
This is not a contribution

Evan Chan June 2016

•700 Updatable Queries Per Second:
•Spark as a Real-Time Web Service

This is not a contribution

Who Am I?

User and contributor to Spark since 0.9, Cassandra
since 0.6

Datastax Cassandra MVP
Created Spark Job Server and FiloDB
Talks at Spark Summit, Cassandra Summit, Strata, Scala
Days, etc.

http://github.com/spark-jobserver/spark-jobserver
http://github.com/tuplejump/FiloDB

This is not a contribution

Apache Spark

•Usually used for rich analytics, not time-critical.

Machine learning: generating models, predictions, etc.
SQL Queries seconds to minutes, low concurrency
Stream processing

•What about for low-latency, highly concurrent queries?
Dashboards?

This is not a contribution

Low-Latency Web Queries

•Why is it important?

Dashboards
Interactive analytics
Real-time data processing

•Why not use the Spark stack for this?

This is not a contribution

Web Query Stack

Web Client / JS

App Server

RDBMS

This is not a contribution

Spark-based Low-Latency Stack

Web Client / JS

???

Spark

This is not a contribution

Creating a new SparkContext is S-L-O-W

Start up HTTP/BitTorrent File Server
Start up UI
Start up executor processes and wait for
confirmation

•The bigger the cluster, the slower!

This is not a contribution

Using a Persistent Context for Low Latency

Avoid high overhead of Spark application launch
Standard pattern:

Spark Job Server
Hive Thrift Server

Accept queries and run them in context
Usually means fixed resources - great for SLA
predictability

http://github.com/spark-jobserver/spark-jobserver

This is not a contribution

FAIR Scheduling
FIFO vs FAIR Scheduling

FAIR scheduler can co-schedule concurrent Spark
jobs even if they take up lots of resources
Scheduler pools with individual policies

Higher concurrency
FIFO allows concurrency if tasks do not use up all
threads
In Mesos, use coarse-grained mode to avoid
launching executors on every Spark task

This is not a contribution

Low-Latency Game Plan

Start a persistent Spark Context (ex. the Hive
ThriftServer - we’ll get to that below)
Run it in FAIR scheduler mode
Use fast in-memory storage
Maximize concurrency by using as few partitions/
threads as possible
Host the data and run it on a single node - avoid
expensive network shuffles

This is not a contribution

In-Memory Storage

Is it really faster than on disk files? With OS Caching
It's about consistency of performance - not just hot
data in the page cache, but ALL data.
Fast random access

Making different tradeoffs as new memory
technologies emerge (NVRAM etc.)

Higher IO -> less need for compression
Apache Arrow

This is not a contribution

•So, let’s talk about Spark storage in
detail…

This is not a contribution

HDFS? Parquet Files?

Column pruning speeds up I/O significantly
Still have to scan lots of files
File organization not the easiest for filtering
For low-latency, need much more fine-grained
indexing

This is not a contribution

Cached RDDs
•Let's say you have an RDD[T], where each item is of type T.

Bytes are saved on JVM heap, or optionally heap + disk
Spark optionally serializes it, using by default Java
serialization, so it (hopefully) takes up less space
Pros: easy (myRdd.cache())
Cons: have to iterate over every item, no column
pruning, slow if need to deserialize, memory hungry,
cannot update

This is not a contribution

Cached DataFrames

•Works on a DataFrame (RDD[Row] with a schema)
• sqlContext.cacheTable(tableA)

Uses columnar storage for very efficient storage
Columnar pruning for faster querying
Pros: easy, efficient memory footprint, fast!
Cons: no filtering, cannot update

This is not a contribution

Why are Updates Important?
Appends

Streaming workloads. Add new data continuously.
Real data is *always* changing. Queries on live
real-time data has business benefits.

Updates
Idempotency = really simple ingestion pipelines
Simpler streaming later
update late events (See Spark 2.0 Structured
Streaming)

This is not a contribution

Advantages of Filtering

Two methods to lower query latency:
Scan data faster (in-memory)
Scan less data (filtering)

RDDs and cached DFs - prune by partition
Dynamo/BigTable - 2D Filtering

Filter by partition
Filter within partitions

This is not a contribution

Workarounds - Updating RDDs

Union(oldRDD, newRDD)
Creates a tree of RDDs - slows down queries
significantly

IndexedRDD

This is not a contribution

•Introducing FiloDB.
•A distributed, versioned, columnar
analytics database.
•Built for streaming.

This is not a contribution

Fast Analytics Storage
Scan speeds competitive with Apache Parquet

In-memory version significantly faster
Flexible filtering along two dimensions

Much more efficient and flexible partition key
filtering

Efficient columnar storage using dictionary encoding
and other techniques
Updatable

This is not a contribution

Comparing Storage Costs and Query Speeds

•https://www.oreilly.com/ideas/apache-cassandra-for-
analytics-a-performance-and-storage-analysis

https://www.oreilly.com/ideas/apache-cassandra-for-analytics-a-performance-and-storage-analysis

This is not a contribution

Robust Distributed Storage

•In-memory storage engine, or
•Apache Cassandra as the rock-solid storage engine.

This is not a contribution

Cassandra-like Data Model

partition keys - distributes data around a cluster, and
allows for fine grained and flexible filtering
segment keys - do range scans within a partition, e.g. by
time slice
primary key based ingestion and updates

Column A Column B
Partition Key 1 Segment 1 Segment 2 Segment 1 Segment 2
Partition Key 2 Segment 1 Segment 2 Segment 1 Segment 2

This is not a contribution

Very Flexible Filtering

•Unlike Cassandra, FiloDB offers very flexible and
efficient filtering on partition keys. Partial key matches,
fast IN queries on any part of the partition key.

•No need to write multiple tables to work around
answering different queries.

This is not a contribution

Spark SQL Queries!

•- Read to and write from Spark Dataframes
•- Append/merge to FiloDB table from Spark Streaming
•- Use Tableau or any other JDBC tool

CREATE TABLE gdelt USING filodb.spark OPTIONS (dataset "gdelt");

SELECT Actor1Name, Actor2Name, AvgTone FROM gdelt ORDER BY AvgTone
DESC LIMIT 15;

INSERT INTO gdelt SELECT * FROM NewMonthData;

This is not a contribution

What’s in the Name?

•Rich, sweet layers of distributed, versioned database
goodness

This is not a contribution

Message
QueueEvents

Spark
Streaming

Short term
storage, K-V

Adhoc,
SQL, ML

Cassandra

FiloDB: Events,
ad-hoc, batch

Spark

Dashboa
rds,
maps

This is not a contribution

SMACK stack for all your analytics

Regular Cassandra tables for highly concurrent,
aggregate / key-value lookups (dashboards)
FiloDB + C* + Spark for efficient long term event
storage

Ad hoc / SQL / BI
Data source for MLLib / building models
Data storage for classified / predicted / scored data

This is not a contribution

Message
QueueEvents Spark

Streaming Models

Cassandra

FiloDB: Long term event storage

Spark Learned
Data

This is not a contribution

•Fast SQL Server in Spark

This is not a contribution

Data: The New York City Taxi Dataset
•The public NYC Taxi Dataset contains telemetry (pickup, dropoff locations, times)
info on millions of taxi rides in NYC.

Partition key - :stringPrefix medallion 2 - hash multiple drivers trips into
~300 partitions
Segment key - :timeslice pickup_datetime 6d
Row key - hack_license, pickup_datetime

•Allows for easy filtering by individual drivers, and slicing by time.

Medallion Prefix 1/1 - 1/6 1/7 - 1/12
AA records records
AB records records

http://www.andresmh.com/nyctaxitrips/

This is not a contribution

collectAsync
•To support running concurrent queries better, we rely on a
relatively unknown feature of Spark's RDD API, collectAync:

• sqlContext.sql(queryString).rdd.collectAsync

•This returns a Scala Future, which can easily be composed
using Future.sequence to launch a whole series of
asynchronous RDD operations. They will be executed with
the help of a separate ForkJoin thread pool.

This is not a contribution

Initial Results

Run lots of queries concurrently using collectAsync
Spark local[*] mode
SQL queries on first million rows of NYC Taxi dataset
50 Queries per Second
Most of time not running queries but parsing SQL !

This is not a contribution

Some Observations

1. Starting up a Spark task is actually pretty low
latency - milliseconds

2. One huge benefit to filtering is reduced thread/CPU
usage. Most of the queries ended up being single
partition / single thread.

This is not a contribution

Lessons

1. Cache the SQL to DataFrame/LogicalPlan parsing.
This saves ~20ms per parse, which is not
insignificant for low-latency apps

2. Distribute the SQL parsing away from the main
thread so it's not gated by one thread

This is not a contribution

SQL Plan Caching

•Cache the `DataFrame` containing the logical plan translated from
parsing SQL.

•Now - **700 QPS**!!

 val cachedDF = new collection.mutable.HashMap[String, DataFrame]

 def getCachedDF(query: String): DataFrame =
 cachedDF.getOrElseUpdate(query, sql.sql(query))

This is not a contribution

Scaling with More Data

•15 million rows of NYC Taxi data - **still 700 QPS**!

•This makes sense due to the efficiency of querying.

This is not a contribution

Fast Spark Query Stack

Run Spark context on heap with `local[*]`
Load FiloDB-Spark connector, load data in memory
Very fast queries all in process

Front end app

FiloDB-Spark

SparkContext

InMemoryColumnStore

This is not a contribution

Fast Spark Query Stack II

HTTP/REST using Spark Job Server

JS app

Spark Job Server

FiloDB-Spark

SparkContext

InMemoryColumnStoreHTTP / REST

This is not a contribution

Slower: Hive Thrift Server Stack
BI Client

Hive Thrift Server

Spark

JDBC

FiloDB-Spark

SQLContext

Hive MetaStore

This is not a contribution

Your Contributions Welcome!

• http://github.com/tuplejump/FiloDB

http://github.com/tuplejump/FiloDB

