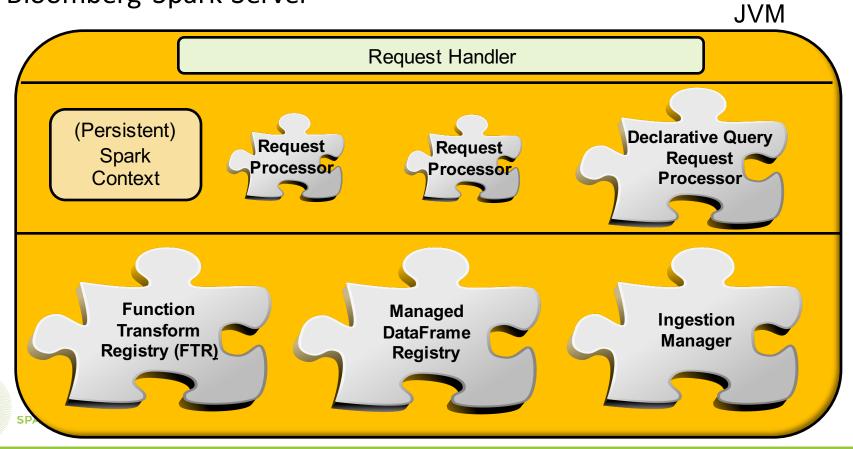
Spark @ Bloomberg: Dynamic Composable Analytics

Partha Nageswaran Sudarshan Kadambi BLOOMBERG L.P.

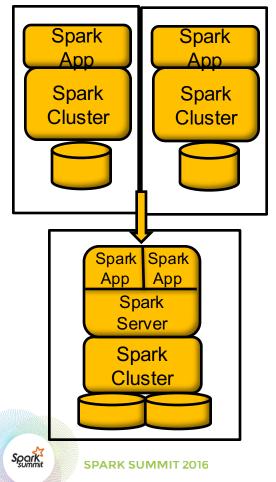
Bloomberg Spark Server

Spark Serverization at Bloomberg has culminated in the creation of the Bloomberg Spark Server



Spark

Spark Serverization – Motivation



- Stand-alone Spark Apps on isolated clusters pose challenges:
 - Redundancy in:
 - » Crafting and Managing of RDDs/DFs
 - » Coding of the same or similar types of transforms/actions
 - Management of clusters, replication of data, etc.
 - Analytics are confined to specific content sets making Cross-Asset Analytics much harder
 - Need to handle Real-time ingestion in each App

Dynamic Composable Analytics

Compositional Analytics are common place in the Financial Sector

Decile Rank the 14-day Relative Strength Index of Active Equity Stocks:

```
Price,
14,
['IBM US Equity', 'VOD LN Equity', ...]
)
```

- Price is data abstracted as a Spark Data Frame
- RSI, DECILE are building block analytics, expressible as Spark transforms and actions

Dynamic Composable Analytics

Another usecase may want to compose Percentile with RSI

Percentile Rank the 14-day Relative Strength Index of Active Equity Stocks:

```
PERCENTILE(
RSI(
Price,
14,
['IBM US Equity', 'VOD LN Equity', ...]
)
```

• Or Percentile with ROC, etc. And the compositions maybe arbitrarily complex

Dynamic Composable Analytics

```
def RSI(df: DataFrame, period: Int=14) : DataFrame = {
    val smmaCoeff = udf( (i:Double) => scala.math.pow(period-1, i-1)/scala.math.pow(period,i) )
    val rsi_from_rs = udf( (n:Double, d:Double) => 100 - 100*d/(d+n) )
    val rsi_window = Window.partitionBy('id).orderBy('date.desc)

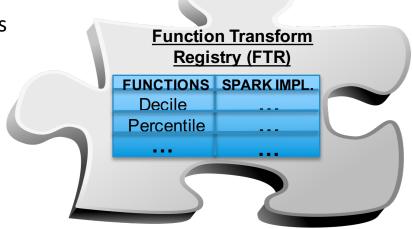
    df.withColumn("weight", smmaCoeff(row_number.over(rsi_window)))
        .withColumn("diff", 'value - lead('value,1).over(rsi_window))
        .withColumn("U", when('diff > 0, 'diff).otherwise(0))
        .withColumn("D", when('diff < 0, abs('diff)).otherwise(0))
        .groupBy('id).agg(rsi_from_rs( sum('U * 'weight), sum('D * 'weight) )as 'value)
}

def Decile(df: Dataframe) : DataFrame = {
        df.withColumn("value", ntile(10).over( Window.orderBy('value.desc) ) )</pre>
```

Ack: Andrew Foster

Function Transform Registry

- Maintain a Registry of Analytic functions (FTR) with functions expressed as Parametrized Spark Transforms and Actions
- Functions can compose other functions, along with additional transforms, within the Registry
- Registry supports 'bind' and 'lookup' operations



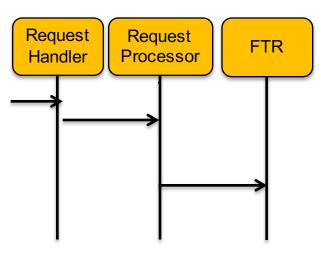
Bloomberg Spark Server

JVM Request Handler (Persistent) Spark Context **Function Transform** Registry (FTR)

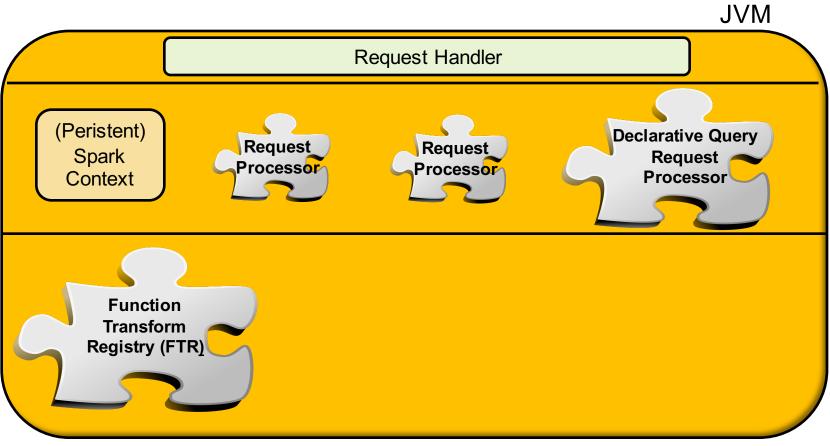
SPARK SUMMIT 2016

Request Processor

- Request Processors (RPs) are spark applications that orchestrate composition of analytics on Data Frames
 - RPs comply with a specification that allows them to be hosted by the Bloomberg Spark Server
 - Each request (such as: compute the Decile Rank of the RSI) is handled by a Request Processor that looks up functions from the FTR, Composes them and applies them to Data Frames



Bloomberg Spark Server



Spark SUMMIT 2016

Managed Data Frames

- Besides locating functions from the FTR, Request Processors have to pass in Data Frames to these functions as inputs
- Rather than instantiate Data Frames, lookup Data Frames from a Data Frames Registry
 - Such Data Frames are called Managed Data Frames (MDF)
 - The Registry that Manages these Data Frames is the Managed Data Frame Registry (MDF Registry)

Introducing Managed DataFrames (MDFs)

MDF

Name: Shallow PriceMDF

Price DF <ID, Price>

Execution
Metadata:
* 2 Yr Price
History

A Managed DataFrame (MDF) is a named DataFrame, optionally combined with **Execution Metadata**

- MDFs can be located by name OR by any Column Name defined in the Schema of the corresponding DF
- Execution Metadata includes:
 - Data Distribution metadata captures information about the data depth, histogram information, etc.
 - E.g.: A managed DataFrame for pricing of stocks, representing 2 years of historical data and another for representing 30 years of historical data

MDF

Name: Deep

PriceMDF

Price DF

<ID, Price>

Execution Metadata:

* 30 Yr Price History

Managed DataFrames

MDF

Name: Shallow PriceDF

Price DF <ID, Price>

Execution Metadata:

* 2 Yr Price
History
* adjPrice =
Price – 3% of

Price

 Data Derivation metadata which are mathematical expressions that define how additional columns can be synthesized from existing columns in the schema

- E.g.: adjPrice is a derived Column, defined in terms of the base Price column
- In essence, an MDF with data derivation metadata have a Schema that is a union of the contained DF and the derived columns

MDF

Name:

Deep PriceDF

Price DF <ID, Price>

Execution Metadata:

* 30 Yr Price
History
* adjPrice =

Price – 1.75% of

Price

SPARK SUMMIT 2016

The MDF Registry

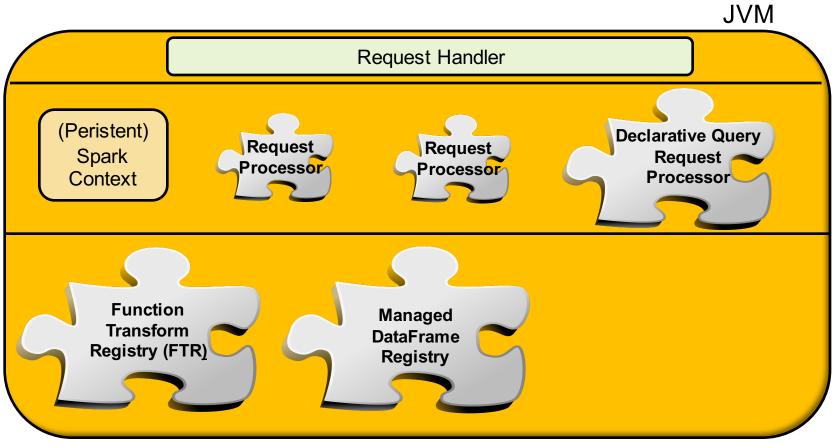
MDF Registry

Name	Columns	DF Ref.	Meta Data	
Shallow Price DF	Price, adjPrice			::
Deep Price DF	Price, adjPrice			

- The MDF Registry within the Bloomberg Spark Server provides support for:
 - Binding MDFs by Name
 - Looking up MDFs by Name
 - Looking up MDF by a Column Name (an element of the MDF Schema), etc.
- The MDF Registry maintains a 'table' that associates the Name of the MDF with the DF reference and Columns in the DF

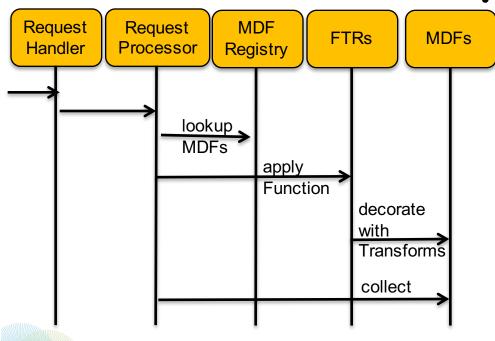
SPARK SUMMIT 2016

Bloomberg Spark Server



Spark SUMMIT 2016

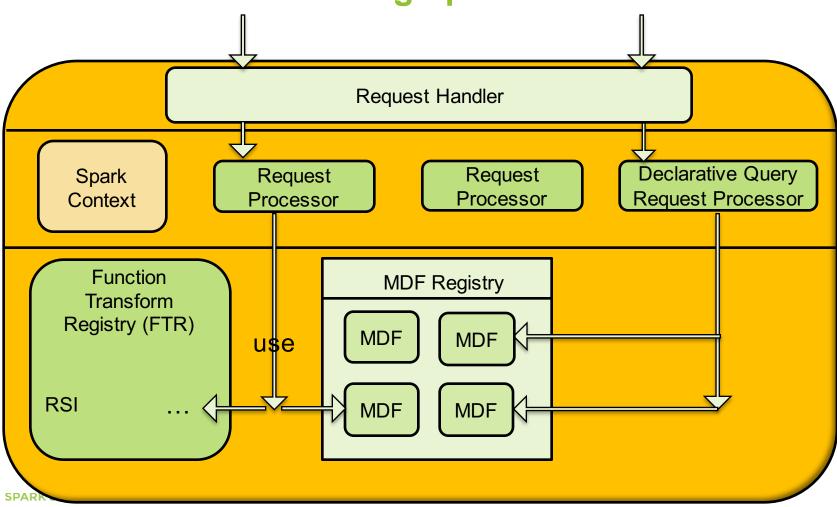
Flow of Requests



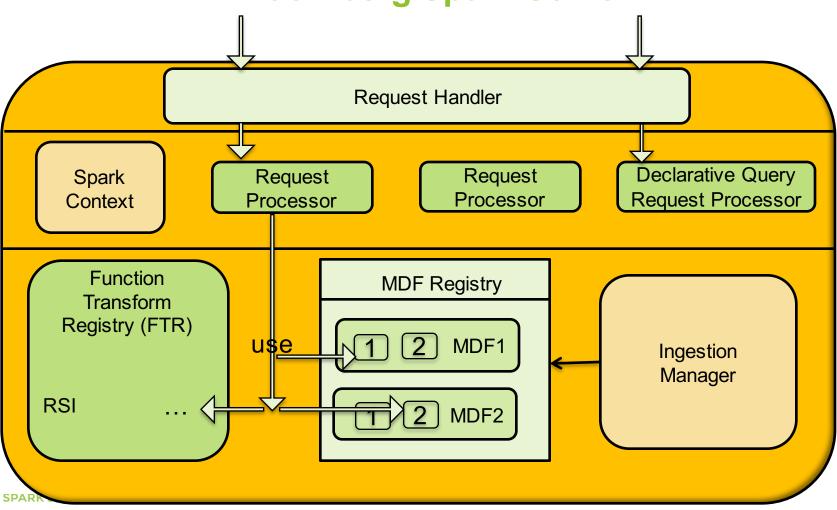
Request Processors within the Spark Server orchestrate analytics

- These RPs have access to the Registry and FTRs
- Are responsible for composing transforms and actions on one or more MDFs
- May dynamically bind additional MDFs (materialized or otherwise) for use by other Apps

Bloomberg Spark Server



Bloomberg Spark Server



Schema Repository

- Enterprise-wide data pipeline
- External (to Spark) schema repository and service
- Enables MDF lookup by a dataset schema element
 - Analytic expressions can now be composed over data elements

Execution Metadata

- Dataset Source Connection Identifiers
 - Backing Stores
 - Real-time Topics
- Storage Level & Refresh Rate
- Subset Predicate, etc.

Ad-hoc Cross-Domain Analytics

- Registration of pre-materialized DataFrames
 - Collaborative analytics between application workflows
- Dynamic creation of Managed DataFrames
 - Spark Servers have data pertaining to a single domain materialized
 - Ad-hoc cross-domain analytics requires capability to synthesize MDFs on demand

Content Subsetting

- High value data sub-setted within Spark
 - Reduce cost of querying external datastore
- Specified as a filter predicate at time of registration
 - E.g. Member companies of popular indices [Dow 30, S&P 500,...] have records placed within Spark

Content Subsetting

 Seamless unification of data in Spark (DF_{subset}) and backing store (DF_{subset}')

$$(DF_{subset} \cup DF_{subset'}).filter(query) = DF_{subset}.filter(query) \cup DF_{subset'}.filter(query)$$

- Dataset owners provided knobs for cost vs performance.
- LRU cache like mechanism planned in the future
- Make sense as a capability native to Spark dataframes

Spark SUMMIT 2016

Ingestion: Periodic Refresh

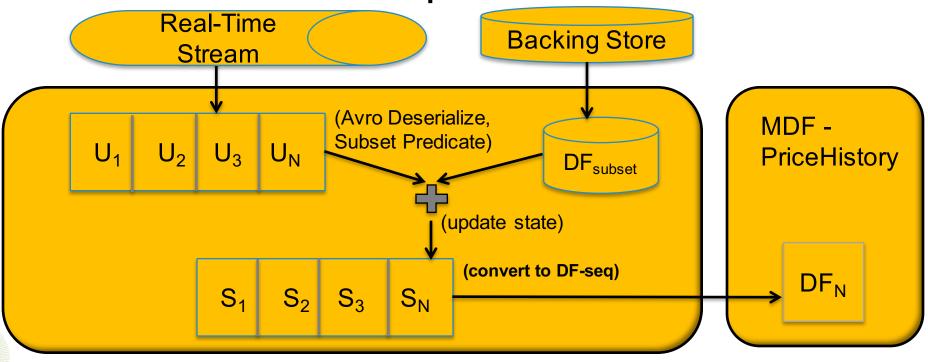
- Periodic data pull into Spark from the backing store
- Subset criteria applied during data retrieval
- Used when a dataset has a backing store, but no real time update stream that we can tap into
- Dataset owners have control over storage level of the dataframes created within a given MDF

Ingestion: Stream Reconciliation

- Analytics needs to be low-latency with respect to queries, but also data freshness
- Since data is being sub-setted within Spark, need to keep the subset up to date
- Datasets published to different Kafka topics.
 - 1:1 mapping between datasets, topics and DStreams.

Ingestion: Stream Reconciliation

Similar intent as Structured Streaming, to be introduced in Spark 2.0



Ingestion: Data Transformation

- Data in backing stores may need representation transforms before being used in queries
 - Data in multiple tables denormalized into a single DF within Spark
 - Or, quickly see effect of different storage representations on performance, without changing the representation in the backing store
- Implemented via. user transforms associated with a given MDF

Spark Server: Memory Management

- An MDF contains multiple generation of DFs, being generated and destroyed
- Multiple generations operated upon by RPs at given point in time
- Reference counting to keep track of what DFs are being used and by whom
 - Long running queries aborted for forced reclamation

Spark

SPARK SUMMIT 2016

Query Consistency

- Multiple queries need to operate on same snapshot of data
- How to achieve, if data constantly changing underneath?
- Each DF within MDF associated with time epoch
- Registry lookup with a reference time
- Time-align sub-setted dataframes with data in backing store

Spark for Online Analytics

- High Availability of Spark Driver
 - High bootstrap cost to reconstructing cluster and cached state
 - Naïve HA models (such as multiple active clusters) surface query inconsistency
- High Availability of RDD Partitions
 - With subset or universe cached, lost RDD partitions kill query performance
- Performance Consistency
 - Performance gated by slowest executor
 - High Availability and Low Tail Latency closely related
- Interactions effects between low-latency queries and low-latency updates
 - No to Minimal sandboxing between jobs sharing executor JVMs

First Bloomberg contribution: SPARK-15352

SPARK SUMMIT 2016

Spark Server Acknowledgements

Andrew Foster

Spark

Joe Davey

Shubham Chopra

Tracy Liang

THANK YOU.

pnageswaran@bloomberg.net
skadambi@bloomberg.net

