Productionizing

Spark onYarn
for ETL

Ashwin Shankar
Nezih Yigitbasi

Kids Q Search ‘ meva >

_ v e AMERICAN HoRRoR SToRY X
| S ' s | %% ol
HINDENBURG: ™ ~~ "B " ' gl :

& , THEUNTOLD STORY Smituenig e B'_ v

Suspenseful TV Shows

THE AMISH

L 4 , LIUING ON SHUNNED
*é‘N‘T’ZaeN e __llNE OLLAR e

| A
SEPs: (To SToRAGE) 4:7,}

(L 4

o

Netflix Key Business Metrics

E

81+ million Global 1000+ devices 125 million
members supported hours [day

Netflix Key Platform Metrics

e 5 & O

700B Events 40 PB DW Read 3PB Write 300TB

Outline

® Big Data Platform Architecture

® Technical Challenges

®LETL

Big Data Platform

Architecture

Data Pipeline

Event Data

Cassandra

SN
oot 3

Interface Big Data Portal Big Data API Notebooks

Forklift| NERIEY 'stng G lpSUCk INVIS®

Tools
Transport Quality Visualization ~ Pig Workflow Vis Job/Cluster Vis
P
Service o, Execution Metacat Metadata
GENIE

Compute Sle"l,(\z

Storage - %y Parquet

Spark on YARN at Netflix

* 3000 EC2 nodes on two clusters (d2.4xlarge)
* Multiple Spark versions
* Share the same infrastructure with MapReduce jobs

~coum QOG0 B0 B0

16 vcores

MapReduce
Spark

Technical Challenges

BB
-5

RDD

Node Spark Resource
Manager AM Manager

YARN

Custom Coalescer Support [SPARK-14042]

* coalesce() can only "merge” using the given number of partitions
— how to merge by size?

* CombineFileInputFormat with Hive

* Support custom partition coalescing strategies

UnionRDD Parallel Listing [SPARK-9926]

* Parent RDD partitions are listed sequentially

* Slow for tables with lots of partitions

 Parallelizelisting of parent RDD partitions

[T O
\ /
[ILIT]

Vp)

W

}]

D

L] L

wn

RDD o

S
Node Spark Resource
Manager AM Manager

YARN

Optimize S3 Listing Performance [HADOOP-12810]

* Unnecessary getFileStatus() call

* SPARK-9926 and HADOOP-12810 yield faster startup

» ~20x speedup in input split calculation

Output Committers

Hadoop Output Committer
* Write to a temp directory and rename to destination on success

* S3rename =>copy + delete
* S3is eventually consistent

S3 Output Committer

* Write to local disk and upload to S3 on success
 avoid redundant S3 copy
 avoid eventual consistency

L1 (I
\ /
LT

U C
= &
C O | X
RDD o
3
Node Spark Resource
Manager AM Manager

YARN

Poor Broadcast Read Performance [SPARK-13328]

* Broadcast joins/variables
* Replicas can be removed with dynamicallocation

16/02/13 01:02:27 WARN BlockManager:
Failed to fetch remote block broadcast_18_pieceo (failed attempt 70)

16/02/13 01:02:27 INFO TorrentBroadcast:
Reading broadcast variable 18 took 1051049 ms

» Refreshreplicalocations from the driver on multiple failures

Incorrect Locality Optimization [SPARK-13779]

* Cancel & resend pending container requests

 if the locality preference is no longer needed
* if nolocality preference is set

* No localityinformation with S3

* Do not cancel requests without locality preference

L1 (I
\ /
LT

u &

3 g

S O | 3

RDD o

=

Parquet R/W

Node Spark Resource
Manager AM Manager

YARN

Parquet Dictionary Filtering [PARQUET-384%] %7

A B c|D
al bl cl -

aN bN cN
A B

dictionary

from “Analytic Data Storage in Hadoop”, Ryan Blue

Parquet Dictionary Filtering [PARQUET-384*]

80
e 70 -
()] -
g 60
— 50 - .
W DF disabled
S] ~8x ~18x
g' 30 1 M DF enabled
S 20 - 64MB split
2 10 = DF enabled
0 - 1G split

DF disabled DF enabled DF enabled
64MB split 1G split

How to Enable Dictionary Filtering?

Property

spark.sql.hive.convertMetastore Parquet true enable native Parquet read path
parquet.filter.statistics.enabled true enable stats filtering
parquet.filter.dictionary.enabled true enable dictionary filtering
spark.sql.parquet.filterPushdown true enable Parquet filter pushdown optimization
spark.sql.parquet.mergeSchema false disable schema merging

spark.sql.hive.convertMetastore Parquet.mergeSchema false use Hive SerDe instead of built-in Parquet support

Efficient Dynamic Partition Inserts [SPARK-15420%]

* Parquet buffers row group data for each file during writes

» Spark already sorts before writes, but has some limitations
* Detectif the data is already sorted

» Expose the ability to repartition data before write

. v 5 v/ "

> S5 LT 5
v @ c Y } =
=% > 2 1l 3
3 = 2 < P:
n % RDD D

T 3

Parquet R/W

Node Spark Resource

Manager AM Manager

YARN

Spark History Server — Where is My Job?

qui‘ .., History Server

Event log directory: hafs//
Showing 1-20 of 2795

App ID
appication_1460481417844_1542709
appication_1460481417844_1542753
appication_1460481417844_1542780
appication_1460481417844_1542069
appication_1460481417844_1542648
appication_1460481417844_1542185
appication_1460481417844_1542504
appication_1460481417844_1542330
appication_1460481417844_1541470
appication_14680481417844_1542055
appication_1460481417844_1541954
appication_1480481417844 1541966
appication_1460481417844 1541888
appication 1460481417844 1541114
appication_1460481417844_ 1541694
appication_1460481417844_1541158
appication_1460481417844_1539778
appication_1460481417844_1541372
appication_1460481417844_1541154
appication_1460481417844_1541534

Show incomplete appications

App Name

PysparkNotebook
SparkSQL:1
SparkSQL::

$3 access app
Spark shell

clevent f

Zeppein
clevent_{

Started

2016/05/19 19:01:22
2016/05/19 19:03:56
2016/05/19 19:04:48
2016/05/19 18:26:34
2016/05/19 18:57:06
2016/05/19 18:31:58
2016/05/19 18:5328
2016/06/19 18:37:00
2016/05/19 18:02:52
2016/06/19 18:25:55
2016/06/19 18:22:28
2016/06/19 18:20:49
2016/06/19 18:17:20
2016/06/19 17:46:48
2016/05/19 18:09:46
20168/06/19 17:50.07
2016/05/19 16:50:41
2016/05/19 18:00:08
2016/05/19 17:4928
2016/05/19 18:04:12

Completed

2016/05/19 19:06:44
2016/05/19 19:06:04
2016/05/19 19:05:21
2016/05/19 19:04:25
2016/05/19 18:57:53
2016/05/19 18:56:48
2016/05/19 18:55:20
2016/05/19 18:39:01
2016/05/19 18:26:49
2016/05/19 18:26:22
2016/05/19 18:26:17
2016/05/19 18:22:34
2016/05/19 18:19:08
2016/05/19 18:18:43
2016/05/19 18:12.47
2016/05/19 18:08:53
2016/05/19 18:06:59
2016/05/19 18:05:27
2016/05/19 18:04:54
2016/05/19 18:04:38

5.4 min
2.1 min
33s

38 min
48s

25 min
1.9 min
2.0 min
24 min
27s

3.8 min
1.8 min
1.7 min
32 min
3.0 min
19 min
13h

5.3 min
15 min

26s

123..140>

Last Updated

2016/05/19 19:06:44
2016/05/19 19:06:04
2016/05/19 19:05:21
2016/05/19 19:04:26
2016/05/19 18:57:54
2016/05/19 18:56:49
2016/05/19 18:55:20
2016/05/19 18:39:.01
2016/05/19 18:26:49
2016/0519 18:26:22
2016/05/19 18:26:17
2016/05/19 18:22:34
2016/05/19 18:19:03
2016/05/19 18:18:43
2016/05/19 18:12:48
2016/05/19 18:.08:53
20168/05/19 18:06:59
2016/05/19 18:05:27
2016/05/19 18:04:54
2016/05/19 18:04:38

Spark History Server — Where is My Job?

* Alarge application can prevent new applicationsfrom showing up
not uncommon to see event logs of GBs

* SPARK-13988 makes the processing multi-threaded

* GCtuning helps further
* move from CMS to G1GC

 allocate more space to young generation

xtract
ransform

oad

Pig vs. Spark
.

Pig vs. Spark (Scala) vs. PySpark

— 400
2,
Q
&
— 300
c
O
0 ~2.4x ~2X
> 200
&
@)
O
eo 100
>
<

0)

M Pig Spark M PySpark

Production Workflow

Automic

Let's Automate Business.
Vit Astomic

version 1.5.2

sing Scala version 2.10.4 (Java HotSpot(TW) 64-Bit Server WM, Java 1.8.0.45)
ype in expressions to have them evaluated.

help for more information.

/18 00:00:37 INFO Client: Requesting a new application from cluster with 1§
180 NodeManagers

02/18 00:00:37 INFO Client: Verifying our application has not requested more - \ \ —
han the maximum memory capability of the cluster (10240 MB per container) P J

l6/00/ : ont. i o A er_yith 8 gezo S
—

Zeppelin Notebook - Interpreter

Welcome to Zeppelin! ((
=)
—
Zeppelin is web-based notebook that enables interactive data analytics. —
You can make beautiful data-driven, interactive, d t with SQL, code —
Notebook Help
{] Create new note Get started with Zeppe N
B Note 2B3HQS5VP Community

vow Helloworiavault.scaia - dea-spark-development-tempiate

Build

Prototype

(o
x>
-

Production Spark Application #1: Yogen

* Arapidinnovation platform for targeting algorithms

* 5 hours (vs. 10s of hours) to compute similarity for all Netflix
profilesfor 30-day window of new arrival titles

* 10 minutes to score 4M profiles for 14-day window of new
arrival titles

Production Spark Application #2: ARO

* Personalized ordering of rows of titles
* Enrich page/row/title features with play history

* 14 stages, ~10Ks of tasks, several TBs

What’s Next?

* Improved Parquet support

* Better visibility

* Explore new use cases

