

Distributed Heterogeneous Mixture Learning on Spark

Masato Asahara and Ryohei Fujimaki NEC Data Science Research Labs. Jun/08/2016 @Spark Summit 2016

Who we are?

Masato Asahara (Ph.D.)

Researcher, NEC Data Science Research Laboratory

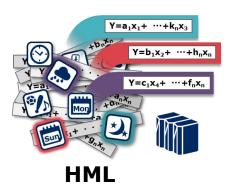
- Masato received his Ph.D. degree from Keio University, and has worked at NEC for 6 years in the research field of distributed computing systems and computing resource management technologies.
- Masato is currently leading developments of Spark-based machine learning and data analytics systems, particularly using NEC's Heterogeneous Mixture Learning technology.

Ryohei Fujimaki (Ph.D.)

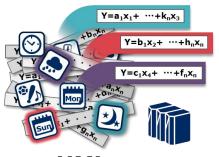
Research Fellow, NEC Data Science Research Laboratory

- Ryohei is responsible for cores to NEC's leading predictive and prescriptive analytics solutions, including "heterogeneous mixture learning" and "predictive optimization" technologies. In addition to technology R&D, Ryohei is also involved with co-developing cutting-edge advanced analytics sólutions with NEC's global business clients and partners in the North American and APAC regions.
- Ryohei received his Ph.D. degree from the University of Tokyo, and became the youngest research fellow ever in NEC Corporation's 115-year history.

Agenda



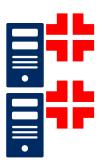
Agenda



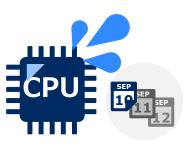
HML

Data Shuffling

MapReduce Synchronization



Matrix Computation



Agenda

NEC's Predictive Analytics and Heterogeneous Mixture Learning

Enterprise Applications of HML

Energy/Water Operation Mgmt.

Sales Optimization

Product Price Optimization

Driver Risk Assessment

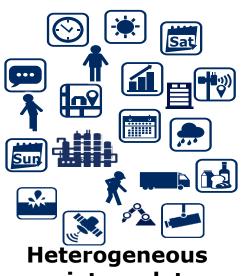
Predictive Maintenance

Churn Retention

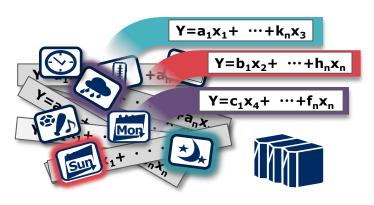
Inventory Optimization

NEC's Heterogeneous Mixture Learning (HML)

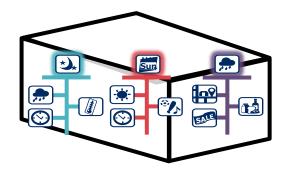
NEC's machine learning that automatically derives "accurate" and "transparent" formulas behind Big Data.



mixture data

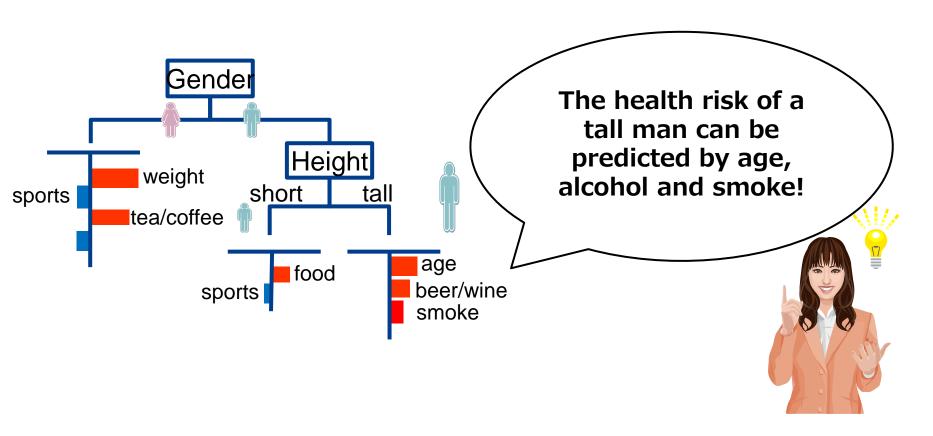


Explore Massive Formulas

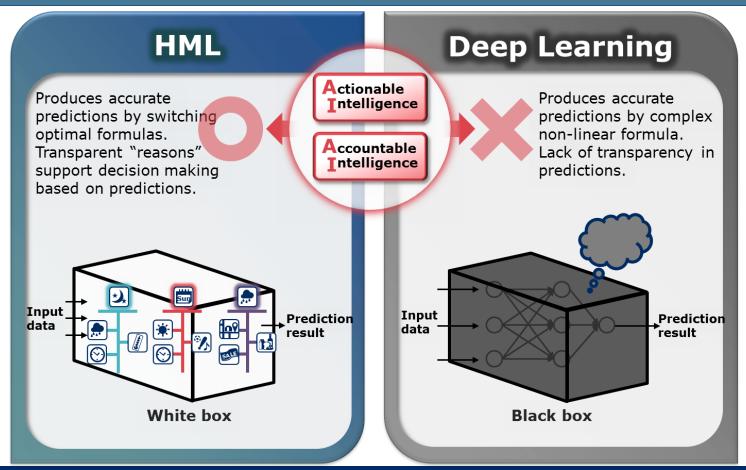


Transparent data segmentation and predictive formulas

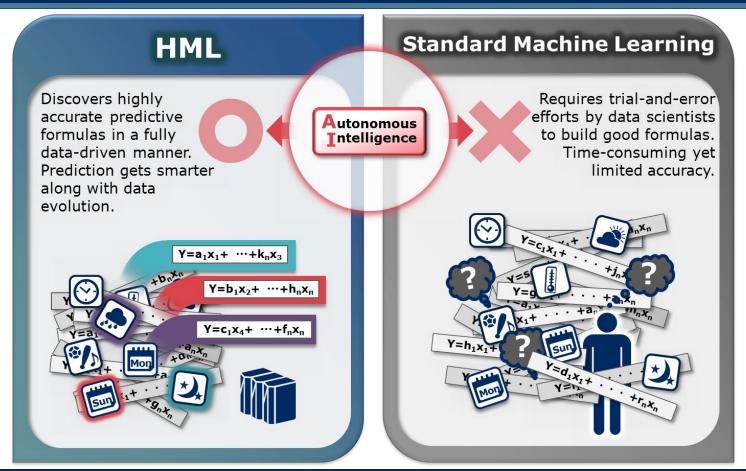
The HML Model



HML (Heterogeneous Mixture Learning)

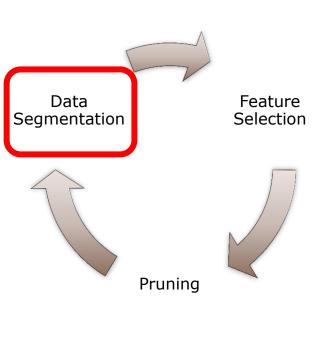


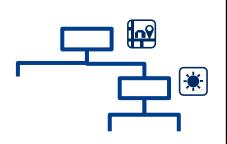
HML (Heterogeneous Mixture Learning)



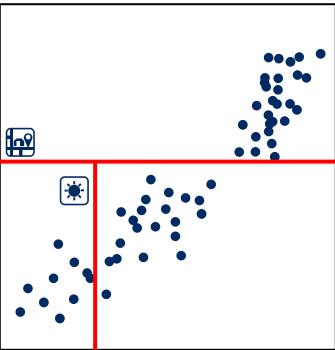
HML Algorithm

Segment data by a rule-based tree



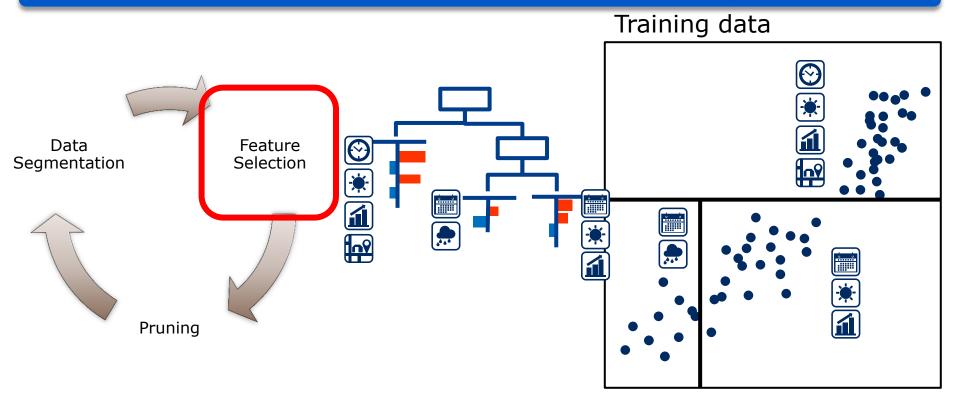


Training data



HML Algorithm

Select features and fit predictive models for data segments



Enterprise Applications of HML

Energy/Water Operation Mgmt.

Sales Optimization

Product Price Optimization

Driver Risk Assessment

Predictive Maintenance

Churn Retention

Inventory Optimization

Demand for Big Data Analysis

24(hour)×365(days)×3 (year)×1000(shops) \sim 26,000,000 training samples

Demand for Big Data Analysis

5 million(customers)×12(months) =60,000,000 training samples

Predictive Maintenance

Churn Retention

Inventory Optimization

Demand for Big Data Analysis

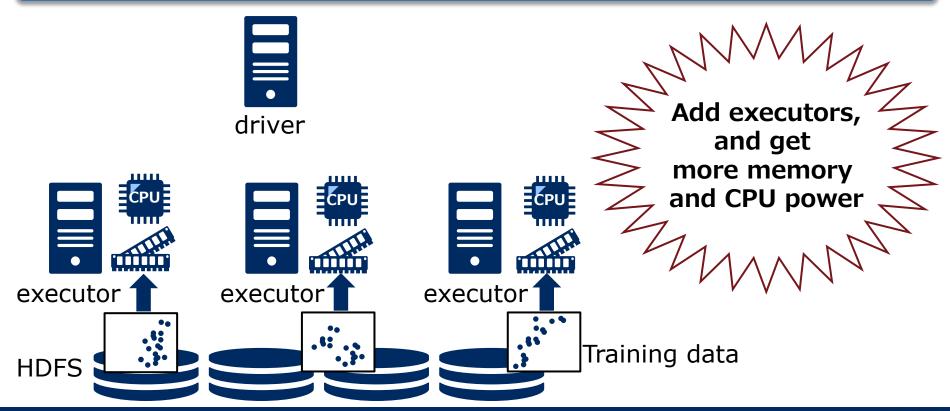
Distributed HML on Spark

Why Spark, not Hadoop?

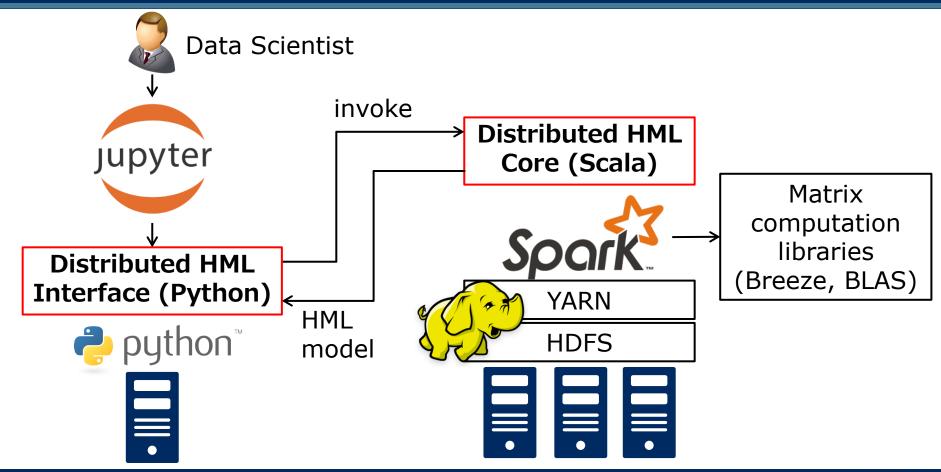
Because Spark's in-memory architecture can run HML faster Data segmentation Feature selection Pruning ECPUE Data Feature Segmentation Selection Data segmentation Feature selection Prunina

Data Scalability powered by Spark

Treat unlimited scale of training data by adding executors



Distributed HML Engine: Architecture

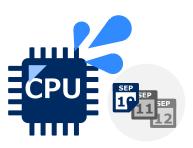


3 Technical Key Points to Fast Run ML on Spark

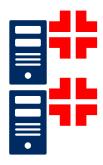
Data Shuffling

MapReduce Synchronization

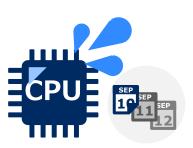
Matrix Computation



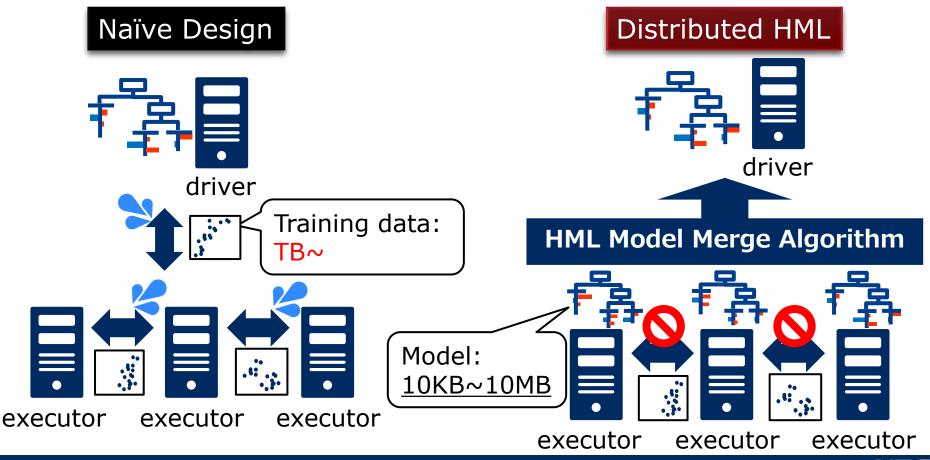
3 Technical Key Points to Fast Run ML on Spark



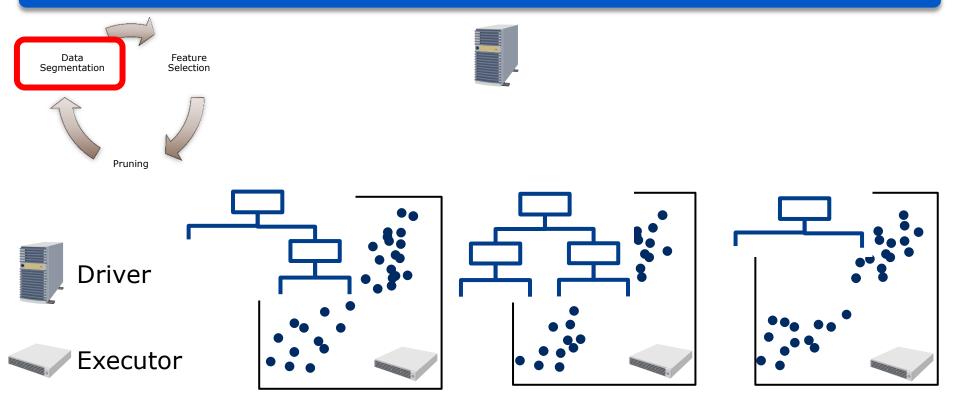
Matrix Computation

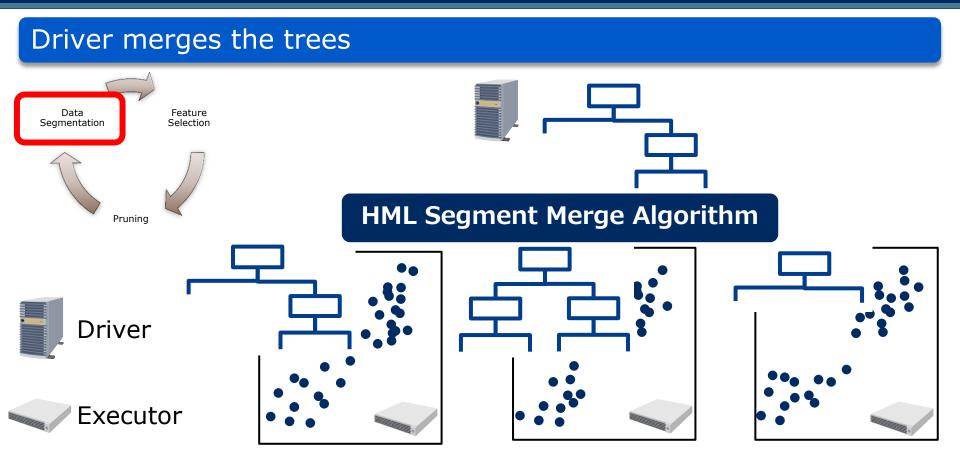


Challenge to Avoid Data Shuffling

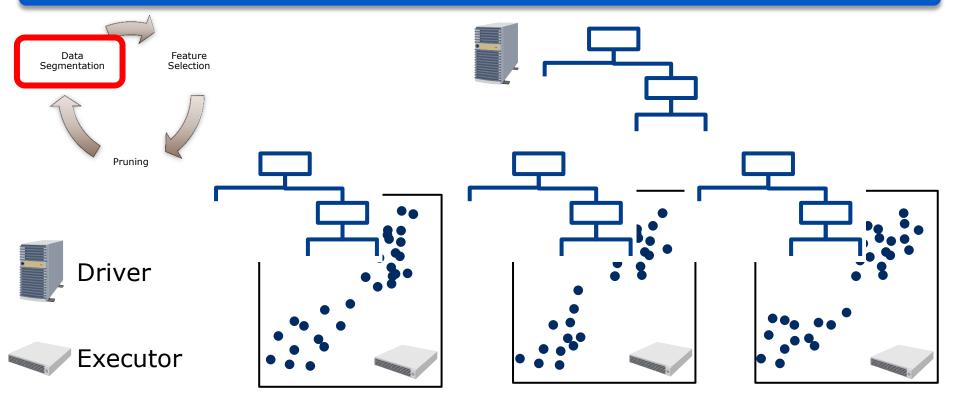


Executors build a rule-based tree from their local data in parallel

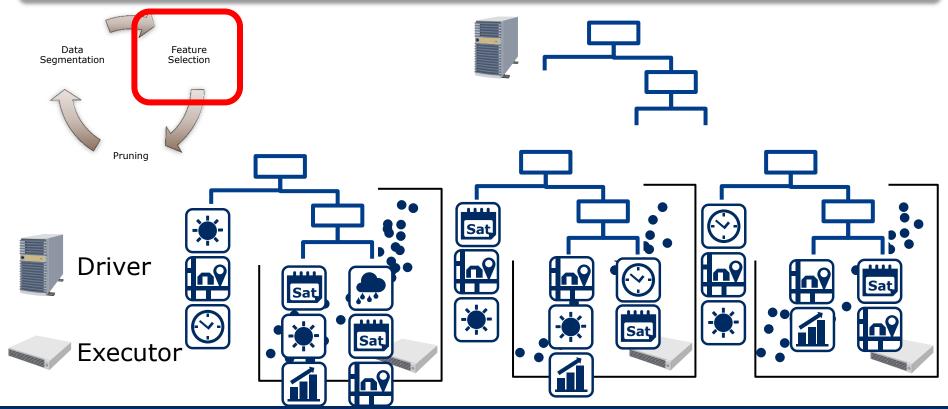




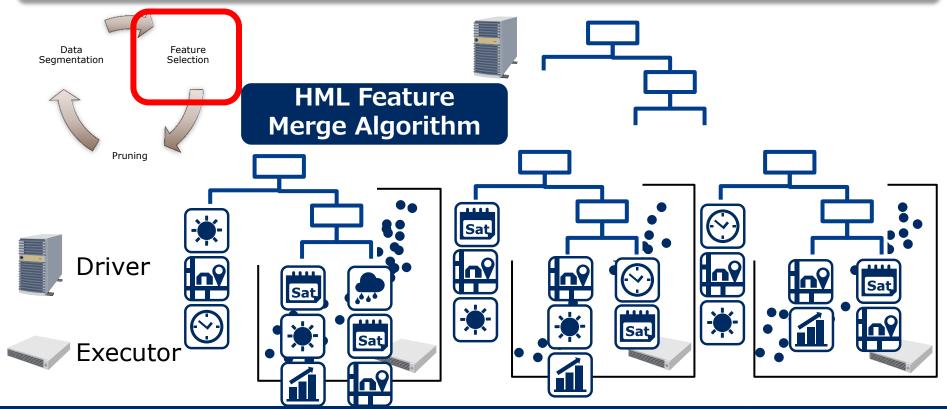
Driver broadcasts the merged tree to executors



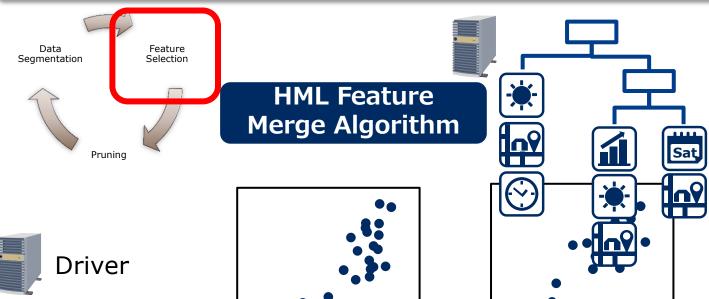
Executors perform feature selection with their local data in parallel

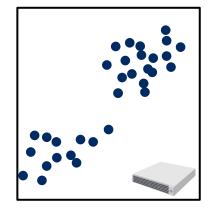


Driver merges the results of feature selection

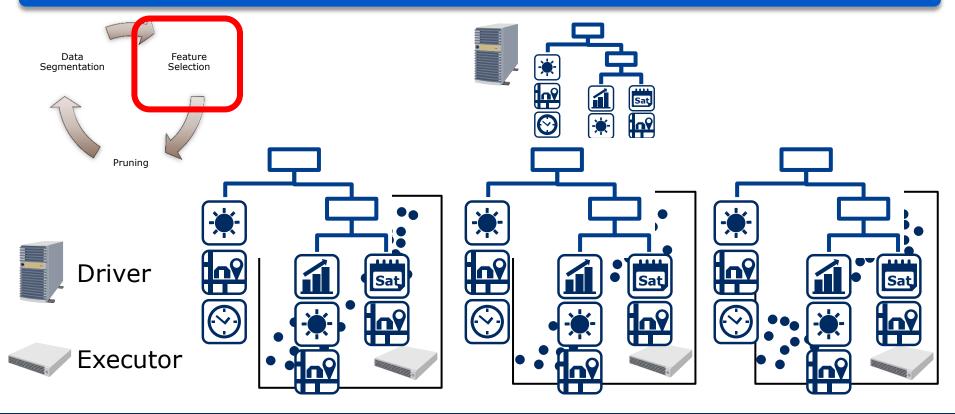


Driver merges the results of feature selection

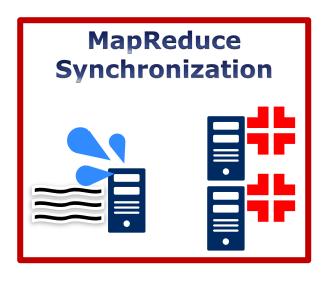




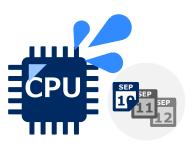
Driver broadcasts the merged results of feature selection to executors



3 Technical Key Points to Fast Run ML on Spark

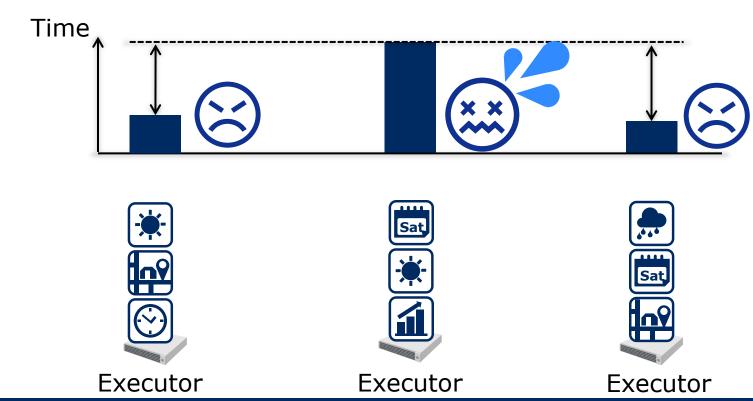


Matrix Computation



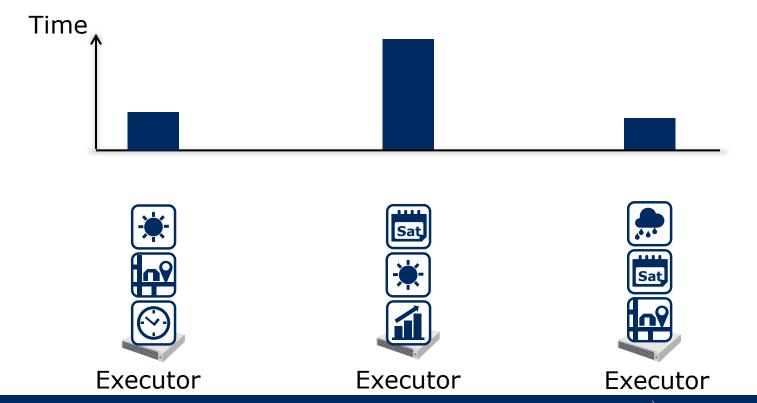
Wait Time for Other Executors Delays Execution

Machine learning is likely to cause unbalanced computation load



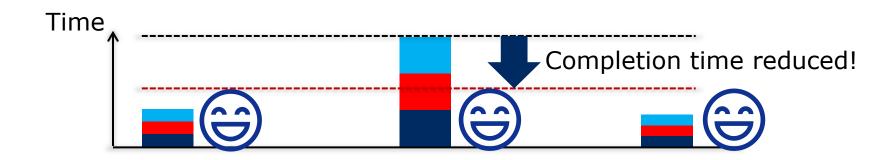
Balance Computational Effort for Each Executor

Executor optimizes all predictive formulas with equally-divided training data



Balance Computational Effort for Each Executor

Executor optimizes all predictive formulas with equally-divided training data

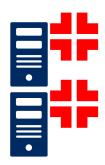


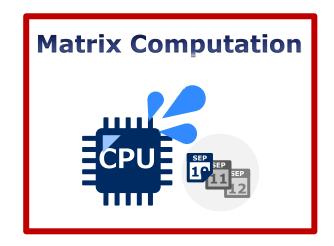
Executor

3 Technical Key Points to Fast Run ML on Spark

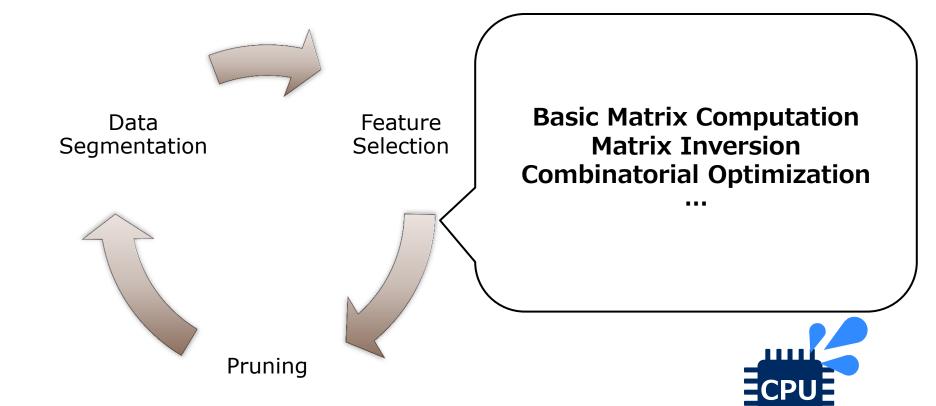
Data Shuffling

MapReduce Synchronization

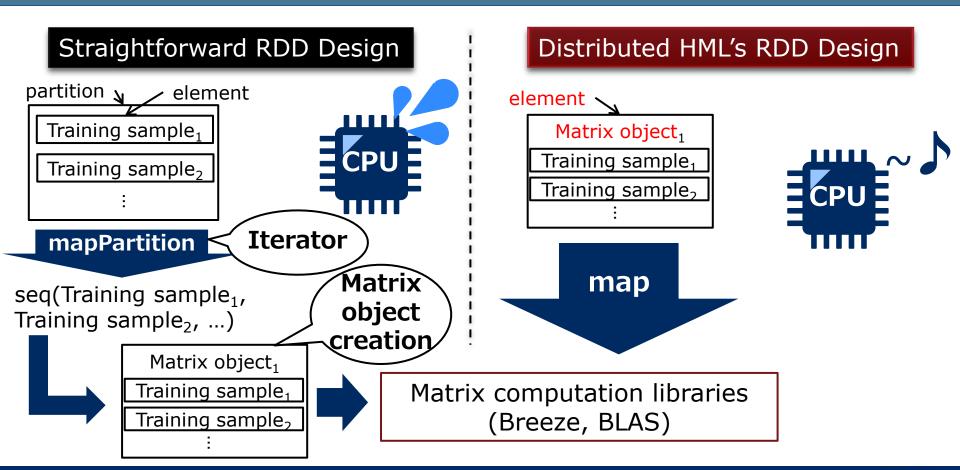




Machine Learning Consists of Many Matrix Computations

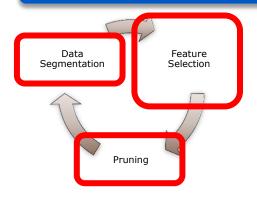


RDD Design for Leveraging High-Speed Libraries



Performance Degradation by Long-Chained RDD

Long-chained RDD operations cause high-cost recalculations

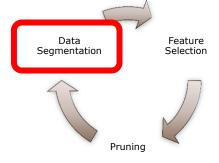


RDD.map(TreeMapFunc)

- .reduce(TreeReduceFunc)
- .map(FeatureSelectionMapFunc)
- .reduce(FeatureSelectionReduceFunc)
- .map(PruningMapFunc)
- .map(TreeMapFunc)
- .reduce(TreeReduceFunc)
- .map(FeatureSelectionMapFunc)
- .reduce(FeatureSelectionReduceFunc)

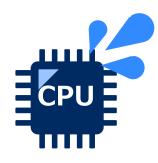
Performance Degradation by Long-Chained RDD

Long-chained RDD operations cause high-cost recalculations



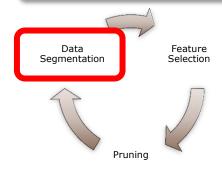
RDD.map(TreeMapFunc)

- .reduce(TreeReduceFunc)
- .map(FeatureSelectionMapFunc)
- .reduce(FeatureSelectionReduceFunc)
- .map(PruningMapFunc)
- .map(TreeMapFunc)
- .reduce(TreeReduceFunc)
- .map(FeatureSelectionMapFunc)
- .reduce(FeatureSelectionReduceFunc)
- .map(TreeMapFunc)



Performance Degradation by Long-Chained RDD

Cut long-chained operations periodically by checkpoint()



savedRDD = RDD.map(TreeMapFunc)

- .reduce(TreeReduceFunc)
- .map(FeatureSelectionMapFunc)
- .reduce(FeatureSelectionReduceFunc)
- .map(PruningMapFunc)
- .map(TreeMapFunc)
- .reduce(TreeReduceFunc)
- .map(FeatureSelectionMapFunc)
- .reduce(FeatureSelectionReduceFunc)
- .checkpoint()
- .map(TreeMapFunc)

Benchmark Performance Evaluations

Eval 1: Prediction Error (vs. Spark MLlib algorithms)

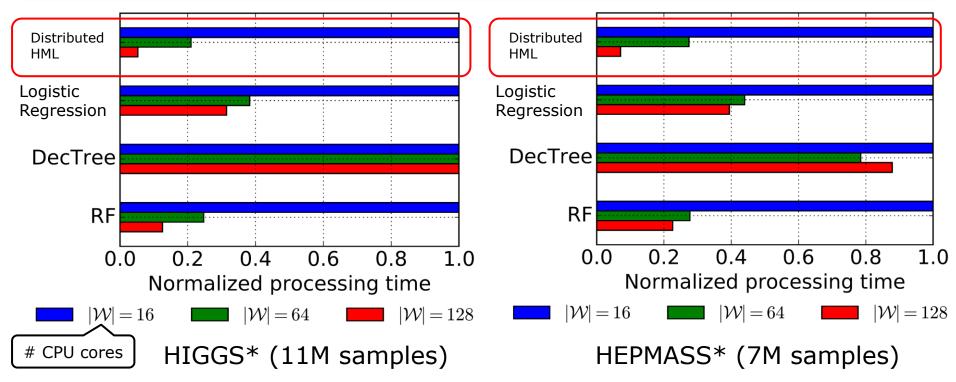
Distributed HML achieves low error competitive to a complex model

data	# samples	Distributed HML	Logistic Regression	Decision Tree	Random Forests
gas sensor array (CO)*	4,208,261	1 _{st} 0.542	0.597	0.587	0.576
household power consumption *	2,075,259	0.524 1 _{st}	0.531	0.529	0.655
HIGGS*	11,000,000	3 nd 0.335	0.358	0.337	0.317
HEPMASS*	7,000,000	1 _{st} 0.156	0.163	0.167	0.175

^{*} UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/)

Eval 2: Performance Scalability (vs. Spark MLlib algos)

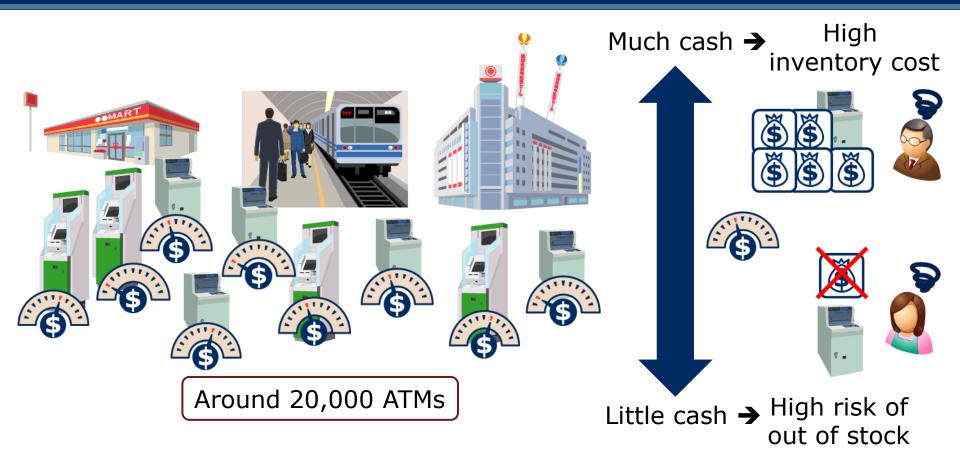
Distributed HML is competitive with Spark MLlib implementations.



* UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/)

Evaluation in Real Case

ATM Cash Balance Prediction



Training Speed

Serial HML*

9 days

110x Speed up

Distributed HML

2 hours

* Run w/ 1 CPU core and 256GB memory

Summary of data

- # ATMs: around 20,000 (in Japan)
- # training samples: around 10M

Cluster spec (10 nodes)

- # CPU cores: 128
- Memory: 2.5TB
- Spark 1.6.1, Hadoop 2.7.1 (HDP 2.3.2)

Prediction Error

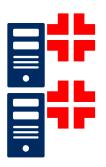
- Summary of data
 - # ATMs: around 20,000 (in Japan)
 - # training samples: around 23M

- Cluster spec (10 nodes)
 - # CPU cores: 128
 - Memory: 2.5TB
 - Spark 1.6.1, Hadoop 2.7.1 (HDP 2.3.2)

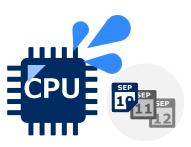
Summary

Data Shuffling

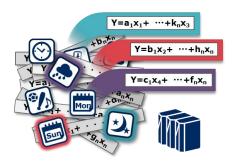
MapReduce Synchronization



Matrix Computation



Summary



\Orchestrating a brighter world

NEC