
Ashwin Shankar
Nezih Yigitbasi

Productionizing
Spark on Yarn
for ETL

Scale

81+ million
members

Global 1000+ devices
supported

125 million
hours / day

Netflix Key Business Metrics

40 PB DW Read 3PB Write 300TB700B Events

Netflix Key Platform Metrics

Outline

● Big Data Platform Architecture

● Technical Challenges

● ETL

Big Data Platform
Architecture

Cloud
apps

Kafka Ursula

Cassandra
Aegisthus

Dimension Data

Event Data

~ 1 min

Daily

S3

SS
Tables

Data Pipeline

Storage

Compute

Service

Tools

Big Data APIBig Data Portal

S3 Parquet

Transport VisualizationQuality Pig Workflow Vis Job/Cluster Vis

Interface

Execution Metadata

Notebooks

• 3000 EC2 nodes on two clusters (d2.4xlarge)
• Multiple Spark versions
• Share the same infrastructure with MapReduce jobs

S M

S M

S M

M

…
16 vcores

120 GB

M

S

MapReduceS

S M

S M

S M

MS
Spark

S M

S M

S M

MS

S M

S M

S M

MS

Spark on YARN at Netflix

Technical Challenges

YARN

Resource
Manager

Node
Manager

Spark
AM

RDD

Custom Coalescer Support [SPARK-14042]

• coalesce() can only “merge” using the given number of partitions
– how to merge by size?

• CombineFileInputFormat with Hive

• Support custom partition coalescing strategies

• Parent RDD partitions are listed sequentially

• Slow for tables with lots of partitions

• Parallelize listing of parent RDD partitions

UnionRDD Parallel Listing [SPARK-9926]

YARN

Resource
Manager

S3
FilesystemRDD

Node
Manager

Spark
AM

• Unnecessary getFileStatus() call

• SPARK-9926 and HADOOP-12810 yield faster startup

• ~20x speedup in input split calculation

Optimize S3 Listing Performance [HADOOP-12810]

Output Committers

Hadoop Output Committer
• Write to a temp directory and rename to destination on success

• S3 rename => copy + delete
• S3 is eventually consistent

S3 Output Committer
• Write to local disk and upload to S3 on success

• avoid redundant S3 copy
• avoid eventual consistency

YARN

Resource
Manager

D
yn

am
ic

A

llo
ca

tio
n S3

FilesystemRDD

Node
Manager

Spark
AM

• Broadcast joins/variables
• Replicas can be removed with dynamic allocation

Poor Broadcast Read Performance [SPARK-13328]

...
16/02/13 01:02:27 WARN BlockManager:
Failed to fetch remote block broadcast_18_piece0 (failed attempt 70)
...
16/02/13 01:02:27 INFO TorrentBroadcast:
Reading broadcast variable 18 took 1051049 ms

• Refresh replica locations from the driver on multiple failures

• Cancel & resend pending container requests
• if the locality preference is no longer needed
• if no locality preference is set

• No locality information with S3

• Do not cancel requests without locality preference

Incorrect Locality Optimization [SPARK-13779]

YARN

Resource
Manager

Parquet R/W
D

yn
am

ic

A
llo

ca
tio

n S3
FilesystemRDD

Node
Manager

Spark
AM

A B C D

a1 b1 c1 d1

… … … …

aN bN cN dN
A B C D

dictionary

from “Analytic Data Storage in Hadoop”, Ryan Blue

Parquet Dictionary Filtering [PARQUET-384*]

0
10
20
30
40
50
60
70
80

DF	disabled DF	enabled	
64MB	split

DF	enabled	
1G	split

DF	disabled

DF	enabled	
64MB	split

DF	enabled	
1G	split

~8x ~18x

Parquet Dictionary Filtering [PARQUET-384*]
Av
g.
	C
om

pl
et
io
n	
Ti
m
e	
[m

]

Property Value Description
spark.sql.hive.convertMetastoreParquet true enable	 native	 Parquet read	path
parquet.filter.statistics.enabled true enable	 stats	filtering
parquet.filter.dictionary.enabled true enable	 dictionary filtering
spark.sql.parquet.filterPushdown true enable	 Parquet	 filter	pushdown	 optimization
spark.sql.parquet.mergeSchema false disable schema	 merging
spark.sql.hive.convertMetastoreParquet.mergeSchema false use	Hive	SerDe instead	of	built-in	 Parquet	support

How to Enable Dictionary Filtering?

Efficient Dynamic Partition Inserts [SPARK-15420*]

• Parquet buffers row group data for each file during writes

• Spark already sorts before writes, but has some limitations

• Detect if the data is already sorted

• Expose the ability to repartition data before write

YARN

Resource
Manager

Parquet R/W
D

yn
am

ic

A
llo

ca
tio

n

Sp
ar

k
H

is
to

ry
Se

rv
er

S3
FilesystemRDD

Node
Manager

Spark
AM

Spark History Server – Where is My Job?

• A large application can prevent new applications from showing up
• not uncommon to see event logs of GBs

• SPARK-13988 makes the processing multi-threaded

• GC tuning helps further
• move from CMS to G1 GC
• allocate more space to young generation

Spark History Server – Where is My Job?

Extract
Transform
Load

group

foreach

join

foreach + filter + store

join
foreach foreach

join

join

join

load + filter load + filter load + filter load + filter load + filter load + filter

Pig vs. Spark

0

100

200

300

400

Pig Spark PySpark

~2.4x ~2x

Av
g.
	C
om

pl
et
io
n	
Ti
m
e	
[s
]

Pig vs. Spark (Scala) vs. PySpark

Prototype DeployBuild Run

S3

Production Workflow

• A rapid innovation platform for targeting algorithms

• 5 hours (vs. 10s of hours) to compute similarity for all Netflix
profiles for 30-day window of new arrival titles

• 10 minutes to score 4M profiles for 14-day window of new
arrival titles

Production Spark Application #1: Yogen

• Personalized ordering of rows of titles

• Enrich page/row/title features with play history

• 14 stages, ~10Ks of tasks, several TBs

Production Spark Application #2: ARO

What’s Next?

• Improved Parquet support

• Better visibility

• Explore new use cases

Questions?

