cloudera

High Performance Python on
Apache Spark

Wes McKinney @wesmckinn
Spark Summit West -- June 7, 2016

Me

- Data Science Tools at Cloudera
« Serial creator of structured data tools / user interfaces
- Wrote bestseller Python for Data Analysis 2012
- Working on expanded and revised 2nd edition, coming 2017

- Open source projects

 Python {pandas, Ibis, statsmodels}

« Apache {Arrow, Parquet, Kudu (incubating)}
- Focused on C++, Python, and Hybrid projects

CIOUdera © Cloudera, Inc. All rights reserved. 2

Agenda

- Why care about Python?
- What does “high performance Python” even mean?
- A modern approach to Python data software

 Spark and Python: performance analysis and development directions

CIOUdera © Cloudera, Inc. All rights reserved. 3

Why care about (C)Python?

 Accessible, “swiss army knife” programming language
- Highly productive for software engineering and data science alike

- Has excelled as the agile “orchestration” or “glue” layer for application
business logic

. Easy to interface with C / C++ / Fortran code. Well-designed Python C API

C|0Udera © Cloudera, Inc. All rights reserved. 4

Defining “High Performance Python”

- The end-user workflow involves primarily Python programming; programs can
be invoked with “python app_entry_point.py ...”

- The software uses system resources within an acceptable factor of an
equivalent program developed completely in Java or C++
 Preferably 1-5x slower, not 20-50x

- The software is suitable for interactive / exploratory computing on modestly
large data sets (= gigabytes) on a single node

cloudera

© Cloudera, Inc. All rights reserved. 5

Building fast Python software
means embracing certain
limitations

cloudera

Having a healthy relationship with the interpreter

- The Python interpreter itself is “slow”, as compared with hand-coded C or Java
 Each line of Python code may feature multiple internal C API calls,

temporary data structures, etc.

 Python built-in data structures (numbers, strings, tuples, lists, dicts, etc.) have
significant memory and performance use overhead

» Threads performing concurrent CPU or IO work must take care not to block
other threads

© Cloudera, Inc. All rights reserved.

cloudera

7

Mantras for great success

- Key question 1: Am | making the Python interpreter do a lot of work?
- Key question 2: Am | blocking other interpreted code from executing?

» Key question 3: Am | handling data (memory) in a “good” way?

C|0Udera © Cloudera, Inc. All rights reserved. 8

Toy example: interpreted vs. compiled code

cloudera

In [15]:

N, K = 1000000, 16
arr = np.tile(np.random.randn(N), K)

In [36]:

OQut[36]:

def f(x):
return x * 2
|

def foo interpreted(arr):
total = ©
for x in arr:
total += f(x)
return total

%time sum interpreted(arr)

CPU times: user 968 ms, sys: 4 ms, total: 972 ms

wall time: 972 ms
4683.2203252779564

© Cloudera, Inc. All rights reserved.

9

Toy example: interpreted vs. compiled code

: %%cython

from numpy cimport ndarray, float64 t, import array
import array()

cython: boundscheck = False
cython: wraparound = False

cdef double f(double x):

return x * 2 Cython: 78x faster than
def sum cython(ndarray[float64 t] arr): interpreted
cdef:

int 1, n = len(arr)
double total = ©

for i in range(n):
total += f(arr[i])

return total

: %timeit sum cython(arr)

100 loops, best of 3: 12.5 ms per loop

C|0Udera © Cloudera, Inc. All rights reserved. 10

Toy example: interpreted vs. compiled code

NumPy

In [41]: %timeit f(arr).sum()

100 loops, best of 3: 17 ms per loop

In [42]: %timeit arr.sum()

100 loops, best of 3: 6.41 ms per loop

cloudera

Creating a full 80MB temporary array +
PyArray_Sum is only 35% slower than a
fully inlined Cython (C) function

Interesting: ndarray.sum by itself is almost

2x faster than the hand-coded Cython
function...

© Cloudera, Inc. All rights reserved. 11

Submarines and lcebergs: metaphors for fast Python software

CIOUdera © Cloudera, Inc. All rights reserved. 12

Time for a coffee

Suboptimal control flow break...

e

Python
d Python data . Pure Pythpn I Python data : Pure Pyth_on : Python data
code structures computation structures computation structures
A
Deserialization F BN NN I S S S S S S S - - - Serialization
Elsewhere Data Data

CIOUdera © Cloudera, Inc. All rights reserved. 13

Zoom zoom!

Bette I CO nt rOl ﬂ oW (if the extension code is good)

Users only see this! /

/

Python Python . Python
code app logic app logic

v
Extension Native ' Native Native
code data ~——» CFunc — > data % CFunc data
(C | C++)

CIOUdera © Cloudera, Inc. All rights reserved. 14

But it’s much easier to write 100% Python!

- Building hybrid C/C++ and Python systems adds a lot of complexity to the

engineering process
. (but it’s often worth it)
» See: Cython, SWIG, Boost.Python, Pybind11, and other “hybrid” software

creation tools

- BONUS: Python programs can orchestrate multi-threaded / concurrent systems

written in C/C++ (no Python C API needed)
- The GIL only comes in when you need to “bubble up” data or control flow

(e.g. Python callbacks) into the Python interpreter

C|0Udera © Cloudera, Inc. All rights reserved. 15

A story of reading a CSV file

f = get stream(...)
df = pandas.read csv(f, **csv_options)

Concerns

internally, pseudocode Uses PyString_FromStringAndSize, must

while more_data(): hold GIL for this

buffer = f. read() Synchronous or asynchronous with 10?
parse_bytes(buffer) o
_ — . Type infer in parallel?

df = type_infer_columns() Data structures used?

CIOUdera © Cloudera, Inc. All rights reserved. 16

It’s All About the Benjamins (Data Structures)

- The hard currency of data software is: in-memory data structures
- How costly are they to send and receive?
« How costly to manipulate and munge in-memory?
- How difficult is it to add new proprietary computation logic?

- In Python: NumPy established a gold standard for interoperable array data

- pandas is built on NumPy, and made it easy to “plug in” to the ecosystem
« (but there are plenty of warts still)

C|0Udera © Cloudera, Inc. All rights reserved. 17

What’s this have to do with Spark?

- Some known performance issues in PySpark
» 10 throughput
- Python to Spark
 Spark to Python (or Python extension code)
- Running interpreted Python code on RDDs / Spark DataFrames
- Lambda mappers / reducers (rdd.map(...))
 Spark SQL UDFs (registerFunction(...))

C|0Udera © Cloudera, Inc. All rights reserved. 18

Spark 10 throughput to/from Python

In [11]:

In [12]:

In [13]:

wWelcome to

A
AN\ _\/ _/ I '/
/_ /. J\., / // /\\ version 1.6.1

/_/

Using Python version 2.7.11 (default, Dec 6 2015 18:08:32)

SparkContext available as sc, SQLContext available as sqlContext.

N = 1000000

arr = np.random.randn(N)

df = pd.DataFrame({'data{e}'.format(i): arr
for i in range(10)}

%time sdf = sqlContext.createDataFrame(df)

CPU times: user 1lmin 5s, sys: 516 ms, total: 1lmin 6s
wall time: 1min 6s

%time df2 = sdf.toPandas()

CPU times: user 4.96 s, sys: 376 ms, total: 5.33 s
wall time: 7.77 s

cloudera

Spark 1.6.1 running on
localhost

76 MB pandas.DataFrame

1.15 MB/s in

9.82 MB/s out

© Cloudera, Inc. All rights reserved. 19

Spark 10 throughput to/from Python

def

def

~map to pandas(rdds):

""" Needs to be here due to pickling issues """
return [pd.DataFrame(list(rdds))]

toPandas(df, n partitions=None):

Returns the contents of 'df as a local "pandas.DataFrame in

repartitioned if 'n partitions’ is passed.

:param df: pyspark.sql.DataFrame
:param n partitions: int or None
:return: pandas.DataFrame

if n partitions is not None: df = df.repartition(n partitions)
df pand = df.rdd.mapPartitions(map to pandas).collect()

df pand = pd.concat(df pand)

df pand.columns = df.columns

return df pand

%time df3 = toPandas(sdf)

CPU times: user 64 ms, sys: 84 ms, total: 148 ms
wall time: 2.97 s

cloudera

Unofficial improved

toPandas
25.6 MB/s out

© Cloudera, Inc. All rights reserved.

20

Compared with HiveServer2 Thrift RPC fetch

Impala 2.5 + Parquet
: t table = db. t -
D 2 con. database(hs2 pert test ') file on localhost
%time df4 = parquet table.execute(limit=None)

DESCRIBE hs2 perf test. csv as parquet’

SELECT * | | ibis + impyla
FROM hs2 perf test. csv as parquet
CPU times: user 1.04 s, sys: 48 ms, total: 1.08 s 41 _46 MBIS read

wall time: 1.84 s

In [7]: import hs2client

In [11]: = hs2client. t('localhost', 21050, ' ") i
' ::gsions=cstg?opgﬁngzgsion?ia . o hszc"ent (C++ / Python)
op = session.execute('select * from hs2 perf test.csv as parquet') 90 8 MBIS

%time df5 = op.fetchall pandas()

CPU times: user 188 ms, sys: 68 ms, total: 256 ms
wall time: 840 ms

Task benchmarked: Thrift TFetchResultsReq + deserialization + conversion to
pandas.DataFrame

CIOUdera © Cloudera, Inc. All rights reserved. 21

Back of envelope comp w/ file formats

disclaimer: warm NVMe / OS file cache

import feather

%timeit feather.write dataframe(df, 'test.feather') Feather' 1105 MB/S Write
10 loops, best of 3: 69.1 ms per loop

%timeit feather.read dataframe('test.feather') Feather: 2414 MB)/s read
10 loops, best of 3: 31.6 ms per loop

%time df.to csv('test.csv', index=False) CSV (pandas): 6.2 MB/s write

CPU times: user 12.2 s, sys: 144 ms, total: 12.4 s
wall time: 12.3 s

%time df = pd.read csv('test.csv') CSV (pandaS): 51.9 MB/s read

CPU times: user 1.35 s, sys: 116 ms, total: 1.47 s
wWall time: 1.47 s

CIOUdera © Cloudera, Inc. All rights reserved. 22

Aside: CSVs can be fast

Binary vs. CSV: Load file in cold state and sum columns

10
Q
?
10° 8 @
§58 F
B2z N g g B
1) o n
8 & = = 3 3 8 2 & E
& 402 @ N 3 = o @ = ok
) = ~ © 3 = @ = o 2 Bl
s 0 o 3 g = 229 oE
2 B 2 gy © e =
0 0 g fos) <
8 @ 0 = | B
1 = — R <
10 @D o~ @
- Te)
o
]
10°
car floats4 messy2 mnist8m
Feather HDF5 NPY Pickle B Wise ParaText Nl /O bandwidth

See: https:/Igithub.com/wiseio/paratext

© Cloudera, Inc. All rights reserved. 23

cloudera

How Python lambdas work in PySpark

Python task

Data stream +
worker pool
pickled PyFunction P

>

Python worker
>

Python worker _
3 ’) The inner loop of RDD.map
ar > i
P N map(f, iterator)

RDD 0
>

Python worker
>

Python worker
4—

See: spark/api/python/PythonRDD.scala
python/pyspark/worker.py

CIOUdera © Cloudera, Inc. All rights reserved. 24

How Python lambdas perform

In [44]: rdd = sc.parallelize(arr)

def f(x):
return x * 2 . .
NumPy array-oriented operations are

*timeit rdd.map(f).sum() about 100x faster... but that’s not the
10 loops, best of 3: 123 ms per loop whole story

In [45]: %timeit (arr * 2).sum()

1000 loops, best of 3: 1.15 ms per loop

Disclaimer: this isn’t a remotely “fair” comparison, but it helps illustrate the
real pitfalls associated with introducing serialization and RPC/IPC into a

computational process

CIOUdera © Cloudera, Inc. All rights reserved. 25

How Python lambdas perform

In [44]: rdd = sc.parallelize(arr)

e > 8 cores

return x * 2

%timeit rdd.map(f).sum()
10 loops, best of 3: 123 ms per loop

In [45]: %timeit (arr * 2).sum() < 1 core
1000 loops, best of 3: 1.15 ms per loop

Lessons learned: Python data analytics should
not be based around scalar object iteration

CIOUdera © Cloudera, Inc. All rights reserved. 26

Asides / counterpoints

« Spark<->Python IO may not be important -- can leave all of the data remote
- Spark DataFrame operations have reduced the need for many types of Lambda
functions
- Can use binary file formats as an alternate 10 interface
- Parquet (Python support soon via apache/parquet-cpp)
- Avro (see cavro, fastavro, pyavroc)
» ORC (needs a Python champion)

C|0Udera © Cloudera, Inc. All rights reserved. 27

Apache
Arrow

http://arrow.apache.org
Some slides from Strata-HW talk w/
Jacques Nadeau

cloudera

Apache Arrow in a Slide

- New Top-level Apache Software Foundation project
* http://arrow.apache.org

« Focused on Columnar In-Memory Analytics
1. 10-100x speedup on many workloads

2. Common data layer enables companies to choose best of
breed systems

3. Designed to work with any programming language
Support for both relational and complex data as-is

- Oriented at collaboration amongst other OSS projects

cloudera

Calcite
Cassandra
Deeplearning4j
Drrill
Hadoop
HBase

Ibis

Impala
Kudu
Pandas
Parquet
Phoenix
Spark
Storm

R

© Cloudera, Inc. All rights reserved.

29

High Performance Sharing & Interchange

With Arrow

Today

Cassandra

 Each system has its own internal
memory format

« 70-80% CPU wasted on serialization
and deserialization

« Similar functionality implemented in

multiple projects
cloudera

Pandas

Cassandra

All systems utilize the same memory
format

No overhead for cross-system
communication

Projects can share functionality (eg,
Parquet-to-Arrow reader)

© Cloudera, Inc. All rights reserved. 30

Arrow and PySpark

- Build a C API level data protocol to move data between Spark and Python
. Either

- (Fast) Convert Arrow to/from pandas.DataFrame

- (Faster) Perform native analytics on Arrow data in-memory
« Use Arrow

- For efficiently handling nested Spark SQL data in-memory

- 10: pandas/NumPy data push/pull

« Lambda/UDF evaluation

C|0Udera © Cloudera, Inc. All rights reserved. 31

Arrow in action: Feather File Format for Python and R

- Problem: fast, language-
agnostic binary data frame
file format

 Creators: Wes McKinney
(Python) and Hadley
Wickham (R)

- Read speeds close to disk 10
performance

cloudera

Feather file

Armmow amay O

Ammow armay 1

Amow array n

Feather
metadata

«—— Apache Armow

memory

Google

< flatbuffers

© Cloudera, Inc.

All rights reserved. 32

More on Feather

Feather File

Rcpp R data.frame

C++ library

array n - 1

array 0
array 1 /
array 2 libfeather \

METADATA Cython pandas DataFrame

CIOUdera © Cloudera, Inc. All rights reserved. 33

Summary

- |t’s essential to improve Spark’s low-level data interoperability with the Python
data ecosystem

- I’'m personally excited to work with the Spark + Arrow + PyData + other
communities to help make this a reality

CIOUdera © Cloudera, Inc. All rights reserved. 34

cloudera

Thank you

Wes McKinney @wesmckinn
Views are my own

