
GPU Support in Spark and GPU/
CPU Mixed Resource Scheduling
at Production Scale

Yonggang Hu, IBM, DE
Junfeng Liu, IBM, Architect

About us
•  Yonggang Hu

Distinguished Engineer, IBM
Chief Architect at Platform Computing, IBM.
Vice President and Application Architect at JPMorgan Chase
Working on distributed computing, grid, cloud and big data for the
past 20 years.

•  Junfeng Liu
IBM Platform Computing Architect, focusing on Big data
platform design and implementation. Successfully delivering
solutions to several key customers.

Agenda

•  GPU and Spark integration motivation
•  The challenges in production deployments
•  Solutions in IBM Conductor with Spark
•  Demo

Spark & GPU

Spark apps are
CPU intensive

Need to handle
more data and
bigger models

Machine Learning
Predicative analytics,
Logistic regression, ALS
Kmeans, etc.

Graph Analytics
Security, Fraud Detection
Social Network Analytics
GraphX

Video/Speech Analytics
Object Recognition
Dialog

Financial Risk Analytics
Market simulation
Credit risk. home-grown,
apps from Murex, Misys

Spark-enable existing GPU apps GPU-enable Spark apps

Various ways to enable Spark & GPU
•  Use GPUs for accelerating Spark Libraries and operations without

changing interfaces and underlying programming model.
•  Automatically generate CUDA code from the source Spark Java

code
•  Integrate Spark with GPU-enabled application & system (e.g., Spark

integrated with Caffe, TensorFlow and customer applications)

Production Challenges
•  However

–  Identification of GPU execution vs. CPU
execution in DAG

–  Data preparation for GPU execution
–  Low resource utilization for CPU or GPU or

both
•  Cannot assume all compute hosts are identical and

have GPU resource available
•  GPU is a lot more expensive !!!

–  Overload and contention when running mixed
GPU & CPU workload

–  Long tail & GPU & CPU tasks failover
–  Task ratio control on different resources

Stage	2	Stage	1	

reduceByKey	 collect	

Stage	GPU	

GPU Group

CPU Group

A typical example –
Personalized Medicine – Adverse Drug Reaction Workload

-  30X faster at learning speed and 4.3 X speed up at end-2-end
-  Need to fully utilize both GPU and CPU resources to get economic benefits

Scheduling Granularity
•  Scheduling at application level

–  Mesos and Yarn tag the GPU machine with label
–  Schedule the application on GPU hosts based resource requirement of application
–  Corse grained scheduling leads to low utilization of CPU/GPU.

•  Scheduling at DAG level
–  Need fine grained sharing for GPU resources rather than reserving entire GPU

machines
–  Identify GPU operation
–  Optimize the DAG tree by decupling GPU operations from CPU operations and by

inserting new GPU stages
–  Reduce GPU wait time, enable sharing GPU among different jobs and therefore

improve the overall GPU utilization

GPU tasks recognition

•  GPU and CPU tasks mixed together
•  Separate the workload is necessary for scheduling

control

GPUFunction()	
Python-C Wrapper to

Invoke Native
Function	

Function
implemented by
CUDA/OpenCL	

GPU library	Python-C/C++ Wrapper	

GPU tasks recognition

•  Mark the GPU workload by DAG
operation
–  Go through the DAG tree to identify

the stages with GPU requirement
–  Optimize the distribution by inserting

GPU stage

Policies

•  RM needs capability to identify the GPU hosts and
manage along with CPU resources

•  Prioritization policy - share GPU resource among
applications

•  Allocation policy – control GPU and CPU allocation
independently – multi-dimensional scheduling

•  Fine grained policy to schedule tasks according to GPU
optimized DAG plan

Adaptive Scheduling

•  CPU & GPU tasks are convertible in
many applications

•  Scheduling needs adaptive capability
–  If GPU is available, use a portion of GPU
–  Otherwise run rest of tasks on CPU

dstInBlocks.join(merged).mapV
alues {
 ….
 if (useGPU) {
 loadGPULib()
 callGPU ()
 }
 else {
 //CPU version
 }
}

Adaptive Scheduling
C

PU

C
PU

C
PU

G
PU

G
PU

G
PU

Driver

Executors Executors
Executors

Tasks

Node 0 Node 1 Node n

Efficiency Considerations

•  Do we need to wait GPU resource if there is
CPU available?

•  Do we need rerun the CPU tasks on GPU if
tasks on CPU are long-tail?

•  Do we need to have failover cross resource
type?

Defer Scheduling

•  Traditional defer Scheduling
–  Wait for data locality
–  Cache, Host, Rack

•  Resource based defer scheduling
–  Necessary if the GPU can greatly speed up task execution
–  Wait time is acceptable

Future works

•  Global optimization
–  Consider the cost of additional shuffle stage
–  Consider data locality of CPU and GPU stage
–  Add time dimension to MDS
–  Optimize global DAG tree execution
–  Use historical data to optimize future execution, e.g,

future iteration

Fine grain, dynamic allocation of
resources maximizes efficiency of Spark
instances sharing a common resource

pool. Multi-tenant, multi-framework
support. Eliminates cluster sprawl.

2

 Run Spark natively on a shared
infrastructure without the dependency of
Hadoop. Reduce application wait time,

improving time to results.

1

Building Spark Centric Shared Service with
IBM Conductor

End-to-End Enterprise Class Solution

Improve Time to Results
Proven architecture at extreme scale, with
enterprise class workload management,

multi-version support for Spark,
monitoring, reporting, and security

capabilities.

3
Reduce Administration Costs

Increase Resource Utilization
•  IBM STC Spark Distribution
•  IBM Platform Resource Orchestrator /

Session Scheduler, application service
manager.

•  IBM Spectrum Scale FPO

4

IBM Conductor with Spark

IBM Bluemix Spark Cloud Service in
production – thousands of users and
tenants.

Third party audited benchmark
indicated significant performance/
throughput/SLA advantages
 https://stacresearch.com/news/2016/03/29/IBM160229

IBM Systems 19 ©	2016	IBM	Corpora*on	

IBM Conductor with Spark
Monitor and Reporting with Elastic (ELK)

!  Integrated Elastic Search, Logstash, Kibana for customizable monitoring
!  Built-in monitoring Metrics

! Cross Spark Instance Groups
! Cross Spark Applications within Spark Instance Group
! Within Spark Application

!  Built-in monitoring inside Zeppelin Notebook

Demo

THANK YOU.
Contact information or call to action goes here.

Acceleration Opportunities for GPUs & Spark
Analytics Model Computational Patterns suitable for GPU Acceleration

Regression Analysis Cholesky Factorization, Matrix Inversion, Transpose

Clustering Cost-based iterative convergence

Nearest-neighbor
Search

Distance calculations, Singular Value Decomposition, Hashing

Neural Networks Matrix Multiplications, Convolutions, FFTs, Pair-wise dot-products

Support Vector
Machines

Linear Solvers, Dot-product

Association Rule
Mining

Set Operations: Intersection, union

Recommender Systems Matrix Factorizations, Dot-product

Time-series Processing FFT, Distance and Smoothing functions

Text Analytics Matrix multiplication, factorization, Set operations, String computations,
Distance functions

Monte Carlo Methods Random number generators, Probability distribution generators

Mathematical
Programming

Linear solvers, Dynamic Programming

OLAP/BI Aggregation, Sorting, Hash-based grouping, User-defined functions

Graph Analytics Matrix multiplications, Path traversals

