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A Day in the Life of a Spark Application Developer



spark-submit --class SortByKey --num-executors 10 --executor-memory 4G --executor-cores 16

Container 
[pid=28352,containerID=container_1464692140
815_0006_01_000004] is running beyond 
physical memory limits. Current usage: 5 GB of 
5 GB physical memory used; 6.8 GB of 10.5 GB 
virtual memory used. Killing container.



Searches on StackOverflow



Fix #1: Turn off Yarn’s Memory Policing

yarn.nodemanager.pmem-check-enabled=false

Application Succeeds!



But, wait a minute

This fix is not multi-tenant friendly!
-- Ops will not be happy



Fix #2: Use a Hint from Spark
WARN yarn.YarnAllocator: Container killed by YARN 
for exceeding memory limits. 5 GB of 5 GB physical 
memory used. Consider boosting 
spark.yarn.executor.memoryOverhead



What is this Memory Overhead?
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A Peek at the Memory Usage Timeline
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max heap
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After Applying Fix #2
Leaving more room 

for overheads

spark-submit --class SortByKey --num-executors 10 --executor-memory 4G 
--executor-cores 16 --conf spark.yarn.executor.memoryOverhead=1536m



But, what did we do here?

We traded off memory efficiency 
for reliability



What was the Root Cause?

Each task is fetching shuffle 
files over NIO channel. The 

buffers required are allocated 
from OS overheads

Container is 
killed by Yarn



Fix #3: Reduce Executor Cores

Less Concurrent Tasks  Less Overhead Space

spark-submit --class SortByKey --num-executors 10 --executor-memory 4G --executor-cores 8

Application Succeeds!



But, what did we really do here?

We traded off performance and 
CPU efficiency for reliability



Let’s Dig Deeper

Why is so much 
memory consumed 
in Executor heap?



JVM’s View of Executor Memory
Node memory
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OS overhead Executor memory
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JVM’s View of Executor Memory



Fix #4: Frequent GC for Smaller Heap

spark-submit --class SortByKey --num-executors 10 --executor-memory 4G --executor-cores 16 
- --conf "spark.executor.extraJavaOptions=-XX:OldSize=100m -XX:MaxNewSize=100m"



But, what did we do now?
Reliability is achieved at the cost 
of extra CPU cycles spent in GC, 
degrading performance by 15%



Can we do better?

So far, we have sacrificed either 
performance or efficiency for reliability



Fix #5: Spark can Exploit Structure in Data

spark-submit --class SortByKeyDF --num-executors 10 --executor-memory 4G --executor-cores 16

Tungsten’s custom serialization 
reduces memory footprint 

while also reducing processing time

Application succeeds 
and runs 2x faster 

compared to Fix #2!
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Next
• Key insights from 

experimental analysis

• Current work



Yarn-level Memory Management



Yarn-level Memory Management

• Executor memory
• OS memory overhead per executor
• Cores per executor
• Number of executors

Node memory
Container

OS overhead Executor memory



Impact of Changing Executor Memory
Fa

ile
d

java.lang.OutOfMemoryError: Java heap space
at java.util.Arrays.copyOf(Arrays.java:2271)
at 

java.io.ByteArrayOutputStream.grow(ByteArrayO
utputStream.java:118)
...

at 
org.apache.spark.storage.BlockManager.dataSeri
alize(BlockManager.scala:1202)
...

at 
org.apache.spark.CacheManager.putInBlockMan
ager(CacheManager.scala:175)

Reliability EfficiencyPerformancePredictability



Spark-level Memory Management



Spark-level Memory Management
Node memory

Container
OS overhead Executor memory

spark.executor.memory
Storage

spark.storage.memoryFraction
spark.storage.safetyFraction

Execution
spark.shuffle.memoryFraction
spark.shuffle.safetyFraction

Unmanaged

spark.executor.memory

Storage Execution
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Spark-level Memory Management
• Legacy or unified?

– If legacy, what is size of storage pool Vs. execution pool?
• Caching

– On heap or off-heap (e.g., Tachyon)?
– Data format (deserialized or serialized)
– Provision for data unrolling

• Execution data
– Java-managed or Tungsten-managed



Comparing Legacy and Unified

Increasing storage pool size from left to right

SortByKey

K-Means

Increasing storage pool size, 
Decreasing execution pool sizeUnified

Unified



Unified does as Expected, But…

Size of storage pool increases from left to right

Performance Predictability

Executors fail due to OOM errors 
while receiving shuffle blocks 

java.lang.OutOfMemoryError: Java heap space
at java.util.Arrays.copyOf(Arrays.java:2271)
at 

java.io.ByteArrayOutputStream.grow(ByteArrayO
utputStream.java:118)
...

at 
org.apache.spark.storage.BlockManager.dataSeri
alize(BlockManager.scala:1202)
...

at 
org.apache.spark.network.netty.NettyBlockRpcSe
rver.receive(NettyBlockRpcServer.scala:58)

legacy



Unified Memory Manager is:
• A step in the right direction
• Not unified enough



Spark-level Memory Management
• Legacy or unified?

– If legacy, what is size of storage pool Vs. execution pool?
• Caching

– On heap or off-heap (e.g., Tachyon)?
– Data format (deserialized or serialized)
– Provision for data unrolling

• Execution data
– Java-managed or Tungsten-managed



Deserialized Vs. Serialized cache

Size of storage pool increases from left to right

Performance Predictability

Memory footprint of data in 
cache goes down by ~20% 
making more partitions fit in the 
storage pool

Efficiency

legacy



Another Application, Another Story! 

Size of storage pool increases from left to right

Fa
ile

d
Fa

ile
d

java.lang.OutOfMemoryError: Java heap space
at java.util.Arrays.copyOf(Arrays.java:2271)
at 

java.io.ByteArrayOutputStream.grow(ByteArrayO
utputStream.java:118)
...

at 
org.apache.spark.storage.BlockManager.dataSeri
alize(BlockManager.scala:1202)
...

at 
org.apache.spark.CacheManager.putInBlockMan
ager(CacheManager.scala:175)

PredictabilityReliability
Executors fail due to OOM 
errors while serializing data 

legacy



Spark-level memory management
• Legacy or unified?

– If legacy, what is size of storage pool Vs. execution pool?
• Caching

– On heap or off-heap (e.g., Tachyon)?
– Data format (deserialized or serialized)
– Provision for data unrolling

• Execution data
– Java-managed or Tungsten-managed



Execution Data Management

All objects in Heap Up to 2GB objects in 
off-heap at any time

We have seen that Tungsten-managed heap improves the 
performance significantly. (Fix #5)

We did not notice much further 
improvements by pushing 
objects to off-heap



JVM-level Memory Management



JVM-level Memory Management

• Which GC algorithm? (Parallel GC, G1 GC, …)
• Size cap for a GC pool
• Frequency of collections
• Number of parallel GC threads



Spark-JVM Interactions

Ratio of old generation size to average RDD size 
cached per executor varied

Keep JVM OldGen size at least as big as 
RDD cache 

Keeping Spark storage pool size 

PageRank

Keeping Spark storage pool size 
constant, the size of OldGen pool 
is increased from left to right 
K-means executors display more 
skew in data compared to 
PageRank



Current Work
• Automatic root-cause 

analysis of memory-
related issues

• Auto-tuning algorithms 
for memory allocation in 
multi-tenant clusters
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