Scaling Machine Learning To Billions of Parameters

Badri Bhaskar, Erik Ordentlich (joint with Andy Feng, Lee Yang, Peter Cnudde) Yahoo, Inc.

Outline

- Large scale machine learning (ML)
- Spark + Parameter Server
 - Architecture
 - Implementation
- Examples:
 - Distributed L-BFGS (Batch)
 - Distributed Word2vec (Sequential)
- Spark + Parameter Server on Hadoop Cluster

LARGE SCALE ML

Big Model

Billions of features

Big Data Hundreds of billions of examples

Ex: Yahoo word2vec - 120 billion parameters and 500 billion samples

Big Model

Billions of features

Hundreds of billions of examples Big Data Store Store Store

Ex: Yahoo word2vec - 120 billion parameters and 500 billion samples

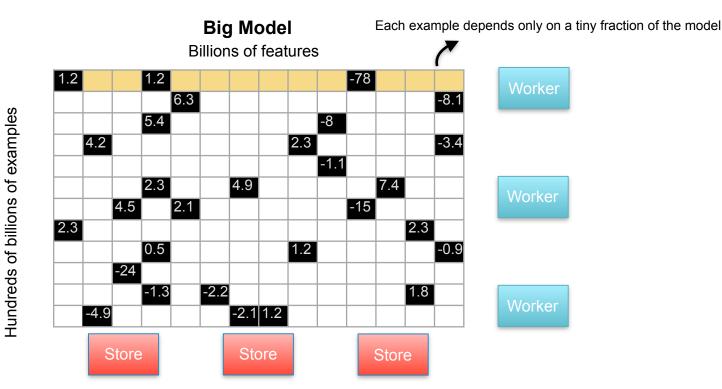
SPARK SUMMIT 2016

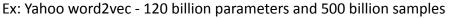
Big Model

Billions of features



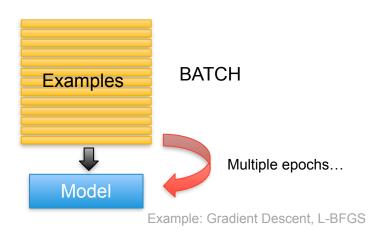
Ex: Yahoo word2vec - 120 billion parameters and 500 billion samples

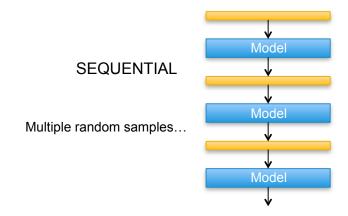




Big Data

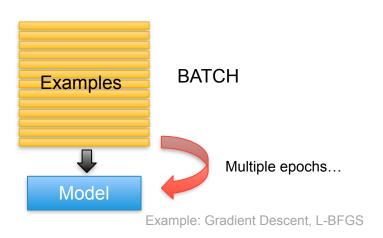
Two Optimization Strategies





Example: (Minibatch) stochastic gradient method, perceptron

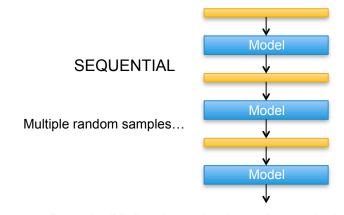
Two Optimization Strategies



- Small number of model updates
- Accurate

Spark

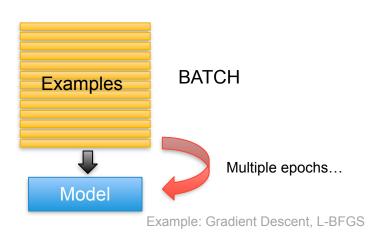
- Each epoch may be expensive.
- Easy to parallelize.



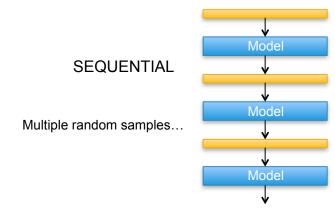
Example: (Minibatch) stochastic gradient method, perceptron

SPARK SUMMIT 2016

Two Optimization Strategies



- Small number of model updates
- Accurate
- Each epoch may be expensive.
- Easy to parallelize.



Example: (Minibatch) stochastic gradient method, perceptron

- Requires lots of model updates.
- Not as accurate, but often good enough
- A lot of progress in one pass* for big data.
- Not trivial to parallelize.

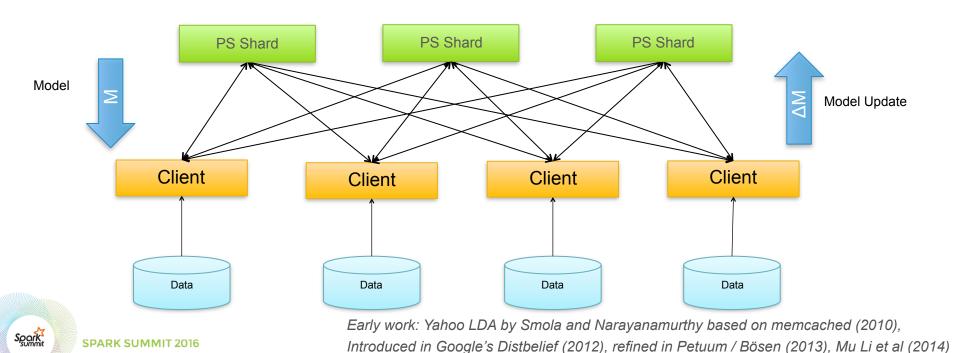
√ Support both batch and sequential optimization

- √ Support both batch and sequential optimization
- √ Sequential training: Handle <u>frequent updates</u> to the model

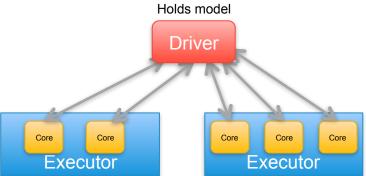
- √ Support both batch and sequential optimization
- √ Sequential training: Handle <u>frequent updates</u> to the model
- **✓ Batch training**: 100+ passes \Rightarrow each pass must be <u>fast</u>.

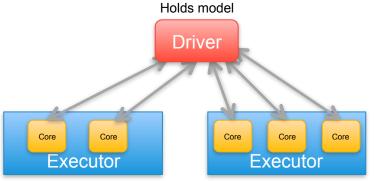
Parameter Server (PS)

Training state stored in PS shards, asynchronous updates



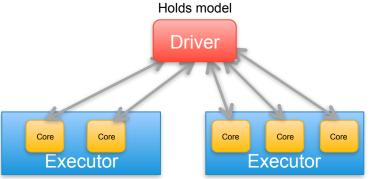
SPARK + PARAMETER SERVER





```
def train(data: RDD[Example]) = {
    while (not_converged) {
        broadcast(model)
        val cumGradient = data.sample().treeAggregate(...)
        model.update(cumGradient)
    }
}
```

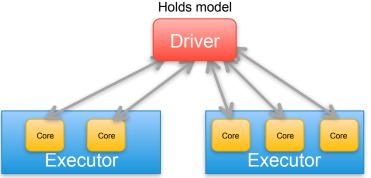
MLlib optimization



```
def train(data: RDD[Example]) = {
    while (not_converged) {
        broadcast(model)
        val cumGradient = data.sample().treeAggregate(...)
        model.update(cumGradient)
    }
}
```

MLlib optimization

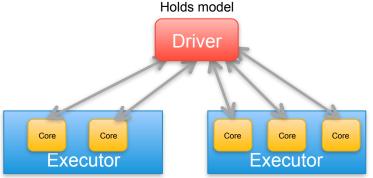
- Sequential:
 - Driver-based communication limits frequency of model updates.
 - Large minibatch size limits model update frequency, convergence suffers.



```
def train(data: RDD[Example]) = {
    while (not_converged) {
        broadcast(model)
        val cumGradient = data.sample().treeAggregate(...)
        model.update(cumGradient)
    }
}
```

MLlib optimization

- Sequential:
 - Driver-based communication limits frequency of model updates.
 - Large minibatch size limits model update frequency, convergence suffers.
- Batch:
 - Driver bandwidth can be a bottleneck
 - Synchronous stage wise processing limits throughput.



```
def train(data: RDD[Example]) = {
    while (not_converged) {
        broadcast(model)
        val cumGradient = data.sample().treeAggregate(...)
        model.update(cumGradient)
    }
}
```

MLlib optimization

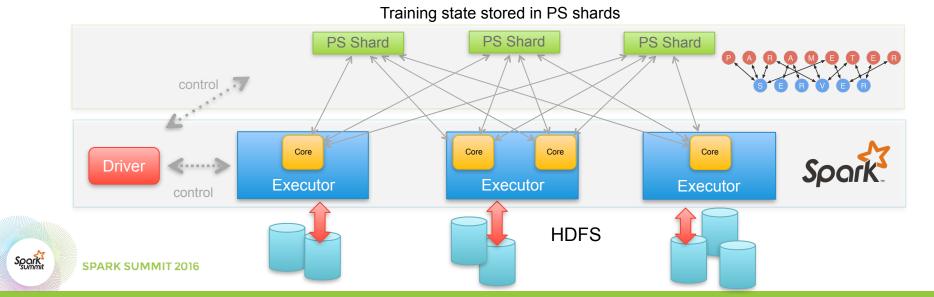
- Sequential:
 - Driver-based communication limits frequency of model updates.
 - Large minibatch size limits model update frequency, convergence suffers.
- Batch:
 - Driver bandwidth can be a bottleneck
 - Synchronous stage wise processing limits throughput.

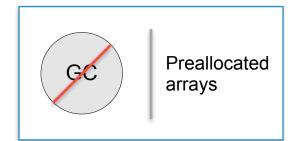
PS Architecture circumvents both limitations...

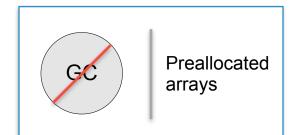
 Leverage Spark for HDFS I/O, distributed processing, fine-grained load balancing, failure recovery, in-memory operations

- Leverage Spark for HDFS I/O, distributed processing, fine-grained load balancing, failure recovery, in-memory operations
- Use PS to sync models, incremental updates during training, or sometimes even some vector math.

- Leverage Spark for HDFS I/O, distributed processing, fine-grained load balancing, failure recovery, in-memory operations
- Use PS to sync models, incremental updates during training, or sometimes even some vector math.







- In-memory
- Lock per key / Lock-free
- Sync / Async

Server

Client API

Preallocated arrays

- In-memory
- Lock per key / Lock-free
- Sync / Async

```
\begin{bmatrix} 9 & 13 & 5 & 2 \\ 1 & 11 & 7 & 6 \\ 3 & 7 & 4 & 1 \\ 6 & 0 & 7 & 10 \end{bmatrix}
```

- Columnpartitioned
- Supports
 BLAS

Server

Client API

Preallocated arrays

- In-memory
- Lock per key / Lock-free
- Sync / Async

```
\begin{bmatrix} 9 & 13 & 5 & 2 \\ 1 & 11 & 7 & 6 \\ 3 & 7 & 4 & 1 \\ 6 & 0 & 7 & 10 \end{bmatrix}
```

- Columnpartitioned
- Supports BLAS

Chec

HDFS

Export Model Checkpoint

Server

Client API

Preallocated arrays

- In-memory
- Lock per key / Lock-free
- Sync / Async

- Columnpartitioned
- Supports BLAS

HDFS

- Export Model
- Checkpoint

UDF

- Client supplied aggregation
- Custom shard operations

Map PS API

```
trait MapClient[K,V] {
  def get(key: K) : Future[V]
  def put(key: K, value: V) : Future[Unit]

def multiGet(keys: Seq[K]) : Future[Map[K,V]]
  def multiPut(keyValue: Seq[(K, V)]) : Future[Int]

def mapReduce[T,U](zero: U, mapFunc: T => U, reduceFunc: (U,U) => U) : Future[U]
}
```

- Distributed key-value store abstraction
- Supports batched operations in addition to usual get and put
- Many operations return a future you can operate asynchronously or block

Matrix PS API

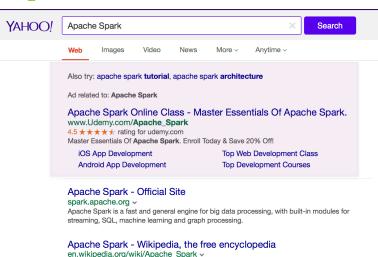
```
trait MatrixClient extends MapClient[Int, Array[Float]] {
  def dot(x: Int, y: Int): Float
  def scal(row: Int, factor: Float) : Future[Unit]
  def axpy(a: Float, x: Int, y: Int) : Future[Unit]
  def copy(to: Int, from: Int) : Future[Unit]
  ...

def increment(x: Int, indices: Array[Int], values: Array[Int]) : Future[Unit]
  def fetch(x: Int, indices: Array[Int]) : Array[Float]
}
```

- Vector math (BLAS style operations), in addition to everything Map API provides
- Increment and fetch sparse vectors (e.g., for gradient aggregation)
- We use other custom operations on shard (API not shown)

EXAMPLES

Sponsored Search Advertising



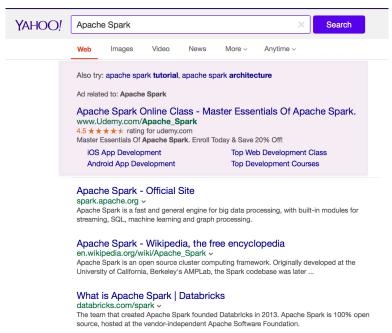
What is Apache Spark | Databricks

databricks.com/spark ~

The team that created Apache Spark founded Databricks in 2013. Apache Spark is 100% open source, hosted at the vendor-independent Apache Software Foundation.

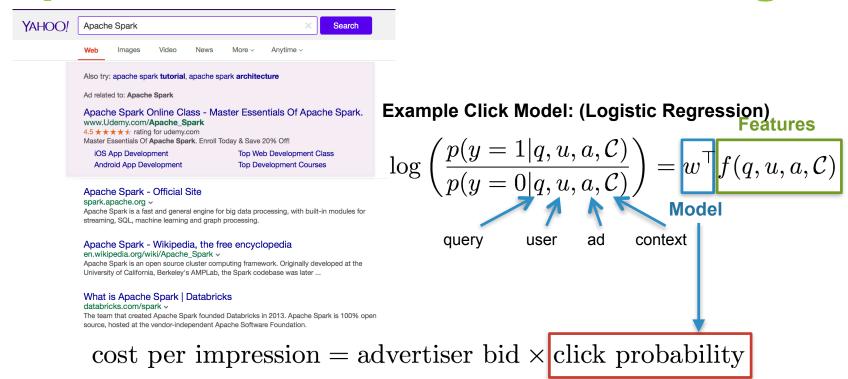
Apache Spark is an open source cluster computing framework. Originally developed at the University of California, Berkelev's AMPLab, the Spark codebase was later ...

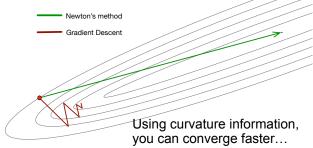
Sponsored Search Advertising



 $cost per impression = advertiser bid \times click probability$

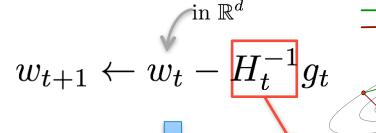
Sponsored Search Advertising





 $w_{t+1} \leftarrow w_t - H_t^{-1} g_t$ Exact, impractical $w_{t+1} \leftarrow w_t - H_t^{-1} g_t$ Using curvature information, you can converge faster... $d \times d$ matrix of partial derivatives $\mathcal{O}\left(d^3\right)$ to invert!

Exact, impractical



Using curvature information, you can converge faster...

 $d \times d$ matrix of partial derivatives $\mathcal{O}\left(d^3\right)$ to invert!

Approximate, practical

$$w_{t+1} \leftarrow w_t - \frac{\gamma_t \tilde{H}_{\text{inv}}(g_t)}{\gamma_t \tilde{H}_{\text{inv}}(g_t)}$$

Step Size computation

- Needs to satisfy some technical (Wolfe) conditions
- Adaptively determined from data

Inverse Hessian Approximation

(based on history of L-previous gradients and model deltas)

SPARK SUMMIT 2016

L-BFGS Ba

Exact, impractical

$$w_{t+1} \leftarrow w_t$$

REQUIRE: State vectors $M = (\{s_i\}_{i=t-1}^{t-m}, \{y_i\}_{i=t-1}^{t-m})$

Output: Proposed search direction

function $H_{\text{inv}}(g_t)$

$$q \leftarrow g_t$$

for
$$i = t - 1, t - 2, \dots, t - m$$
 do $\alpha_i \leftarrow \rho_i s_i^{\top} q$

 $q \leftarrow q - \alpha_i y_i$

end for

 $\gamma_t \leftarrow s_{t-1}^\top y_{t-1} / y_{t-1}^\top y_t$

 $r \leftarrow \gamma_t q$

for $i = t - m, t - m + 1, \dots, t - 1$ do

$$eta \leftarrow
ho_i y_i^ op r \ r \leftarrow r + s_i(lpha_i - eta)$$

end for

Approximate, practical

$$w_{t+1} \leftarrow w_t - \frac{\gamma_t \tilde{H}_{\text{inv}}(g_t)}{\gamma_t \tilde{H}_{\text{inv}}(g_t)}$$

Step Size computation

- Needs to satisfy some technical (Wolfe) conditions
- Adaptively determined from data

Inverse Hessian Approximation

(based on history of L-previous gradients and model deltas)

L-BFGS Ba

Exact, impractical

$$w_{t+1} \leftarrow w_t$$

REQUIRE: State vectors $M = (\{s_i\}_{i=t-1}^{t-m}, \{y_i\}_{i=t-1}^{t-m})$

Output: Proposed search direction

function $H_{\text{inv}}(g_t)$

$$q \leftarrow g_t$$

for
$$i = t - 1, t - 2, \dots, t - m$$
 do $\alpha_i \leftarrow \rho_i s_i^{\top} q$

$$q \leftarrow q - \alpha_i y_i$$

end for

$$\gamma_t \leftarrow s_{t-1}^{\top} y_{t-1} / y_{t-1}^{\top} y_t$$

$$r \leftarrow \gamma_t q$$

for
$$i = t - m, t - m + 1, \dots, t - 1$$
 do

$$\beta \leftarrow \rho_i y_i^{\top} r r \leftarrow r + s_i (\alpha_i - \beta)$$

end for

Approximate, practical

$$w_{t+1} \leftarrow w_t - \frac{\gamma_t \tilde{H}_{\text{inv}}(g_t)}{\gamma_t \tilde{H}_{\text{inv}}(g_t)}$$

Step Size computation

- Needs to satisfy some technical (Wolfe) conditions
- Adaptively determined from data

Inverse Hessian Approximation

(based on history of L-previous gradients and model deltas)

L-BFGS Ba

Exact, impractical

$$w_{t+1} \leftarrow w_t$$

function $H_{inv}(g_t)$ Vector Math $q \leftarrow g_t$ copy for $i = t - 1, t - 2, \dots, t - m$ do dotprod $\alpha_i \leftarrow \rho_i s_i^{\top} q$ $axpy (y \leftarrow ax + y)$ $q \leftarrow q - \alpha_i y_i$ end for $\gamma_t \leftarrow s_{t-1}^{\top} y_{t-1} / y_{t-1}^{\top} y_t$ dotprod $r \leftarrow \gamma_t q$ scal for $i = t - m, t - m + 1, \dots, t - 1$ do $\beta \leftarrow \rho_i y_i^{\top} r$ axpy $r \leftarrow r + s_i(\alpha_i - \beta)$ scal end for

REQUIRE: State vectors $M = (\lbrace s_i \rbrace_{i=t-1}^{t-m}, \lbrace y_i \rbrace_{i=t-1}^{t-m})$

Output: Proposed search direction

Approximate, practical

$$w_{t+1} \leftarrow w_t - \gamma_t \tilde{H}_{\text{inv}} (g_t)$$

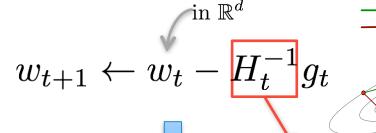
Step Size computation

- Needs to satisfy some technical (Wolfe) conditions
- Adaptively determined from data

Inverse Hessian Approximation

(based on history of L-previous gradients and model deltas)

Exact, impractical



Using curvature information, you can converge faster...

 $d \times d$ matrix of partial derivatives $\mathcal{O}\left(d^3\right)$ to invert!

Approximate, practical

$$w_{t+1} \leftarrow w_t - \frac{\gamma_t \tilde{H}_{\text{inv}}(g_t)}{\gamma_t \tilde{H}_{\text{inv}}(g_t)}$$

Step Size computation

- Needs to satisfy some technical (Wolfe) conditions
- Adaptively determined from data

Inverse Hessian Approximation

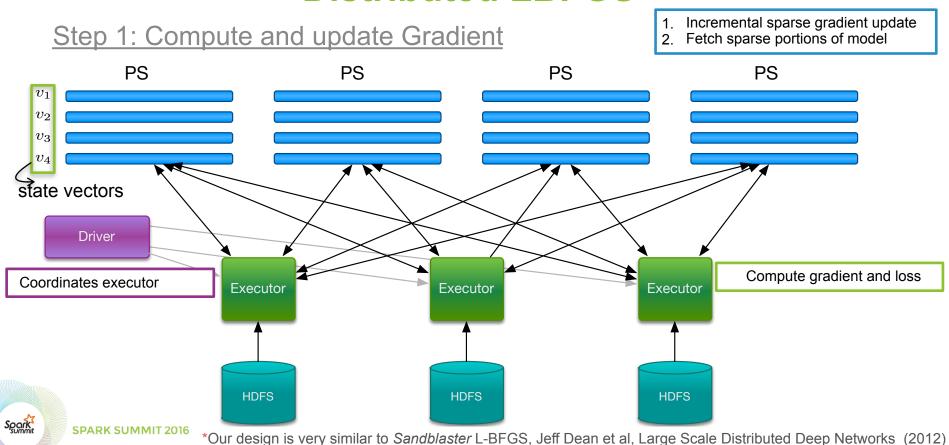
(based on history of L-previous gradients and model deltas)

SPARK SUMMIT 2016

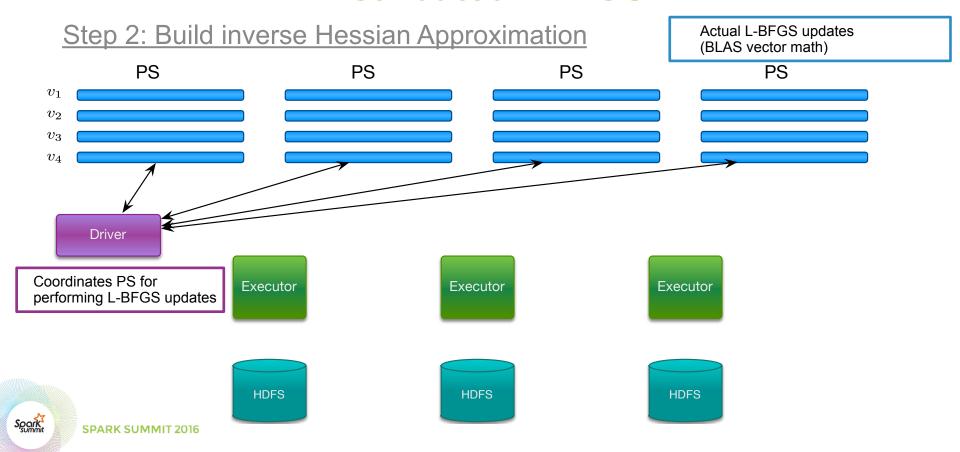
Distributed LBFGS*



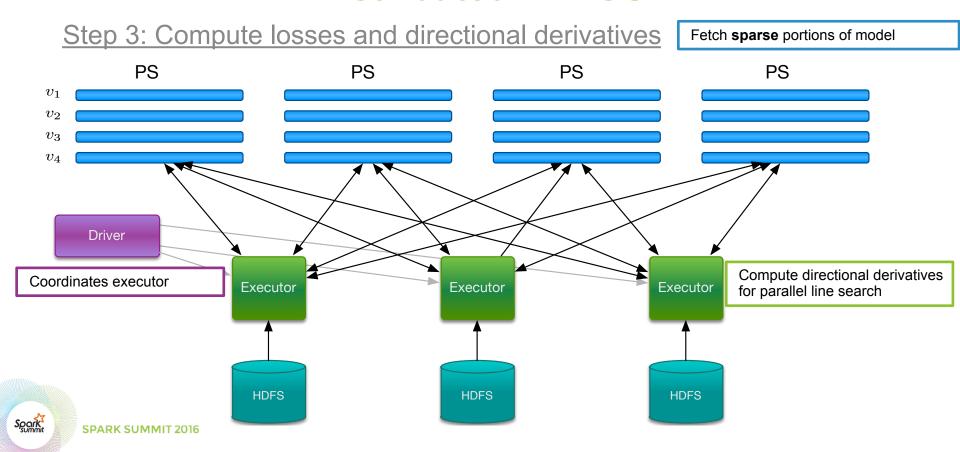
Distributed LBFGS*



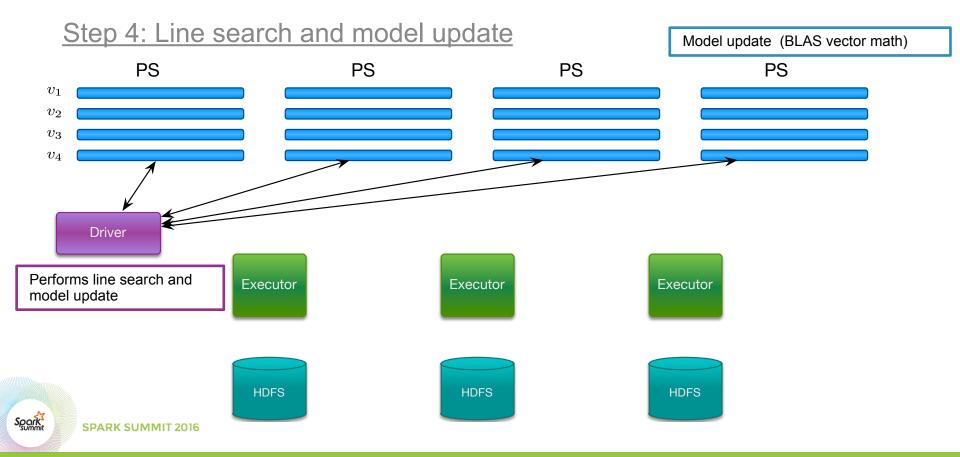
Distributed LBFGS



Distributed LBFGS



Distributed LBFGS



Intersperse communication and computation

- Intersperse communication and computation
- Quicker convergence
 - Parallel line search for step size
 - Curvature for initial Hessian approximation*

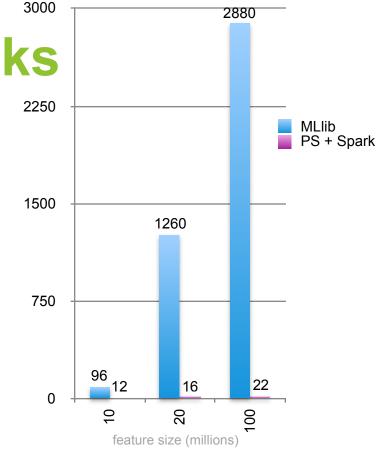
- Intersperse communication and computation
- Quicker convergence
 - Parallel line search for step size
 - Curvature for initial Hessian approximation*
- Network bandwidth reduction
 - Compressed integer arrays
 - Only store indices for binary data

- Intersperse communication and computation
- Quicker convergence
 - Parallel line search for step size
 - Curvature for initial Hessian approximation*
- Network bandwidth reduction
 - Compressed integer arrays
 - Only store indices for binary data
- Matrix math on minibatch

per (

seconds)

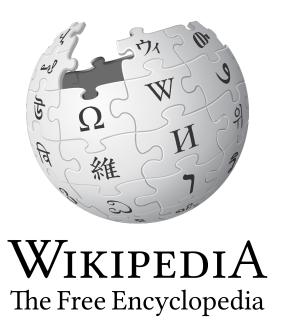
- Intersperse communication and computation
- Quicker convergence
 - Parallel line search for step size
 - Curvature for initial Hessian approximation*
- Network bandwidth reduction
 - Compressed integer arrays
 - Only store indices for binary data
- Matrix math on minibatch



1.6 x 108 examples, 100 executors, 10 cores

Word Embeddings

Word Embeddings



Word Embeddings


```
\mathbf{v}(paris) = [0.13, -0.4, 0.22, ..., -0.45]

\mathbf{v}(lion) = [-0.23, -0.1, 0.98, ..., 0.65]

\mathbf{v}(quark) = [1.4, 0.32, -0.01, ..., 0.023]
```

•

WIKIPEDIA
The Free Encyclopedia

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov
Google Inc.
Mountain View
mikolov@google.com

Ilya Sutskever
Google Inc.
Mountain View
ilyasu@google.com

Kai Chen Google Inc. Mountain View kai@google.com

Greg Corrado
Google Inc.
Mountain View
gcorrado@google.com

Jeffrey Dean Google Inc. Mountain View jeff@google.com

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov
Google Inc.
Mountain View
mikolov@google.com

Ilya Sutskever
Google Inc.
Mountain View
ilyasu@google.com

Kai Chen Google Inc. Mountain View kai@google.com

Greg Corrado
Google Inc.
Mountain View
qcorrado@google.com

Jeffrey Dean Google Inc. Mountain View jeff@google.com new techniques to compute vector representations of words from corpus

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov
Google Inc.
Mountain View
mikolov@google.com

Ilya Sutskever Google Inc. Mountain View ilyasu@google.com Kai Chen Google Inc. Mountain View kai@google.com

Greg Corrado
Google Inc.
Mountain View
qcorrado@google.com

Jeffrey Dean Google Inc. Mountain View jeff@google.com

- new techniques to compute vector representations of words from corpus
- geometry of vectors captures word semantics

• Skipgram with negative sampling:

- Skipgram with negative sampling:
 - training set includes pairs of words and neighbors in corpus, along with randomly selected words for each neighbor

- Skipgram with negative sampling:
 - training set includes pairs of words and neighbors in corpus, along with randomly selected words for each neighbor
 - determine $w \to \mathbf{u}(w), \mathbf{v}(w)$ so that $sigmoid(\mathbf{u}(w) \bullet \mathbf{v}(w'))$ is close to (minimizes log loss) the probability that w' is a neighbor of w as opposed to a randomly selected word.

- Skipgram with negative sampling:
 - training set includes pairs of words and neighbors in corpus, along with randomly selected words for each neighbor
 - determine $w \to \mathbf{u}(w), \mathbf{v}(w)$ so that $sigmoid(\mathbf{u}(w) \bullet \mathbf{v}(w'))$ is close to (minimizes log loss) the probability that w' is a neighbor of w as opposed to a randomly selected word.
 - SGD involves computing many vector dot products e.g., $\mathbf{u}(w) \cdot \mathbf{v}(w')$ and vector linear combinations e.g., $\mathbf{u}(w) += \alpha \mathbf{v}(w')$.

Word2vec Application at Yahoo

Example training data:

```
gas cap replacement for car
slc 679f037df54f5d9c41cab05bfae0926
gas door replacement for car
slc 466145af16a40717c84683db3f899d0a fuel door covers
adid c 28540527225 285898621262
slc 348709d73214fdeb9782f8b71aff7b6e autozone auto parts
adid b 3318310706 280452370893 auoto zone
slc 8dcdab5d20a2caa02b8b1d1c8ccbd36b
slc 58f979b6deb6f40c640f7ca8a177af2d
```


Distributed Word2vec

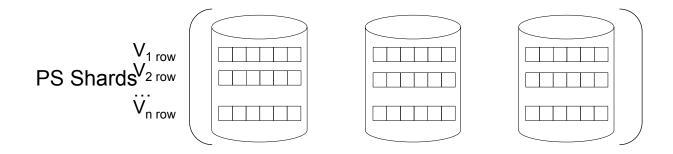
Distributed Word2vec

 Needed system to train 200 million 300 dimensional word2vec model using minibatch SGD

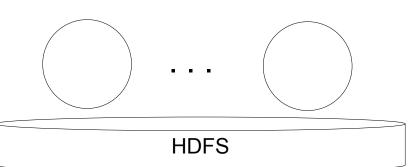
- Needed system to train 200 million 300 dimensional word2vec model using minibatch SGD
- Achieved in a high throughput and network efficient way using our matrix based PS server:

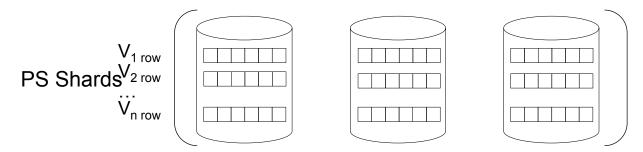
- Needed system to train 200 million 300 dimensional word2vec model using minibatch SGD
- Achieved in a high throughput and network efficient way using our matrix based PS server:
 - Vectors don't go over network.

- Needed system to train 200 million 300 dimensional word2vec model using minibatch SGD
- Achieved in a high throughput and network efficient way using our matrix based PS server:
 - Vectors don't go over network.
 - Most compute on PS servers, with clients aggregating partial results from shards.



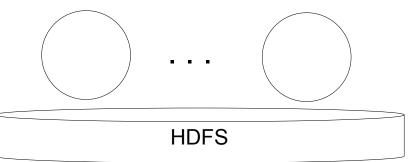
Word2vec learners



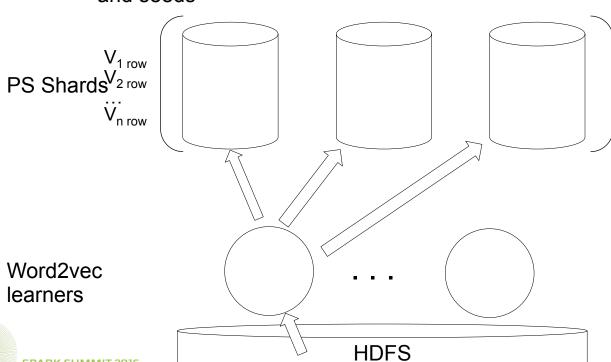


Each shard stores a **part** of **every** vector

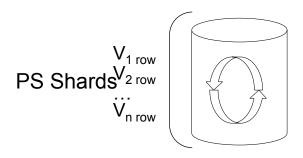
Word2vec learners

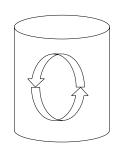


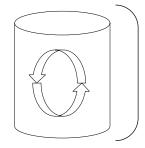
Send word indices and seeds



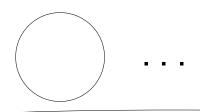
Negative sampling, compute **u**•**v**

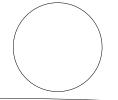






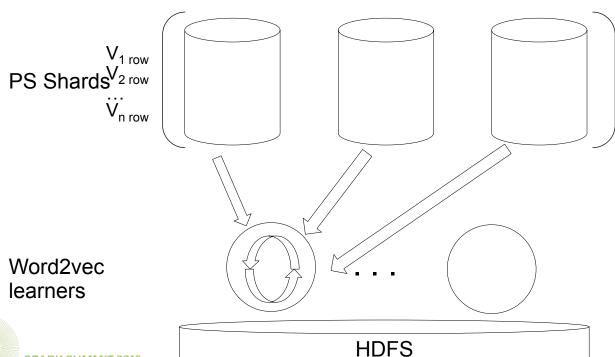
Word2vec learners

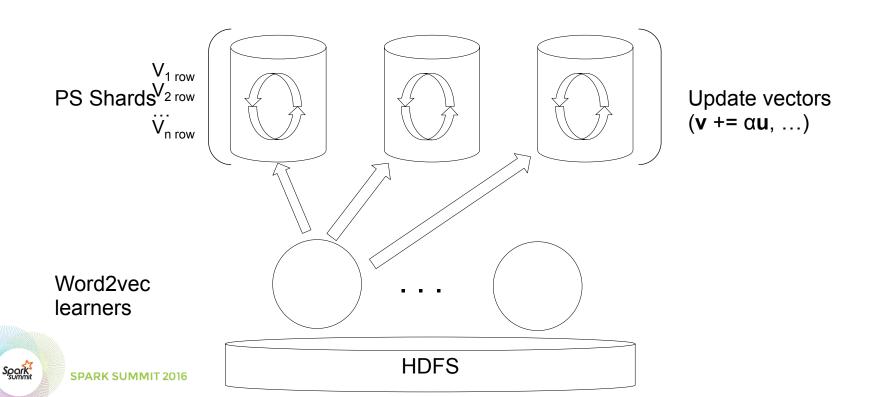




HDFS

Aggregate results & compute lin. comb. coefficients (e.g., α ...)





 Network lower by factor of #shards/dimension compared to conventional PS based system (1/20 to 1/100 for useful scenarios).

- Network lower by factor of #shards/dimension compared to conventional PS based system (1/20 to 1/100 for useful scenarios).
- Trains 200 million vocab, 55 billion word search session in 2.5 days.

- Network lower by factor of #shards/dimension compared to conventional PS based system (1/20 to 1/100 for useful scenarios).
- Trains 200 million vocab, 55 billion word search session in 2.5 days.
- In production for regular training in Yahoo search ad serving system.

Other Projects using Spark + PS

- Online learning on PS
 - Personalization as a Service
 - Sponsored Search
- Factorization Machines
 - Large scale user profiling

SPARK+PS ON HADOOP CLUSTER

Training Data on HDFS

Launch PS Using Apache Slider on YARN

Parameter Servers

Apache Slider

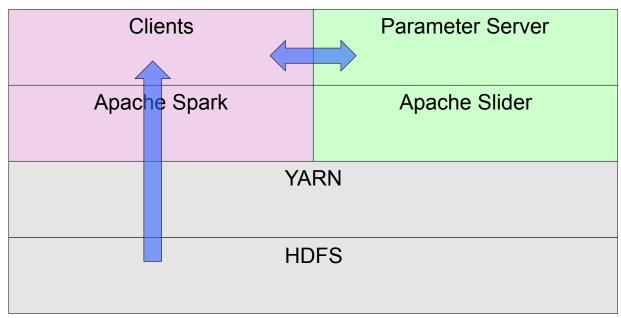
YARN

HDFS

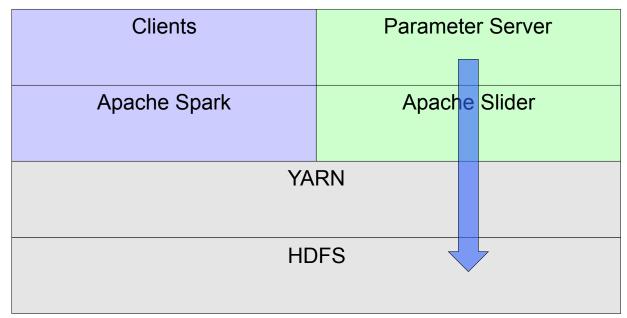
Launch Clients using Spark or Hadoop Streaming API

Clients	Parameter Servers
Apache Spark	Apache Slider
YARN	
HDFS	

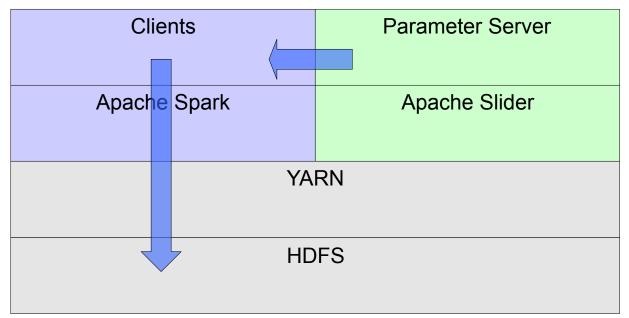
Training



Model Export



Model Export



Summary

- Parameter server indispensable for big models
- Spark + Parameter Server has proved to be very flexible platform for our large scale computing needs
- Direct computation on the parameter servers accelerate training for our use-cases

Thank you!

For more, contact bigdata@yahoo-inc.com.

