Dara Adib (Marketplace Data)

 Uber
—70+ countries. 450+ cities. o

* Marketplace Data

—Realtime Data Processing
—Analytics
—Forecasting

e Spark

 Uber
—70+ countries. 450+ cities.)

* Marketplace Data

—Realtime Data Processing
—Analytics
—Forecasting

e Spark

Marketplace Data

iy
§
i
LLE LY

Dashboards State Transitions/Raw Streaming Visual Exploration
Business Metrics Query Seeing what's happening Explore your data via Geo
Dashboards Querying data in flexible now, continuously Visualization tools

ways

Y

’ﬁ SPARK SUMMIT 2016

-

 Traditionally data is stored in a RDBMS.
* This works well for row lookups and joins.
» But what about events and windowing?

Request Event

Driver Accept Event

Trip Started Event

more events ...

ek,

Trip States

How many open cars are in London now?

* What is the driving time in New York’s Financial
District, by time of day and day of week?

*\What is the conversion rate of requests into
trips on Friday evenings in San Francisco?

How many drivers a

request > 3 times Iin a row
within a 10-minute window?

Complex Event Processing

FROM driver_canceled¥ . «dow 1me(10 min)

If This Then That

A simple SQL-like
syntax!

that can take ACTIONS!!

In Real Time!

SPARK SUMMIT 2016

Geo Aggregation

SPARK SUMMIT 2016

Hexagons

*Indexing, Lookup, Rendering
« Symmetric Neighbors

* Convex Regions
~Equal Area
«~Equal Shape

 Empower users. Democratize data.
—Services want reliability and consistent performance.
—Data Scientists want Pandas and flexibility.

*Spark is not a database.

—Data too big to fit in memory?
—Checkpointing UPDATEs.

«Spark 2.0? Alluxio?

A Tale of Two Cities

« Extensibility vs. Reliability

* Months of Data vs. Minutes of Data
*Batch v.s. Streaming

* Developmentv.s. Production
*HDFS v.s. Relational Database

* YARN v.s. Mesos

“Data scientists don’t know how to code.”
-Software Engineer

* Data discoverability
*Data freshness
*Query latency

* Debuggability
*|solation

—CPU, memory, disk space, disk 1/O, network |/O
—"Bad queries”

Service Oriented Architecture

high-latency

&

—_ /Sp QrK. _>Fo‘r-e_g’ast

ES 3 / Z(\Serwc.e

3, .
= —

% Parquet Compute __y Jupyter
Eniine .v

4;; Spar
017 backﬂll (/
p h g, |
—>i] elasticsearc P = —p E i

p ﬁ 83 kafka;
Backend Query

Serdices |
Service
// |OW-|atenCy
SPARK SUMMIT 2016

« Ease-of-Use
» Extensibility
—Python and
JavaScript
libraries
 Alternatives
—Apache
Zeppelin
—Databricks

ek,

SPARK SUM

configarable-hip-proxy
(node-hitp-peoxy)

Notebook Service

ElastcSearch

ernal Services

Jupyter
Seam

<

| capture

stdout

i | Spark
: |Context

Hadoop

scheduler

MPI

scheduler

ZooKeeper
quorum

@ pySpark

ealk

K

Dota Flow
—— ! [— Pi peMm
Spark
Worker Python
Python
i :
. *| Python
Spar :
Local »| Python [
Worke ;
FS == »| Python I
[IPython I]JVM

Mesos slave| | Mesos slave Mesos slave
Hadoop MPI Hadoop || MPI
executor executor executor||executor

task task task task

SeRk,

Frameworks

Scheduler

Connects to Mesos master.
Accepts or declines resources.
Contains delay scheduling logic for
rack locality, etc.

Executor

Connects to local Mesos slave.
Runs framework tasks.

Examples

Aurora, Marathon, Chronos
Spark, Storm, Myriad (Hadoop)

Masters and Agents

e Master

— Shares resources between
frameworks.

— Keeps state (frameworks, agents,
tasks)in memory.

— HA: 1 master elected.
« Agent
— Runs on each cluster node.
— Specifies resources and attributes.
— Starts executors.

— Communicates with master and
executors to run tasks.

Slave reports available resources

to the master.

Master sends a resource offer to
the framework scheduler.
Framework schedulerrequests
two tasks on the slave.

Master sends the tasks to the
slave which allocates resources
to the framework’s executor,
which in turn launches the two
tasks.

Framework 1

Job1 | Job2

FW Scheduler

Job 1 Job 2

W Scheduler

[<s1, 4cpu, 4gb, ... > (2

<lask1, 1, 2cpu, 1gb, ... >
<task2, s1, 1cpu, 2gb, ... >

)

%

mod

Allocation

Mesos

ule master

r4

V4

<s1, 4cpu, 4gb, ... > (1 <twi, task1, 2cpu, 1gb, ... >
[49 %@cfwm task2, 1cpu, 2gb, ... >

]

..............

Slave 2
Executor

Types Isolation

« cpu: CPU share * Linux container
— optional CFS for fixed — control groups (cgroup)
« mem: memory limit — namespaces
 disk space: disk limit . Dockercontainer
* ports:integer portrange External container
* bandwidth Other features
Custom resources: k,v pairs . Reserved resources by role

« Oversubscription
» Persistent volumes

SeRk,

from shutil import rmtree
from tempfile import mkdtemp

1
;ro. pyspa:: 1~iort Spa;kF]_les Spark doesn't have
el e - built-in GIS support but

from shapely.geometry import asPoint

we can leverage

Shapely and rtree,
def point_in_poly(x, y):

idx = index.Index(SparkFiles.get(’index.idx')([:-4)) Python libraries based
for fid in idx.intersection([x, y)):

speedups. enable() on IibgeOS (Used by

point = asPoint([x, yl)

def build_point_in_poly(polygons):

(name, polygon) = polygons_broadcast.valuelfid) POStGlS) and
if point.intersects(polygon):
Assume non-overlapping polygons, so return, Iit)f;[)fitifilir1(j€3)(
return name)

respectively.

tempdir = mkdtemp()
basename = os.path.join(tempdir, 'index')
try:
idx = index.Index(basename, ((fid, polygon.bounds, None)
for (fid, (name, polygon)) in enumerate(polygons)))
idx.close()
sc.addPyFile(basename + ', idx')
sc.addPyFile(basename + '.dat')
finally:
rmtree(tempdir)

polygons_broadcast = sc.broadcast(polygons)
return point_in_poly

Build a UDF to find the airport code of a lat-1lng poit.
sﬁ . sqlContext.registerFunction('getAirportCode’, build_point_in_poly(airports),
StringType())

Workflow

Explore Raw Process Raw Experiment M \/isualization
Data Data " Algorithms
P HTML EXxX JE
STEUTEN R Siovment P Rewrite
Results N o Algorithms

* Use Mesos coarse-grained mode with dynamic

allocation and the external shuffler.

—Backported 13 commits from Spark master branch to
fix dynamic allocation and launch multiple executors
per slave.

* Deploy Python virtualenvs to Spark executors.

—Managed with requirements.txt files and pip-compile.

 Stitch Parquet files together (SPARK-11441).

« Spark SQL scans all partitions despite LIMIT
(SPARK-12843)
* Mesos checkpoints (SPARK-4899)

— Restart Mesos agent without killing Spark executors.

* Mesos oversubscription (SPARK-10293)

—“Steal” idle but allocated resources.

Locality Sensitive Hashing by Spark

Alain Rodriguez, Fraud Platform, Uber
Kelvin Chu, Hadoop Platform, Uber

e Stream Computing & Analytics at Uber

o http://www.slideshare.net/stonse/stream-computing-analytics-at-uber

e Spark at Uber

o http://Iwww.slideshare.net/databricks/spark-meetup-at-uber

e Career at Uber

o https://www.uber.com/careers/

THANK YOU.

Feedback? Dara Adib <
Happy to discuss technical details.

No product/business questions please.

SPARK SUMMIT 2016

