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Me	
  

• Data	
  Science	
  Tools	
  at	
  Cloudera	
  
•  Serial	
  creator	
  of	
  structured	
  data	
  tools	
  /	
  user	
  interfaces	
  
• Wrote	
  bestseller	
  Python	
  for	
  Data	
  Analysis	
  2012	
  

• 	
  Working	
  on	
  expanded	
  and	
  revised	
  2nd	
  edi-on,	
  coming	
  2017	
  
• Open	
  source	
  projects	
  

• Python	
  {pandas,	
  Ibis,	
  statsmodels}	
  
• Apache	
  {Arrow,	
  Parquet,	
  Kudu	
  (incubaUng)}	
  

•  Focused	
  on	
  C++,	
  Python,	
  and	
  Hybrid	
  projects	
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Agenda	
  

•  Why	
  care	
  about	
  Python?	
  
	
  

•  What	
  does	
  “high	
  performance	
  Python”	
  even	
  mean?	
  	
  
	
  

•  A	
  modern	
  approach	
  to	
  Python	
  data	
  so]ware	
  
	
  

•  Spark	
  and	
  Python:	
  performance	
  analysis	
  and	
  development	
  direcUons	
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•  Accessible,	
  “swiss	
  army	
  knife”	
  programming	
  language	
  
	
  

•  Highly	
  producUve	
  for	
  so]ware	
  engineering	
  and	
  data	
  science	
  alike	
  
	
  

•  Has	
  excelled	
  as	
  the	
  agile	
  “orchestraUon”	
  or	
  “glue”	
  layer	
  for	
  applicaUon	
  
business	
  logic	
  

	
  
•  Easy	
  to	
  interface	
  with	
  C	
  /	
  C++	
  /	
  Fortran	
  code.	
  Well-­‐designed	
  Python	
  C	
  API	
  

	
  

Why	
  care	
  about	
  (C)Python?	
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Defining	
  “High	
  Performance	
  Python”	
  

•  The	
  end-­‐user	
  workflow	
  involves	
  primarily	
  Python	
  programming;	
  programs	
  can	
  
be	
  invoked	
  with	
  “python	
  app_entry_point.py	
  ...”	
  

	
  
•  The	
  so]ware	
  uses	
  system	
  resources	
  within	
  an	
  acceptable	
  factor	
  of	
  an	
  
equivalent	
  program	
  developed	
  completely	
  in	
  Java	
  or	
  C++	
  

•  Preferably	
  1-­‐5x	
  slower,	
  not	
  20-­‐50x	
  
	
  

•  The	
  so]ware	
  is	
  suitable	
  for	
  interacUve	
  /	
  exploratory	
  compuUng	
  on	
  modestly	
  
large	
  data	
  sets	
  (=	
  gigabytes)	
  on	
  a	
  single	
  node	
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Building	
  fast	
  Python	
  so]ware	
  
means	
  embracing	
  certain	
  
limitaUons	
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Having	
  a	
  healthy	
  relaUonship	
  with	
  the	
  interpreter	
  

•  The	
  Python	
  interpreter	
  itself	
  is	
  “slow”,	
  as	
  compared	
  with	
  hand-­‐coded	
  C	
  or	
  Java	
  
•  Each	
  line	
  of	
  Python	
  code	
  may	
  feature	
  mulUple	
  internal	
  C	
  API	
  calls,	
  
temporary	
  data	
  structures,	
  etc.	
  

	
  
•  Python	
  built-­‐in	
  data	
  structures	
  (numbers,	
  strings,	
  tuples,	
  lists,	
  dicts,	
  etc.)	
  have	
  
significant	
  memory	
  and	
  performance	
  use	
  overhead	
  

	
  
•  Threads	
  performing	
  concurrent	
  CPU	
  or	
  IO	
  work	
  must	
  take	
  care	
  not	
  to	
  block	
  
other	
  threads	
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Mantras	
  for	
  great	
  success	
  

•  Key	
  quesUon	
  1:	
  Am	
  I	
  making	
  the	
  Python	
  interpreter	
  do	
  a	
  lot	
  of	
  work?	
  
	
  

•  Key	
  quesUon	
  2:	
  Am	
  I	
  blocking	
  other	
  interpreted	
  code	
  from	
  execu-ng?	
  
	
  

•  Key	
  quesUon	
  3:	
  Am	
  I	
  handling	
  data	
  (memory)	
  in	
  a	
  “good”	
  way?	
  



9	
  ©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserved.	
  

Toy	
  example:	
  interpreted	
  vs.	
  compiled	
  code	
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Toy	
  example:	
  interpreted	
  vs.	
  compiled	
  code	
  
	
  

Cython: 78x faster than 
interpreted 
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Toy	
  example:	
  interpreted	
  vs.	
  compiled	
  code	
  

NumPy 

Creating a full 80MB temporary array + 
PyArray_Sum is only 35% slower than a 
fully inlined Cython ( C ) function 
 
Interesting: ndarray.sum by itself is almost 
2x faster than the hand-coded Cython 
function... 
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Submarines	
  and	
  Icebergs:	
  metaphors	
  for	
  fast	
  Python	
  so]ware	
  



13	
  ©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserved.	
  

SubopUmal	
  control	
  flow	
  

Elsewhere Data 

Python 
code Python data 

structures 
Pure Python 
computation 

Python data 
structures 

Pure Python 
computation 

Python data 
structures 

Data 

Deserialization Serialization 

Time for a coffee 
break... 
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Beler	
  control	
  flow	
  

Extension  
code  
(C / C++) 

Native 
data 

Python 
code 

C Func 
Native 
data 

Native 
data 

C Func 

Python  
app logic 

Python  
app logic 

Users only see this! 

Zoom zoom!  
(if the extension code is good) 
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But	
  it’s	
  much	
  easier	
  to	
  write	
  100%	
  Python!	
  

•  Building	
  hybrid	
  C/C++	
  and	
  Python	
  systems	
  adds	
  a	
  lot	
  of	
  complexity	
  to	
  the	
  
engineering	
  process	
  

•  (but	
  it’s	
  o]en	
  worth	
  it)	
  
•  See:	
  Cython,	
  SWIG,	
  Boost.Python,	
  Pybind11,	
  and	
  other	
  “hybrid”	
  so]ware	
  
creaUon	
  tools	
  

	
  
•  BONUS:	
  Python	
  programs	
  can	
  orchestrate	
  mulU-­‐threaded	
  /	
  concurrent	
  systems	
  
wrilen	
  in	
  C/C++	
  (no	
  Python	
  C	
  API	
  needed)	
  

•  The	
  GIL	
  only	
  comes	
  in	
  when	
  you	
  need	
  to	
  “bubble	
  up”	
  data	
  or	
  control	
  flow	
  
(e.g.	
  Python	
  callbacks)	
  into	
  the	
  Python	
  interpreter	
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A	
  story	
  of	
  reading	
  a	
  CSV	
  file	
  

f	
  =	
  get_stream(...)	
  
df	
  =	
  pandas.read_csv(f,	
  **csv_options)	
  

while more_data(): 
    buffer = f.read() 
    parse_bytes(buffer) 
df = type_infer_columns() 

internally, pseudocode 
Concerns 

Uses PyString_FromStringAndSize, must 
hold GIL for this 

Synchronous or asynchronous with IO? 

Type infer in parallel? 
Data structures used? 
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It’s	
  All	
  About	
  the	
  Benjamins	
  (Data	
  Structures)	
  

•  The	
  hard	
  currency	
  of	
  data	
  so]ware	
  is:	
  in-­‐memory	
  data	
  structures	
  
•  How	
  costly	
  are	
  they	
  to	
  send	
  and	
  receive?	
  
•  How	
  costly	
  to	
  manipulate	
  and	
  munge	
  in-­‐memory?	
  
•  How	
  difficult	
  is	
  it	
  to	
  add	
  new	
  proprietary	
  computaUon	
  logic?	
  

	
  
•  In	
  Python:	
  NumPy	
  established	
  a	
  gold	
  standard	
  for	
  interoperable	
  array	
  data	
  

•  pandas	
  is	
  built	
  on	
  NumPy,	
  and	
  made	
  it	
  easy	
  to	
  “plug	
  in”	
  to	
  the	
  ecosystem	
  
•  (but	
  there	
  are	
  plenty	
  of	
  warts	
  sUll)	
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What’s	
  this	
  have	
  to	
  do	
  with	
  Spark?	
  

•  Some	
  known	
  performance	
  issues	
  in	
  PySpark	
  
•  IO	
  throughput	
  

•  Python	
  to	
  Spark	
  
•  Spark	
  to	
  Python	
  (or	
  Python	
  extension	
  code)	
  

•  Running	
  interpreted	
  Python	
  code	
  on	
  RDDs	
  /	
  Spark	
  DataFrames	
  
•  Lambda	
  mappers	
  /	
  reducers	
  (rdd.map(...))	
  
•  Spark	
  SQL	
  UDFs	
  (registerFuncUon(...))	
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Spark	
  IO	
  throughput	
  to/from	
  Python	
  

1.15 MB/s in 

9.82 MB/s out 

Spark 1.6.1 running on 
localhost 

76 MB pandas.DataFrame 
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Spark	
  IO	
  throughput	
  to/from	
  Python	
  

Unofficial improved 
toPandas 
25.6 MB/s out 



21	
  ©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserved.	
  

Compared	
  with	
  HiveServer2	
  Thri]	
  RPC	
  fetch	
  

Impala 2.5 + Parquet 
file on localhost 

ibis + impyla 
41.46 MB/s read 

hs2client (C++ / Python) 
90.8 MB/s 

Task benchmarked: Thrift TFetchResultsReq + deserialization + conversion to 
pandas.DataFrame 
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Back	
  of	
  envelope	
  comp	
  w/	
  file	
  formats	
  

Feather: 1105 MB/s write 

CSV (pandas): 6.2 MB/s write 

Feather: 2414 MB/s read 

CSV (pandas): 51.9 MB/s read 

disclaimer: warm NVMe / OS file cache 
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Aside:	
  CSVs	
  can	
  be	
  fast	
  

See: https://github.com/wiseio/paratext 
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How	
  Python	
  lambdas	
  work	
  in	
  PySpark	
  

Spark  
RDD 

Python task 
worker pool 

Python worker 

Python worker 

Python worker 

Python worker 

Python worker 

Data stream + 
pickled PyFunction 

See: spark/api/python/PythonRDD.scala 
         python/pyspark/worker.py 

The inner loop of RDD.map 
map(f,	
  iterator)	
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How	
  Python	
  lambdas	
  perform	
  

NumPy array-oriented operations are 
about 100x faster… but that’s not the 
whole story 

Disclaimer: this isn’t a remotely “fair” comparison, but it helps illustrate the 
real pitfalls associated with introducing serialization and RPC/IPC into a 
computational process 
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How	
  Python	
  lambdas	
  perform	
  

8 cores 

1 core 

Lessons learned: Python data analytics should 
not be based around scalar object iteration 
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Asides	
  /	
  counterpoints	
  

•  Spark<-­‐>Python	
  IO	
  may	
  not	
  be	
  important	
  -­‐-­‐	
  can	
  leave	
  all	
  of	
  the	
  data	
  remote	
  
•  Spark	
  DataFrame	
  operaUons	
  have	
  reduced	
  the	
  need	
  for	
  many	
  types	
  of	
  Lambda	
  
funcUons	
  

•  Can	
  use	
  binary	
  file	
  formats	
  as	
  an	
  alternate	
  IO	
  interface	
  
•  Parquet	
  (Python	
  support	
  soon	
  via	
  apache/parquet-­‐cpp)	
  
•  Avro	
  (see	
  cavro,	
  fastavro,	
  pyavroc)	
  
•  ORC	
  (needs	
  a	
  Python	
  champion)	
  
•  ...	
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Apache	
  
Arrow	
  

http://arrow.apache.org 
Some slides from Strata-HW talk w/ 
Jacques Nadeau 
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Apache	
  Arrow	
  in	
  a	
  Slide	
  
• New	
  Top-­‐level	
  Apache	
  So]ware	
  FoundaUon	
  project	
  

• 	
  hlp://arrow.apache.org	
  
	
  
•  Focused	
  on	
  Columnar	
  In-­‐Memory	
  AnalyUcs	
  

1.  10-­‐100x	
  speedup	
  on	
  many	
  workloads	
  
2.  Common	
  data	
  layer	
  enables	
  companies	
  to	
  choose	
  best	
  of	
  

breed	
  systems	
  	
  
3.  Designed	
  to	
  work	
  with	
  any	
  programming	
  language	
  
4.  Support	
  for	
  both	
  relaUonal	
  and	
  complex	
  data	
  as-­‐is	
  

	
  
• Oriented	
  at	
  collaboraUon	
  amongst	
  other	
  OSS	
  projects	
  

Calcite 

Cassandra 

Deeplearning4j 

Drill 

Hadoop 

HBase 

Ibis 

Impala 

Kudu 

Pandas 

Parquet 

Phoenix 

Spark 

Storm 

R 
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High	
  Performance	
  Sharing	
  &	
  Interchange	
  
Today With Arrow 

•  Each system has its own internal 
memory format 

•  70-80% CPU wasted on serialization 
and deserialization 

•  Similar functionality implemented in 
multiple projects 

•  All systems utilize the same memory 
format 

•  No overhead for cross-system 
communication 

•  Projects can share functionality (eg, 
Parquet-to-Arrow reader) 
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Arrow	
  and	
  PySpark	
  

•  Build	
  a	
  C	
  API	
  level	
  data	
  protocol	
  to	
  move	
  data	
  between	
  Spark	
  and	
  Python	
  
•  Either	
  	
  

•  (Fast)	
  Convert	
  Arrow	
  to/from	
  pandas.DataFrame	
  
•  (Faster)	
  Perform	
  naUve	
  analyUcs	
  on	
  Arrow	
  data	
  in-­‐memory	
  

•  Use	
  Arrow	
  
•  For	
  efficiently	
  handling	
  nested	
  Spark	
  SQL	
  data	
  in-­‐memory	
  
•  IO:	
  pandas/NumPy	
  data	
  push/pull	
  
•  Lambda/UDF	
  evaluaUon	
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• Problem:	
  fast,	
  language-­‐
agnosUc	
  binary	
  data	
  frame	
  
file	
  format	
  

• Creators:	
  Wes	
  McKinney	
  
(Python)	
  and	
  Hadley	
  
Wickham	
  (R)	
  

• Read	
  speeds	
  close	
  to	
  disk	
  IO	
  
performance	
  

Arrow	
  in	
  acUon:	
  Feather	
  File	
  Format	
  for	
  Python	
  and	
  R	
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More	
  on	
  Feather	
  

array 0 

array 1 

array 2 

... 

array n - 1 

METADATA 

Feather File 

libfeather 
C++ library 

Rcpp 

Cython 

R data.frame 

pandas DataFrame 



34	
  ©	
  Cloudera,	
  Inc.	
  All	
  rights	
  reserved.	
  

Summary	
  

•  It’s	
  essenUal	
  to	
  improve	
  Spark’s	
  low-­‐level	
  data	
  interoperability	
  with	
  the	
  Python	
  
data	
  ecosystem	
  

	
  
•  I’m	
  personally	
  excited	
  to	
  work	
  with	
  the	
  Spark	
  +	
  Arrow	
  +	
  PyData	
  +	
  other	
  
communiUes	
  to	
  help	
  make	
  this	
  a	
  reality	
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Thank	
  you	
  
Wes	
  McKinney	
  @wesmckinn	
  
Views	
  are	
  my	
  own	
  


