Building Custom Machine Learning Algorithms with Apache SystemML

Fred Reiss

Chief Architect, IBM Spark Technology Center Member, IBM Academy of Technology

Roadmap

- What is Apache SystemML?
- Demo!
- How to get SystemML

What is Apache SystemML?

Origins of the SystemML Project

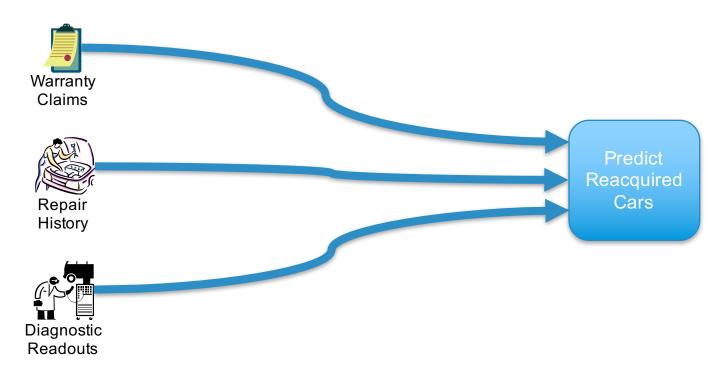
You are here.

2015

2007-2008: Multiple projects at IBM Research – Almaden involving machine learning on Hadoop.

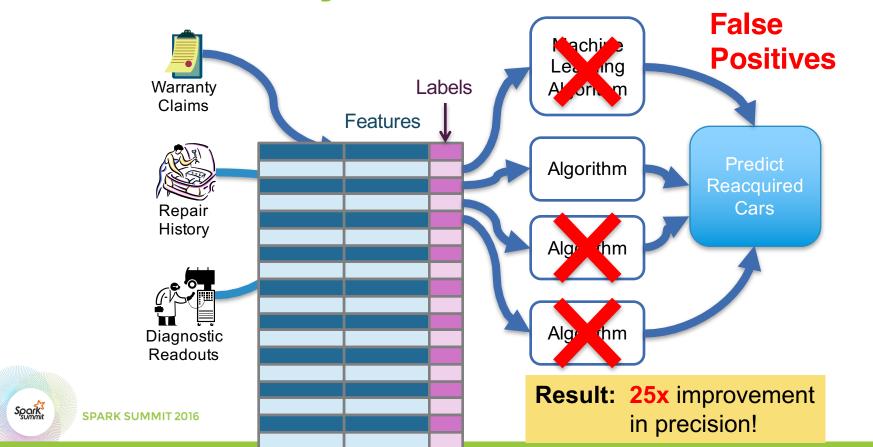
2009: We form a dedicated team for scalable ML

2009-2010: Through engagements with customers, we observe how data scientists create ML solutions.

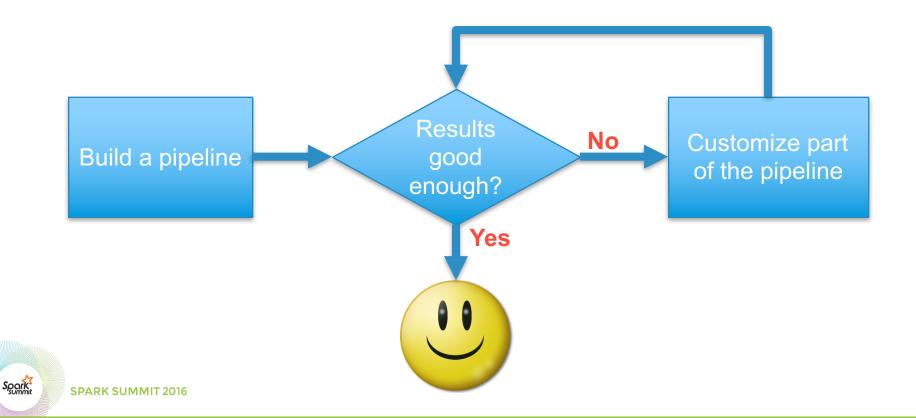

2007

2008

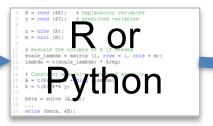
2009

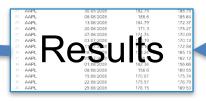


Case Study: An Auto Manufacturer



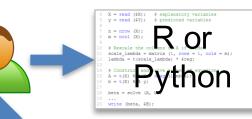
Case Study: An Auto Manufacturer


The Iterative Development Process

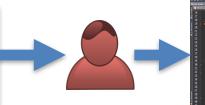


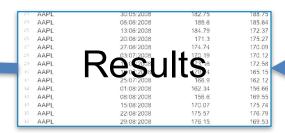
State-of-the-Art: Small Data

Data Scientist



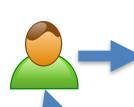
Personal Computer




State-of-the-Art: Big Data

Data Scientist

Systems Programmer



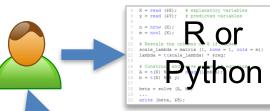
SPARK SUMMIT 2016

State-of-the-Art: Big Data

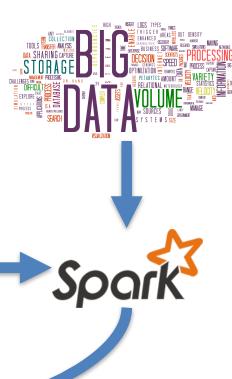
TOUS SHARING ANISS ON SHARING SUPPORT STREET ANISS ON SHARING ANISS ON SHARING SUPPORT STREET ANISS OF SHARING SUPPORT STREET S

Data Scientist

Days or weeks per iteration

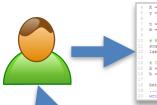

Errors while translating algorithms

	23	AAPL	30/05/2008	182.75	188.75
	24	AAPL	06/06/2008	188.6	185.64
	25	AAPL	13/06/2008	184.79	172.37
	26	AAPL	20/06/2008	171.3	175.27
	27	AAPL	27/06/2008	174.74	170.09
	28	AAPL	03/07/2008	170.19	170.12
-	29	AAPL	→ 0 0 0 0 0 8	73.16	172.58
_	30	AAPL	19/07/20 8	479 4	165.15
	31	AAPL	25/07/2008	166.9	162.12
	32	AAPL	01/08/2008	162.34	156.66
	33	AAPL	08/08/2008	156.6	169.55
	3.5	AAPL	15/08/2008	170.07	175.74
	35	AAPL	22/08/2008	175.57	176.79
	36	AAPL	29/08/2008	176.15	169.53


The SystemML Vision

Data Scientist

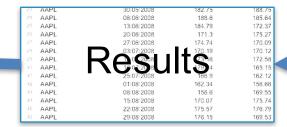
23	AAPL	30/05/2008	182.75	188.75
24	AAPL	06/06/2008	188.6	185.64
25	AAPL	13/06/2008	184.79	172.37
26	AAPL	20/06/2008	171.3	175.27
27	AAPL	27/06/2008	174.74	170.09
28	AAPL	03/07/2008	170.19	170.12
29	AAPL		73:16	172.58
30	AAPL	19 07/20 8	479 4	165.15
31	AAPL	25/07/2008	166.9	162.12
32	AAPL	01/08/2008	162.34	156.66
33	AAPL	08/08/2008	156.6	169.55
34	AAPL	15/08/2008	170.07	175.74
35	AAPL	22/08/2008	175.57	176.79
36	AAPL	29/08/2008	176.15	169.53



SPARK SUMMIT 2016

The SystemML Vision

Data Scientist



Fast iteration
Same answer

2007-2008: Multiple projects at IBM Research – Almaden involving machine learning on Hadoop.

2009: We form a dedicated team for scalable ML

2009-2010: Through engagements with customers, we observe how data scientists create machine learning algorithms.

2007

2008

2009

Research

Apache SystemML

June 2015: IBM
Announces opensource SystemML

September 2015:

November 2015:
SystemML enters
Apache incubation

February 2016:

June 2016: Second Apache release (0.10)

September 2015: Code available on Github

First release (0.9) of Apache SystemML

2015

- Built algorithms for predicting treatment outcomes
 - Substantial improvement in accuracy
- Moved from Hadoop MapReduce to Spark
 - SystemML supports both frameworks
 - Exact same code
 - 300X faster on 1/40th as many nodes

SystemML at Cadent Technology

Cadent is a leading provider of TV advertising and data solutions, reaching over 140 million homes and trusted by the world's largest service providers.

"SystemML allows Cadent to implement advanced numerical programming methods in Apache Spark, empowering us to leverage specialized algorithms in our predictive analytics software."

Michael Zargham Chief Scientist

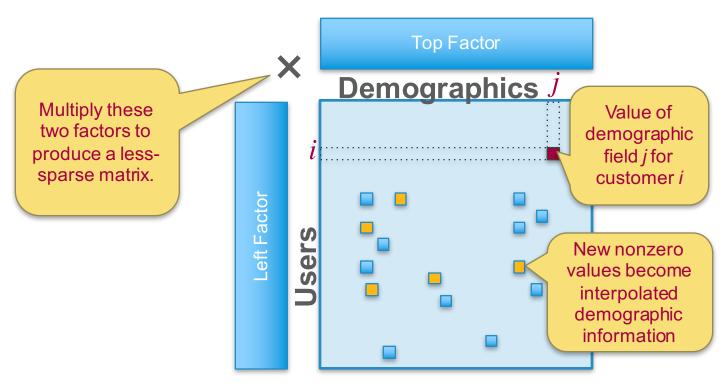
Demo!

Demo Scenario

- Application: Targeted ads using demographic information tied to cookies
- Problem: The information is incomplete
- Solution: Estimate the missing values
 - Treat the problem as a matrix completion problem

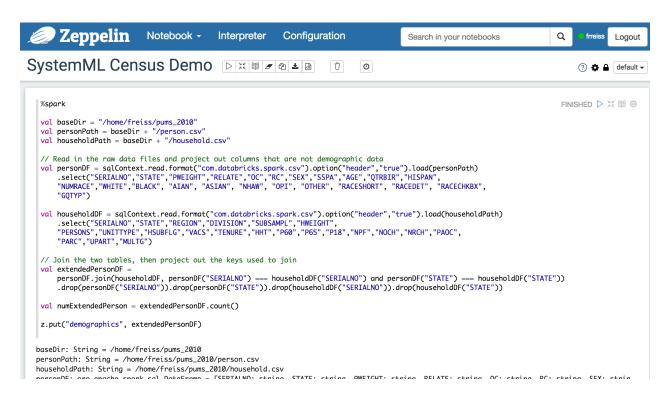
Data

- The U.S. Census Public Use Microdata Sample (PUMS) data set for 2010
- 10% sample of the U.S. population
 - We'll use just California today
- Use this full data set to generate synthetic incomplete data



Demo Scenario

- Application: Identify products that are complementary (often purchased together)
- Problem: Customers are not currently buying the best complements at the same time
- Solution: Suggest new product pairings
 - Treat the problem as a matrix completion problem


Matrix Factorization

SPARK SUMMIT 2016

Demo Part 1: Data wrangling

Demo Part 2: Custom algorithm

Algorithm Customizability

ML algorithms are expressed in an R-like or Python-like syntax that includes linear algebra primitives, statistical functions, and ML-specific constructs. This high-level language significantly increases the productivity of data scientists as it provides (1) full flexibility in expressing custom analytics, and (2) data independence from the underlying input formats and physical data representations. Automatic optimization according to data and cluster characteristics ensures both efficiency and scalability.

Poisson Nonnegative Matrix Factorization in SystemML's R-like Syntax

```
while (iter < max_iterations) {
  iter = iter + 1;
  H = (H * (t(W) %*% (V/(W%*%H)))) / t(colSums(W));
  W = (W * ((V/(W%*%H)) %*% t(H))) / t(rowSums(H));
  obj = as.scalar(colSums(W) %*% rowSums(H)) - sum(V * log(W%*%H));
  print("iter=" + iter + " obj=" + obj);
}</pre>
```


Key Points

- SystemML, Spark, and Zeppelin work together
- Linear algebra is great for data science
- Customization is important

How to get Apache SystemML

The Apache SystemML Web Site

http://systemml.apache.org

THANK YOU.

Please try out Apache SystemML!

http://systemml.apache.org

Special thanks to Nakul Jindal and Mike Dusenberry for helping with the demo!

