
GPU Support in Spark and GPU/
CPU Mixed Resource Scheduling 
at Production Scale 

Yonggang Hu, IBM, DE 
Junfeng Liu, IBM, Architect 



About us 
•  Yonggang Hu 

Distinguished Engineer, IBM 
Chief Architect at Platform Computing, IBM.  
Vice President and Application Architect at JPMorgan Chase 
Working on distributed computing, grid, cloud and big data for the 
past 20 years. 

•  Junfeng Liu 
IBM Platform Computing Architect, focusing on Big data 
platform design and implementation. Successfully delivering 
solutions to several key customers. 



Agenda 

•  GPU and Spark integration motivation 
•  The challenges in production deployments 
•  Solutions in IBM Conductor with Spark 
•  Demo 



Spark & GPU 

Spark apps are 
CPU intensive 

Need to handle 
more data and 
bigger models 

Machine Learning 
Predicative analytics,  
Logistic regression, ALS 
Kmeans, etc. 
 

Graph Analytics 
Security, Fraud Detection 
Social Network Analytics 
GraphX 
 

Video/Speech Analytics 
Object Recognition 
Dialog 
 

Financial Risk Analytics 
Market simulation 
Credit risk. home-grown, 
apps from Murex, Misys 
 

Spark-enable existing GPU apps GPU-enable Spark apps 



Various ways to enable Spark & GPU 
•  Use GPUs for accelerating Spark Libraries and operations without 

changing interfaces and underlying programming model. 
•  Automatically generate CUDA code from the source Spark Java 

code  
•  Integrate Spark with GPU-enabled application & system (e.g., Spark 

integrated with Caffe, TensorFlow and customer applications) 



Production Challenges 
•  However 

–  Identification of GPU execution vs. CPU 
execution in DAG 

–  Data preparation for GPU execution 
–  Low resource utilization for CPU or GPU or 

both 
•  Cannot assume all compute hosts are identical and 

have GPU resource available 
•  GPU is a lot more expensive !!! 

–  Overload and contention when running mixed 
GPU & CPU workload 

–  Long tail & GPU & CPU tasks failover  
–  Task ratio control on different resources 
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A typical example –  
Personalized Medicine – Adverse Drug Reaction Workload  

-  30X faster at learning speed and 4.3 X speed up at end-2-end 
-  Need to fully utilize both GPU and CPU resources to get economic benefits 



Scheduling Granularity 
•  Scheduling at application level 

–  Mesos and Yarn tag the GPU machine with label 
–  Schedule the application on GPU hosts based resource requirement of application 
–  Corse grained scheduling leads to low utilization of CPU/GPU. 

•  Scheduling at DAG level 
–  Need fine grained sharing for GPU resources rather than reserving entire GPU 

machines 
–  Identify GPU operation 
–  Optimize the DAG tree by decupling GPU operations from CPU operations and by 

inserting new GPU stages 
–  Reduce GPU wait time, enable sharing GPU among different jobs and therefore 

improve the overall GPU utilization 



GPU tasks recognition  

•  GPU and CPU tasks mixed together 
•  Separate the workload is necessary for scheduling 

control 

GPUFunction()	
Python-C Wrapper to 

Invoke Native 
Function	

Function 
implemented by 
CUDA/OpenCL	

GPU library	Python-C/C++ Wrapper	



GPU tasks recognition  

•  Mark the GPU workload by DAG 
operation 
–  Go through the DAG tree to identify 

the stages with GPU requirement 
–  Optimize the distribution by inserting 

GPU stage 

 



Policies 

•  RM needs capability to identify the GPU hosts and 
manage along with CPU resources 

•  Prioritization policy - share GPU resource among 
applications 

•  Allocation policy – control GPU and CPU allocation 
independently – multi-dimensional scheduling 

•  Fine grained policy to schedule tasks according to GPU 
optimized DAG plan 



Adaptive Scheduling 

•  CPU & GPU tasks are convertible in 
many applications 

•  Scheduling needs adaptive capability 
–  If GPU is available, use a portion of GPU 
–  Otherwise run rest of tasks on CPU 

dstInBlocks.join(merged).mapV
alues { 
   …. 
    if (useGPU) { 
        loadGPULib() 
        callGPU () 
    } 
    else { 
       //CPU version 
    } 
} 
 



Adaptive Scheduling 
C

PU
 

C
PU

 

C
PU

 

G
PU

 

G
PU

 

G
PU

 

Driver 

Executors Executors 
Executors 

Tasks 
-------------- 

Node 0 Node 1 Node n 



Efficiency Considerations 

•  Do we need to wait GPU resource if there is 
CPU available? 

•  Do we need rerun the CPU tasks on GPU if 
tasks on CPU are long-tail? 

•  Do we need to have failover cross resource 
type? 



Defer Scheduling 

•  Traditional defer Scheduling  
–  Wait for data locality 
–  Cache, Host, Rack 

•  Resource based defer scheduling 
–  Necessary if the GPU can greatly speed up task execution 
–  Wait time is acceptable 



Future works 

•  Global optimization 
–  Consider the cost of additional shuffle stage 
–  Consider data locality of CPU and GPU stage 
–  Add time dimension to MDS 
–  Optimize global DAG tree execution 
–  Use historical data to optimize future execution, e.g, 

future iteration 



Fine grain, dynamic allocation of 
resources maximizes efficiency of Spark 
instances sharing a common resource 

pool.  Multi-tenant, multi-framework 
support.  Eliminates cluster sprawl. 
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 Run Spark natively on a shared 
infrastructure without the dependency of 
Hadoop.  Reduce application wait time, 

improving time to results. 

1

Building Spark Centric Shared Service with 
IBM Conductor 

End-to-End Enterprise Class Solution 

Improve Time to Results 
Proven architecture at extreme scale, with 
enterprise class workload management, 

multi-version support for Spark, 
monitoring, reporting, and security 

capabilities. 

3
Reduce Administration Costs 

Increase Resource Utilization 
•  IBM STC Spark Distribution 
•  IBM Platform Resource Orchestrator / 

Session Scheduler, application service 
manager. 

•  IBM Spectrum Scale FPO 
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IBM Conductor with Spark 

IBM Bluemix Spark Cloud Service in 
production – thousands of users and 
tenants.  

Third party audited benchmark 
indicated significant performance/
throughput/SLA advantages  
 https://stacresearch.com/news/2016/03/29/IBM160229 
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IBM Conductor with Spark 
Monitor and Reporting with Elastic (ELK) 

  
!  Integrated Elastic Search, Logstash, Kibana for customizable monitoring 
!  Built-in monitoring Metrics 

! Cross Spark Instance Groups 
! Cross Spark Applications within Spark Instance Group 
! Within Spark Application 

!  Built-in monitoring inside Zeppelin Notebook 



Demo 



THANK YOU. 
Contact information or call to action goes here. 



Acceleration Opportunities for GPUs & Spark  
Analytics Model Computational Patterns suitable for GPU Acceleration 

Regression Analysis Cholesky Factorization, Matrix Inversion, Transpose 

Clustering Cost-based iterative convergence 

Nearest-neighbor 
Search 

Distance calculations, Singular Value Decomposition, Hashing 

Neural Networks Matrix Multiplications, Convolutions, FFTs, Pair-wise dot-products 

Support Vector 
Machines 

Linear Solvers, Dot-product 

Association Rule 
Mining 

Set Operations: Intersection, union 

Recommender Systems Matrix Factorizations, Dot-product 

Time-series Processing FFT, Distance and Smoothing functions 

Text Analytics Matrix multiplication, factorization, Set operations, String computations, 
Distance functions 

Monte Carlo Methods Random number generators, Probability distribution generators 

Mathematical 
Programming 

Linear solvers, Dynamic Programming 

OLAP/BI Aggregation, Sorting, Hash-based grouping, User-defined functions 

Graph Analytics Matrix multiplications, Path traversals 


