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Problem Definition 

λ Digital media files distributed internationally 24/7 over internet to 
cable TV channels in APAC, Europe, and Asia. 
λ TV Shows, Commercials 
λ Fast Isilon storage fills up frequently, thus offlining is necessary to 
create space for new files 
λ Multiple parameters are used to pick candidates 
λ Previous system works well, but is slow and has large overhead 



Cluster Configurations 

λ Development  
- 1 Linux System with 16 cores and 16 Gigs RAM 
- 3 Mac OS Systems each with 8 cores and 16 Gigs RAM 
- Mesos cluster manager 

λ Production 
- 3 Linux systems with 32 cores and 64 Gigs of RAM 
- Mesos master and slaves running in Docker containers 
-   



Features/Parameters 

λ File size 
λ File age 
λ Days since last airing 
λ Days until next airing 
λ Immediately remove files that have not been scheduled for 
more than 3 weeks (was 2 weeks to start with). 



K-Means Clustering 

, 
where xi(j) -cj is a chosen distance measure between a data point and the cluster centre , is an indicator of the 

distance of the n data points from their respective cluster centers. 
 



K means clustering results 

λ Attempted with multiple centroid points 
λ No meaningful clusters for any sets of data attempted 
λ Results appeared to be tied to the nature of the data 
λ Multiple parameters created difficulties 



Naive Bayes classifier 

λ From Bayes theorem: p(C_k|x)=(p(C_k)p(x|C_k))/p(x) 
λ  posterior = (prior X likelihood)/evidence 
λ Thus, the attempt was to classify media files for removal or 
retention on the file system based on the different parameter 
values and their expected results 
λ Had difficulties training for many factors 

- Adding new factors to training set altered results for 
previously trained  classifier and required retraining the entire 
classification system 



Support Vector Machines 



SVM Results 

λ Found to be most robust method 
λ Compensated well for new added features 
λ Built training set from production data and auto-generated data 
that fit the criteria 
λ Spark Mllib optimization allows us to build a predictive system in 
just over an hour 

- Run twice daily due to constant changes in schedules and 
online media. 



Production environment 

λ Spark Mllib SVM is trained and predictions are generated for 
each media file online twice daily.  Predictions are stored in 
HBase  
λ Media manager daemon regularly scans the file system and if 
available space requires purging, it will select files based on 
predictions stored in Hbase 
λ Backup system checks to see if schedule has changed for a 
given media file selected to be purged, because Spark SVM 
predictions are only generated twice daily 



Production issues 

λ System was run in test mode for 6 weeks without a problem 
λ Once switched to production, issues arose 

- 2 weeks was too short a time to immediately offline files 
λ Switched to 3 weeks 

- Docker containers filled up with Spark temp files and 
crashed over the weekend (ouch!) 

λ Solved with cron job periodically removing them. 
- Web service access to Hbase locked up. 

λ Solved by having thread timeout on web services call. 



Conclusions 

λ System has been running in production mode for some time 
now. 

- Fine tuning appears to be complete 
λ Spark SVM has performed well 

- Fast and robust 
λ Good application for machine learning though critical aspect of 
the system increased task complexity. 


