/00 Updatable Queries Per Secona:
Spark as a Real-Time Web Service

Who Am |?

_ Datastax Cassandra MVP

This is not a contribution

http://github.com/spark-jobserver/spark-jobserver
http://github.com/tuplejump/FiloDB

Usually used for rich analytics, not time-critical.

e Machine learning: generating models, predictions, etc.
e SQL Queries seconds to minutes, low concurrency

e Stream processing

What about for low-latency, highly concurrent queries?
Dashboards?

Why is it important?

e Dashboards
e Interactive analytics
e Real-time data processing

Why not use the Spark stack for this?

This is not a co

Web Query Stack

v“ .
\')
[T 4
‘-
.. A
Y ES .
E B f
X
0.
1y
)
> O
- . - d
13
. d
)
’

ntribution

This is not a co

Spark-based Low-Latency Stack

ntribution

e Start up HTTP/BitTorrent File Server
e Start up Ul

e Start up executor processes and wait for
confirmation

The bigger the cluster, the slower!

e Avoid high overhead of Spark application launch
e Standard pattern:

e Spark Job Server

e Hive Thrift Server
e Accept queries and run them in context

e Usually means fixed resources - great for SLA
predictability

http://github.com/spark-jobserver/spark-jobserver

e FIFO vs FAIR Scheduling

e FAIR scheduler can co-schedule concurrent Spark
jobs even if they take up lots of resources

e Scheduler pools with individual policies
e Higher concurrency

e FIFO allows concurrency if tasks do not use up all
threads

e |In Mesos, use coarse-grained mode to avoid
launching executors on every Spark task

e Start a persistent Spark Context (ex. the Hive
ThriftServer - we'll get to that below)

e Run it in FAIR scheduler mode
e Use fast in-memory storage

e Maximize concurrency by using as few partitions/
threads as possible

e Host the data and run it on a single node - avoid
expensive network shuffles

e |s it really faster than on disk files? With OS Caching

e Making different tradeofts as new memory
technologies emerge (NVRAM etc.)

S0, let’s talk about Spark storage in
detall...

e Column pruning speeds up I/O significantly
e Still have to scan lots of files
e File organization not the easiest for filtering

e For low-latency, need much more fine-grained
indexing

Let's say you have an RDDI[T], where each item is of type T.

e Bytes are saved on JVM heap, or optionally heap + disk

e Spark optionally serializes it, using by default Java
serialization, so it (hopefully) takes up less space

® Pros:easy (myRdd.cache())

e Cons: have to iterate over every item, no column
pruning, slow if need to deserialize, memory hungry,
cannot update

Works on a DataFrame (RDD [Row] with a schema)
sglContext.cacheTable(tableA)

- Uses columnar storage for very efficient storage
- Columnar pruning for faster querying

- Pros: easy, efficient memory footprint, fast!

- Cons: no filtering, cannot update

Why are Updates Important?

- Streaming workloads. Add new data continuously.

- Real data is *always* changing. Queries on live
real-time data has business benefits.

- ldempotency = really simple ingestion pipelines
- Simpler streaming later

_ update late events (See Spark 2.0 Structured
Streaming)

This is not a contribution

e Two methods to lower query latency:

e RDDs and cached DFs - prune by partition
e Dynamo/BigTable - 2D Filtering

This is not a co

Workarounds - Updating RDDs

e

_ Creates a tree of RDDs - slows down queries
significantly

ntribution

This is n

A distributed, versioned, columnar
analytics database.

Built for streaming.

ot a contribution

e Scan speeds competitive with Apache Parquet
-

e Flexible filtering along two dimensions

e Efficient columnar storage using dictionary encoding
and other techniques

e Updatable

Storage Cost vs Query Performance

CQL + Spark
CacheTable

+Cassandra COMPACT STORAGE
Cassandra CQL Wide Rows

10000 . ——
100000

Storage Cost - Rows per MB

https://www.oreilly.com/ideas/apache-cassandra-for-
analytics-a-performance-and-storage-analysis

https://www.oreilly.com/ideas/apache-cassandra-for-analytics-a-performance-and-storage-analysis

INn-memory storage engine, or
Apache Cassandra as the rock-solid storage engine.

Cassandra-like Data Model
~ CbmA Comes

This is not a contribution

Unlike Cassandra, FiloDB offers very flexible and
efficient filtering on partition keys. Partial key matches,
fast IN queries on any part of the partition key.

No need to write multiple tables to work around
answering different queries.

- Read to and write from Spark Dataframes
- Append/merge to FiloDB table from Spark Streaming
- Use Tableau or any other JDBC tool

What's in the Name?

This is not a contribution

Adhoc,
SQl., ML

Sp&rw*
Streamiing

. Message _a
T Queue

Evenlts

Sparw

Short kterm FlloDR: Events,
storage, K=V ad-hoc, batch

Cassandra

e Reqgular Cassandra tables for highly concurrent,
aggregate / key-value lookups (dashboards)

e FiloDB + C* + Spark for efficient long term event
storage

o Message

Sparw
Queue

Streaming Models

Evenks

SP&‘% Learined
Daka

FiloDB: Lohg term event storxk

Cassandra

Fast SQL Server in Spark

This is not a co

Data: The New York City Taxi Dataset

Medallion Prefix [1/1-1/6 1/7 - 1/12

ntribution

http://www.andresmh.com/nyctaxitrips/

To support running concurrent queries better, we rely on a
relatively unknown feature of Spark’'s RDD API, collectAync:

sglContext.sql(queryString).rdd.collectAsync

This returns a Scala Future, which can easily be composed
using Future.sequence to launch a whole series of
asynchronous RDD operations. They will be executed with
the help of a separate ForkJoin thread pool.

- Run lots of queries concurrently using collectAsync
- Spark local[*] mode
- SQL queries on first million rows of NYC Taxi dataset

- 50 Queries per Second

- Most of time not running queries but parsing SQL !

1. Starting up a Spark task is actually pretty low
latency - milliseconds

2. One huge benefit to filtering is reduced thread/CPU
usage. Most of the queries ended up being single
partition / single thread.

1. Cache the SQL to DataFrame/LogicalPlan parsing.
This saves ~20ms per parse, which is not
insignificant for low-latency apps

2. Distribute the SQL parsing away from the main
thread so it's not gated by one thread

SQL Plan Caching

val cachedDF = new collection.mutable.HashMap([String, DataFrame]

def getCachedDF(query: String): DataFrame =
cachedDF.getOrElseUpdate(query, sgl.sgl(query))

This is not a contribution

15 million rows of NYC Taxi data - **still 700 QPS**!

This makes sense due to the efficiency of querying.

Fast Spark Query Stack

~ Run Spark context on heap with "local[*]
- Load FiloDB-Spark connector, load data in memory
- Very fast queries all in process

This is not a contribution

Fast Spark Query Stack |l

Spark Job Server
- HTTP/REST using Spark Job Server

This is not a contribution

This is not a co

Slower: Hive Thrift Server Stack

Hive Thrift Server

ntribution

w»n Hive MetaStore

http://qgithub.com/tuplejump/FiloDB

http://github.com/tuplejump/FiloDB

