on the different parameter
values and their expected results
λ Had difficulties training for many factors

- Adding new factors to training set altered results for
previously trained classifier and required retraining the entire
classification system

Support Vector Machines

SVM Results

λ Found to be most robust method
λ Compensated well for new added features
λ Built training set from production data and auto-generated data
that fit the criteria
λ Spark Mllib optimization allows us to build a predictive system in
just over an hour

- Run twice daily due to constant changes in schedules and
online media.

Production environment

λ Spark Mllib SVM is trained and predictions are generated for
each media file online twice daily. Predictions are stored in
HBase
λ Media manager daemon regularly scans the file system and if
available space requires purging, it will select files based on
predictions stored in Hbase
λ Backup system checks to see if schedule has changed for a
given media file selected to be purged, because Spark SVM
predictions are only generated twice daily

Production issues

λ System was run in test mode for 6 weeks without a problem
λ Once switched to production, issues arose

- 2 weeks was too short a time to immediately offline files
λ Switched to 3 weeks

- Docker containers filled up with Spark temp files and
crashed over the weekend (ouch!)

λ Solved with cron job periodically removing them.
- Web service access to Hbase locked up.

λ Solved by having thread timeout on web services call.

Conclusions

λ System has been running in production mode for some time
now.

- Fine tuning appears to be complete
λ Spark SVM has performed well

- Fast and robust
λ Good application for machine learning though critical aspect of
the system increased task complexity.

