GPU Support in Spark and GPU/
CPU Mixed Resource Scheduling
at Production Scale

Yonggang Hu, IBM, DE
Junfeng Liu, IBM, Architect

SPARK SUMMIT 2016

* Yonggang Hu
Distinguished Engineer, IBM

Chief Architect at Platform Computing, IBM. ~ N j
Vice President and Application Architect at JPMorgan Chase J :

Working on distributed computing, grid, cloud and big data for the
past 20 years.

« Junfeng Liu

IBM Platform Computing Architect, focusing on Big data - -9
platform design and implementation. Successfully delivering ¥

solutions to several key customers.

K
SRk

GPU and Spark integration motivation
The challenges in production deployments
Solutions in IBM Conductor with Spark
Demo

Spark & GPU
K

.
]
1
1
1
I

Spa

MLIib
Graph Analytics Machine Learning Financial Risk Analytics = Video/Speech Analytics
Security, Fraud Detection Predicative analytics, Market simulation O.bJeCt Recognition
Social Network Analytics Logistic regression, ALS Credit risk. home-grown, Dialog | caffe -m
GraphX Kmeans, etc. apps from Murex, Misys

Need to handle
more data and
bigger models

Spark apps are
CPU intensive

5%91{ it

Use GPUs for accelerating Spark Libraries and operations without
changing interfaces and underlying programming model.

Automatically generate CUDA code from the source Spark Java
code

Integrate Spark with GPU-enabled application & system (e.g., Spark
integrated with Caffe, TensorFlow and customer applications)

Production Challenges

* However

— Identification of GPU execution vs. CPU (T2 viames N1 stagea
execution in DAG ; =) I
. . I
— Data preparation for GPU execution L | '~
— Low resource utilization for CPU or GPU or \ —{
both e
Cannot assume all compute hosts are identical and II 2tage GPU
have GPU resource available L { H collect ,
. . I - ==
GPU is a lot more expensive !!! : CH

— Overload and contention when running mixed N y
GPU & CPU worklopgd T oo o oo

— Long tail & GPU & CPU tasks failover
— Task ratio control on different resources

Spor‘ll(\z

summit

A typical example —

Personalized Medicine — Adverse Drug Reaction Workload

- 30X faster at learning speed and 4.3 X speed up at end-2-end
- Need to fully utilize both GPU and CPU resources to get economic benefits

Power System 58241
2-5ocket, 20-core

POWERS 84.1 9 37.00

Spark Progress ssss

Power System 58241
2-Socket, 20-core

POWERS(;p?Jne K40m 87.89 38-23

Spark Progress >>>>

Spor‘ll(\z

summit

« Scheduling at application level
— Mesos and Yarn tag the GPU machine with label
— Schedule the application on GPU hosts based resource requirement of application
— Corse grained scheduling leads to low utilization of CPU/GPU.

« Scheduling at DAG level

— Need fine grained sharing for GPU resources rather than reserving entire GPU
machines

— ldentify GPU operation

— Optimize the DAG tree by decupling GPU operations from CPU operations and by
inserting new GPU stages

— Reduce GPU wait time, enable sharing GPU among different jobs and therefore
improve the overall GPU utilization

Spork'

summit

GPU tasks recognition

« GPU and CPU tasks mixed together

« Separate the workload is necessary for scheduling
control

Python-C/C++ Wrapper GPU library

Python-C Wrapper to Function

GPUFunction() Invoke Native implemented by
Function CUDA/OpenCL

{f: sunmt = SPARK SUMMIT 2016

Details for Job 0

* Mark the GPU workload by DAG S5t e oaress siommes

Completed Stages: 2

operation R

w DAG Visualization

— Go through the DAG tree to identify
the stages with GPU requirement ke

— Optimize the distribution by inserting
GPU stage

mapPartiionsWithinde

Spofi{?

summit

S&J"f’r{mrt

RM needs capability to identify the GPU hosts and
manage along with CPU resources

Prioritization policy - share GPU resource among
applications

Allocation policy — control GPU and CPU allocation
iIndependently — multi-dimensional scheduling

Fine grained policy to schedule tasks according to GPU
optimized DAG plan

« CPU & GPU tasks are convertible in

many applications
. . - dstInBlocks.join(merged).mapV
« Scheduling needs adaptive capability alues {

— If GPU is available, use a portion of GPU if (useGPU) {

— Otherwise run rest of tasks on CPU loadGPULIb()
callGPU ()

}

else {
/ICPU version

}
}

Spork

summit

Adaptive Scheduling

Node 0 Node 1 Node n

Soik

« Do we need to wait GPU resource if there is
CPU available?

« Do we need rerun the CPU tasks on GPU if
tasks on CPU are long-tail?

* Do we need to have failover cross resource
type”?

5%91{ it

« Traditional defer Scheduling
— Wait for data locality
— Cache, Host, Rack

« Resource based defer scheduling
— Necessary if the GPU can greatly speed up task execution
— Wait time is acceptable

S&J"f’r{mrt

* Global optimization
— Consider the cost of additional shuffle stage
— Consider data locality of CPU and GPU stage
— Add time dimension to MDS
— Optimize global DAG tree execution

— Use historical data to optimize future execution, e.g,
future iteration

Improve Time to Results
D

Run Spark natively on a shared
infrastructure without the dependency of
Hadoop. Reduce application wait time,

improving time to results.

Reduce Administration Costs
©:

.

roven architecture at extreme scale, with A
enterprise class workload management,
multi-version support for Spark,
monitoring, reporting, and security
capabilities.

J

_
Increase Resource Utilization

@ Fine grain, dynamic allocation of
resources maximizes efficiency of Spark
instances sharing a common resource
pool. Multi-tenant, multi-framework
support. Eliminates cluster sprawl.

\.

1@

J

End-to-End Enterprise Class Solution

.

. IBM STC Spark Distribution A
» |IBM Platform Resource Orchestrator /
Session Scheduler, application service

manager.
» IBM Spectrum Scale FPO

Spar{(\Z

summit

IBM Conductor with Spark

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . External Apps

' AppDev Runtimes \ Bollerplatea @?O
((L Knowledge
=) ' Anyhow
! Workbench
Apache Spark |

pylhon spark java spark scala spark '

batch app
on spark

Spoik
IBM Bluemix Spark Cloud Service in

. Duldpack _ builgpack _bulgpack ' _ et /- app using
" helated Gorvices Y, t Services X spark | | 00"
I Ay sarwce driver .
1BM Anaiyis fo Apsche Spark @ T Lhesran) | $pok production — thousands of users and

A@

‘
! T S AL A LA L S AL A, Y
I TW'““ ; External Storage
‘ i < tenants.
Iy RACKSPACE
i - CLOUD FILES'
°b'"' Event :} spark lhlrodE"‘"Y"‘PhO"Y ' swift S
‘ SOFTLAYZR

. Storage Hub

compute cluster ._._-.EGO+

Job durations using Spark Resource Managers with SMB-1 Benchmark
Spark v1.5.2 / HDFS 2.6.3 / RHEL 7.1/ 11 x Lenovo x3630 M4 Servers
(Lower is better. Vertical axis truncated at 200 seconds)

Third party audited benchmark
indicated significant performance/
throughput/SLA advantages

Job duration (seconds)

P e https://stacresearch.com/news/2016/03/29/IBM160229

Time in test run

Source: STAC® « IBM Platform Conductor for Spark v1.1 ®
= Apache YARN v2.6.3

+ Apache Mesos v0.26.0 SECURITIES TECHNOLOGY ANALYSIS CENTER

Figure 3

IBM Conductor with Spark
Monitor and Reporting with Elastic (ELK)

» |ntegrated Elastic Search, Logstash, Kibana for customizable monitoring
= Built-in monitoring Metrics
»Cross Spark Instance Groups

=Cross Spark Applications within Spark Instance Group
=\Within Spark Application
= Built-in monitoring inside Zeppelin Notebook

Applications ‘ Resource Usage ‘

Application resource usage for ‘ all instance groups B inthelast 6 (=) ‘ hours B View

Running Executors by Application ID

Legend ©
@ app-2015121522435_.

@ 3app-2015121522442_ .
® app-2015121522451_..
@ app-2015121522451_..
® app-2015121522471._..
@ app-2015121522520...
® app-2015121522530...
® app-2015121523013...

@ app-20151215230211.
22:53:00 22:55:00 22:57:00 22:59:00 23:01:00 23:03:00

Unique count of spark.executor.id

© 2016 IBM Corporation

1BM Systems 19

Demo

SPARK SUMMIT 2016

THANK YOU.

Contact information or call to action goes here.

SPARK SUMMIT 2016

‘ Caffe

MUREX™

ANSYS

Spoﬁ?

summit

o<T§-EGmph/{/

Regression Analysis
Clustering

Nearest-neighbor
Search

Neural Networks

Support Vector
Machines

Association Rule
Mining

Recommender Systems

Time-series Processing

Text Analytics

Monte Carlo Methods

Mathematical
Programming

OLAP/BI
Graph Analytics

Analytics Model Computational Patterns suitable for GPU Acceleration

Cholesky Factorization, Matrix Inversion, Transpose
Cost-based iterative convergence

Distance calculations, Singular Value Decomposition, Hashing

Matrix Multiplications, Convolutions, FFTs, Pair-wise dot-products

Linear Solvers, Dot-product

Set Operations: Intersection, union

Matrix Factorizations, Dot-product

FFT, Distance and Smoothing functions

Matrix multiplication, factorization, Set operations, String computations,

Distance functions
Random number generators, Probability distribution generators

Linear solvers, Dynamic Programming

Aggregation, Sorting, Hash-based grouping, User-defined functions

Matrix multiplications, Path traversals

SMISYS

FINANCIAL SOFTWARE

@ Kaldi

.Spc.wr‘llzZ

MLIib

