
1	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

High	
 Performance	
 Python	
 on	

Apache	
 Spark	

Wes	
 McKinney	
 @wesmckinn	

Spark	
 Summit	
 West	
 -­‐-­‐	
 June	
 7,	
 2016	

2	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Me	

• Data	
 Science	
 Tools	
 at	
 Cloudera	

•  Serial	
 creator	
 of	
 structured	
 data	
 tools	
 /	
 user	
 interfaces	

• Wrote	
 bestseller	
 Python	
 for	
 Data	
 Analysis	
 2012	

• 	
 Working	
 on	
 expanded	
 and	
 revised	
 2nd	
 edi-on,	
 coming	
 2017	

• Open	
 source	
 projects	

• Python	
 {pandas,	
 Ibis,	
 statsmodels}	

• Apache	
 {Arrow,	
 Parquet,	
 Kudu	
 (incubaUng)}	

•  Focused	
 on	
 C++,	
 Python,	
 and	
 Hybrid	
 projects	

3	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Agenda	

•  Why	
 care	
 about	
 Python?	

	

•  What	
 does	
 “high	
 performance	
 Python”	
 even	
 mean?	
 	

	

•  A	
 modern	
 approach	
 to	
 Python	
 data	
 so]ware	

	

•  Spark	
 and	
 Python:	
 performance	
 analysis	
 and	
 development	
 direcUons	

4	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

•  Accessible,	
 “swiss	
 army	
 knife”	
 programming	
 language	

	

•  Highly	
 producUve	
 for	
 so]ware	
 engineering	
 and	
 data	
 science	
 alike	

	

•  Has	
 excelled	
 as	
 the	
 agile	
 “orchestraUon”	
 or	
 “glue”	
 layer	
 for	
 applicaUon	

business	
 logic	

	

•  Easy	
 to	
 interface	
 with	
 C	
 /	
 C++	
 /	
 Fortran	
 code.	
 Well-­‐designed	
 Python	
 C	
 API	

	

Why	
 care	
 about	
 (C)Python?	

5	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Defining	
 “High	
 Performance	
 Python”	

•  The	
 end-­‐user	
 workflow	
 involves	
 primarily	
 Python	
 programming;	
 programs	
 can	

be	
 invoked	
 with	
 “python	
 app_entry_point.py	
 ...”	

	

•  The	
 so]ware	
 uses	
 system	
 resources	
 within	
 an	
 acceptable	
 factor	
 of	
 an	

equivalent	
 program	
 developed	
 completely	
 in	
 Java	
 or	
 C++	

•  Preferably	
 1-­‐5x	
 slower,	
 not	
 20-­‐50x	

	

•  The	
 so]ware	
 is	
 suitable	
 for	
 interacUve	
 /	
 exploratory	
 compuUng	
 on	
 modestly	

large	
 data	
 sets	
 (=	
 gigabytes)	
 on	
 a	
 single	
 node	

6	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Building	
 fast	
 Python	
 so]ware	

means	
 embracing	
 certain	

limitaUons	

7	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Having	
 a	
 healthy	
 relaUonship	
 with	
 the	
 interpreter	

•  The	
 Python	
 interpreter	
 itself	
 is	
 “slow”,	
 as	
 compared	
 with	
 hand-­‐coded	
 C	
 or	
 Java	

•  Each	
 line	
 of	
 Python	
 code	
 may	
 feature	
 mulUple	
 internal	
 C	
 API	
 calls,	

temporary	
 data	
 structures,	
 etc.	

	

•  Python	
 built-­‐in	
 data	
 structures	
 (numbers,	
 strings,	
 tuples,	
 lists,	
 dicts,	
 etc.)	
 have	

significant	
 memory	
 and	
 performance	
 use	
 overhead	

	

•  Threads	
 performing	
 concurrent	
 CPU	
 or	
 IO	
 work	
 must	
 take	
 care	
 not	
 to	
 block	

other	
 threads	

8	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Mantras	
 for	
 great	
 success	

•  Key	
 quesUon	
 1:	
 Am	
 I	
 making	
 the	
 Python	
 interpreter	
 do	
 a	
 lot	
 of	
 work?	

	

•  Key	
 quesUon	
 2:	
 Am	
 I	
 blocking	
 other	
 interpreted	
 code	
 from	
 execu-ng?	

	

•  Key	
 quesUon	
 3:	
 Am	
 I	
 handling	
 data	
 (memory)	
 in	
 a	
 “good”	
 way?	

9	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Toy	
 example:	
 interpreted	
 vs.	
 compiled	
 code	

10	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Toy	
 example:	
 interpreted	
 vs.	
 compiled	
 code	

	

Cython: 78x faster than
interpreted

11	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Toy	
 example:	
 interpreted	
 vs.	
 compiled	
 code	

NumPy

Creating a full 80MB temporary array +
PyArray_Sum is only 35% slower than a
fully inlined Cython (C) function

Interesting: ndarray.sum by itself is almost
2x faster than the hand-coded Cython
function...

12	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Submarines	
 and	
 Icebergs:	
 metaphors	
 for	
 fast	
 Python	
 so]ware	

13	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

SubopUmal	
 control	
 flow	

Elsewhere Data

Python
code Python data

structures
Pure Python
computation

Python data
structures

Pure Python
computation

Python data
structures

Data

Deserialization Serialization

Time for a coffee
break...

14	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Beler	
 control	
 flow	

Extension
code
(C / C++)

Native
data

Python
code

C Func
Native
data

Native
data

C Func

Python
app logic

Python
app logic

Users only see this!

Zoom zoom!
(if the extension code is good)

15	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

But	
 it’s	
 much	
 easier	
 to	
 write	
 100%	
 Python!	

•  Building	
 hybrid	
 C/C++	
 and	
 Python	
 systems	
 adds	
 a	
 lot	
 of	
 complexity	
 to	
 the	

engineering	
 process	

•  (but	
 it’s	
 o]en	
 worth	
 it)	

•  See:	
 Cython,	
 SWIG,	
 Boost.Python,	
 Pybind11,	
 and	
 other	
 “hybrid”	
 so]ware	

creaUon	
 tools	

	

•  BONUS:	
 Python	
 programs	
 can	
 orchestrate	
 mulU-­‐threaded	
 /	
 concurrent	
 systems	

wrilen	
 in	
 C/C++	
 (no	
 Python	
 C	
 API	
 needed)	

•  The	
 GIL	
 only	
 comes	
 in	
 when	
 you	
 need	
 to	
 “bubble	
 up”	
 data	
 or	
 control	
 flow	

(e.g.	
 Python	
 callbacks)	
 into	
 the	
 Python	
 interpreter	

16	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

A	
 story	
 of	
 reading	
 a	
 CSV	
 file	

f	
 =	
 get_stream(...)	

df	
 =	
 pandas.read_csv(f,	
 **csv_options)	

while more_data():
 buffer = f.read()
 parse_bytes(buffer)
df = type_infer_columns()

internally, pseudocode
Concerns

Uses PyString_FromStringAndSize, must
hold GIL for this

Synchronous or asynchronous with IO?

Type infer in parallel?
Data structures used?

17	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

It’s	
 All	
 About	
 the	
 Benjamins	
 (Data	
 Structures)	

•  The	
 hard	
 currency	
 of	
 data	
 so]ware	
 is:	
 in-­‐memory	
 data	
 structures	

•  How	
 costly	
 are	
 they	
 to	
 send	
 and	
 receive?	

•  How	
 costly	
 to	
 manipulate	
 and	
 munge	
 in-­‐memory?	

•  How	
 difficult	
 is	
 it	
 to	
 add	
 new	
 proprietary	
 computaUon	
 logic?	

	

•  In	
 Python:	
 NumPy	
 established	
 a	
 gold	
 standard	
 for	
 interoperable	
 array	
 data	

•  pandas	
 is	
 built	
 on	
 NumPy,	
 and	
 made	
 it	
 easy	
 to	
 “plug	
 in”	
 to	
 the	
 ecosystem	

•  (but	
 there	
 are	
 plenty	
 of	
 warts	
 sUll)	

18	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

What’s	
 this	
 have	
 to	
 do	
 with	
 Spark?	

•  Some	
 known	
 performance	
 issues	
 in	
 PySpark	

•  IO	
 throughput	

•  Python	
 to	
 Spark	

•  Spark	
 to	
 Python	
 (or	
 Python	
 extension	
 code)	

•  Running	
 interpreted	
 Python	
 code	
 on	
 RDDs	
 /	
 Spark	
 DataFrames	

•  Lambda	
 mappers	
 /	
 reducers	
 (rdd.map(...))	

•  Spark	
 SQL	
 UDFs	
 (registerFuncUon(...))	

	

19	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Spark	
 IO	
 throughput	
 to/from	
 Python	

1.15 MB/s in

9.82 MB/s out

Spark 1.6.1 running on
localhost

76 MB pandas.DataFrame

20	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Spark	
 IO	
 throughput	
 to/from	
 Python	

Unofficial improved
toPandas
25.6 MB/s out

21	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Compared	
 with	
 HiveServer2	
 Thri]	
 RPC	
 fetch	

Impala 2.5 + Parquet
file on localhost

ibis + impyla
41.46 MB/s read

hs2client (C++ / Python)
90.8 MB/s

Task benchmarked: Thrift TFetchResultsReq + deserialization + conversion to
pandas.DataFrame

22	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Back	
 of	
 envelope	
 comp	
 w/	
 file	
 formats	

Feather: 1105 MB/s write

CSV (pandas): 6.2 MB/s write

Feather: 2414 MB/s read

CSV (pandas): 51.9 MB/s read

disclaimer: warm NVMe / OS file cache

23	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Aside:	
 CSVs	
 can	
 be	
 fast	

See: https://github.com/wiseio/paratext

24	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

How	
 Python	
 lambdas	
 work	
 in	
 PySpark	

Spark
RDD

Python task
worker pool

Python worker

Python worker

Python worker

Python worker

Python worker

Data stream +
pickled PyFunction

See: spark/api/python/PythonRDD.scala
 python/pyspark/worker.py

The inner loop of RDD.map
map(f,	
 iterator)	

25	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

How	
 Python	
 lambdas	
 perform	

NumPy array-oriented operations are
about 100x faster… but that’s not the
whole story

Disclaimer: this isn’t a remotely “fair” comparison, but it helps illustrate the
real pitfalls associated with introducing serialization and RPC/IPC into a
computational process

26	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

How	
 Python	
 lambdas	
 perform	

8 cores

1 core

Lessons learned: Python data analytics should
not be based around scalar object iteration

27	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Asides	
 /	
 counterpoints	

•  Spark<-­‐>Python	
 IO	
 may	
 not	
 be	
 important	
 -­‐-­‐	
 can	
 leave	
 all	
 of	
 the	
 data	
 remote	

•  Spark	
 DataFrame	
 operaUons	
 have	
 reduced	
 the	
 need	
 for	
 many	
 types	
 of	
 Lambda	

funcUons	

•  Can	
 use	
 binary	
 file	
 formats	
 as	
 an	
 alternate	
 IO	
 interface	

•  Parquet	
 (Python	
 support	
 soon	
 via	
 apache/parquet-­‐cpp)	

•  Avro	
 (see	
 cavro,	
 fastavro,	
 pyavroc)	

•  ORC	
 (needs	
 a	
 Python	
 champion)	

•  ...	

28	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Apache	

Arrow	

http://arrow.apache.org
Some slides from Strata-HW talk w/
Jacques Nadeau

29	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Apache	
 Arrow	
 in	
 a	
 Slide	

• New	
 Top-­‐level	
 Apache	
 So]ware	
 FoundaUon	
 project	

• 	
 hlp://arrow.apache.org	

	

•  Focused	
 on	
 Columnar	
 In-­‐Memory	
 AnalyUcs	

1.  10-­‐100x	
 speedup	
 on	
 many	
 workloads	

2.  Common	
 data	
 layer	
 enables	
 companies	
 to	
 choose	
 best	
 of	

breed	
 systems	
 	

3.  Designed	
 to	
 work	
 with	
 any	
 programming	
 language	

4.  Support	
 for	
 both	
 relaUonal	
 and	
 complex	
 data	
 as-­‐is	

	

• Oriented	
 at	
 collaboraUon	
 amongst	
 other	
 OSS	
 projects	

Calcite

Cassandra

Deeplearning4j

Drill

Hadoop

HBase

Ibis

Impala

Kudu

Pandas

Parquet

Phoenix

Spark

Storm

R

30	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

High	
 Performance	
 Sharing	
 &	
 Interchange	

Today With Arrow

•  Each system has its own internal
memory format

•  70-80% CPU wasted on serialization
and deserialization

•  Similar functionality implemented in
multiple projects

•  All systems utilize the same memory
format

•  No overhead for cross-system
communication

•  Projects can share functionality (eg,
Parquet-to-Arrow reader)

31	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Arrow	
 and	
 PySpark	

•  Build	
 a	
 C	
 API	
 level	
 data	
 protocol	
 to	
 move	
 data	
 between	
 Spark	
 and	
 Python	

•  Either	
 	

•  (Fast)	
 Convert	
 Arrow	
 to/from	
 pandas.DataFrame	

•  (Faster)	
 Perform	
 naUve	
 analyUcs	
 on	
 Arrow	
 data	
 in-­‐memory	

•  Use	
 Arrow	

•  For	
 efficiently	
 handling	
 nested	
 Spark	
 SQL	
 data	
 in-­‐memory	

•  IO:	
 pandas/NumPy	
 data	
 push/pull	

•  Lambda/UDF	
 evaluaUon	

	

32	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

• Problem:	
 fast,	
 language-­‐
agnosUc	
 binary	
 data	
 frame	

file	
 format	

• Creators:	
 Wes	
 McKinney	

(Python)	
 and	
 Hadley	

Wickham	
 (R)	

• Read	
 speeds	
 close	
 to	
 disk	
 IO	

performance	

Arrow	
 in	
 acUon:	
 Feather	
 File	
 Format	
 for	
 Python	
 and	
 R	

33	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

More	
 on	
 Feather	

array 0

array 1

array 2

...

array n - 1

METADATA

Feather File

libfeather
C++ library

Rcpp

Cython

R data.frame

pandas DataFrame

34	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Summary	

•  It’s	
 essenUal	
 to	
 improve	
 Spark’s	
 low-­‐level	
 data	
 interoperability	
 with	
 the	
 Python	

data	
 ecosystem	

	

•  I’m	
 personally	
 excited	
 to	
 work	
 with	
 the	
 Spark	
 +	
 Arrow	
 +	
 PyData	
 +	
 other	

communiUes	
 to	
 help	
 make	
 this	
 a	
 reality	

	

35	
 ©	
 Cloudera,	
 Inc.	
 All	
 rights	
 reserved.	

Thank	
 you	

Wes	
 McKinney	
 @wesmckinn	

Views	
 are	
 my	
 own	

