Understanding Memory Management
in Spark For Fun And Profit

Shivnath Babu (Duke University, Unravel Data Systems)

Mayuresh Kunijir (Duke University) U
¥ =

S?u%rmlt \
\

i \\\\s\\
QR

SPARK SUMMIT 2016

 Shivnath Babu

— Associate Professor @ Duke University
— CTO, Unravel Data Systems

* Mayuresh Kunjir
— PhD Student @ Duke University

mmmmmm

A Day in the Life of a
Spark Application Developer

mmmmmm

— Container
@ [pid=28352,containerlD=container 1464692140
815 0006 _01_000004] is running beyond

/\ physical memory limits. Current usage: 5 GB of

5 GB physical memory used; 6.8 GB of 10.5 GB
/\ virtual memory used. Killing container.

spark-submit --class SortByKey --num-executors 10 --executor-memory 4G --executor-cores 16

Searches on StackOverflow

Container is running beyond memory limits

Using all resources in Apache Spark with Yarn
/\ Spark - Container is running beyond physical memory limits
/ \ Spark streaming on yarn - Container running beyond physical memory limits

| am getting the executor running beyond memory limits when running big join in spark

How to avoid Spark executor from getting lost and yarn container killing it due to memory limit?

- S‘s"‘u?n’:n'%f SPARK SUMMIT 2016

- .
7
&
N
S z
- :':"i!:_“ S
= "w_xpxaggf-gsérfz

Fix #1: Turn off Yarn’s Memory Policing

yarn.nodemanager.pmem-check-enabled=false

/

SPARK SUMMIT 2016

But, wait a minute

-

This fix is not multi-tenant friendly!

- Ops will not be happy

Fix #2: Use a Hint from Spark

"WARN yarn.YamAllocator: Container killed by YARN
for exceeding memory limits. 5 GB of 5 GB physical
memory used. Consider boosting

kspark. yarn.executor.memoryOverhead y

mwm"{f SPARK SUMMIT 2016

What is this Memory Overhead?

Node memory

Container

OS overhead Executor memory

Shared | Memory
native | mapped
libs files

Thread NIO
Stacks | buffers

Spsu?nﬁ . SPARK SUMMIT 2016

Container
memory

Executor JVM
max heap

5.56E9 -

5E9 -

4.5E9

€94

Memory (Bytes)

1.5E9 1

1E9-

5E8 -

Executor: 1464692140815_0006_4.txt

N w
N (&)} w 1
m m m m
© © © ©

R N |

0EO-: ‘ ‘ :
0 20 40 60

H‘IOO

80 100 120 140 160 180 200 220 240 260
Sample index

(%) Ndd

Container is
killed by Yarn

Physical memory
used by Container
as seen by OS

Executor: 1464692140815_0007_6.txt

100
50 | - il H o 95
5.5E9 | 90 L g
55 eaving more room
5E9 80
i for overheads
4.5E9 |
70
o 4E9 65
2 60
>3.5E9 55 Q
> 3E9 50 Eo
o AAF ’ 45 3\’
g 2.5E9 | il | 40
= \ 35
2E9 |
\ 30
1.5E9 - 25
20
1E9 | 15
5E8 ‘ I 10
5
oE0 | LZ2EE 0
0 100 200 300 400 500 600 700 800

Sample index

spark-submit --class SortByKey --num-executors 10 --executor-memory 4G

Spaik’ --executor-cores 16 --conf spark.yarn.executor.memoryOverhead=1536m

summit

But, what did we do here?

-

~

We traded off memory efficiency

for reliability
4

Memory (Bytes)

5.5E9

5E9

4.5E9

4E9

3.5E9

3E9

2.5E9

1.5E9

1E9

5E8

0EO -* ‘ ‘ . . ‘ ‘ ‘ . ‘
0 20 40 60 80 100 120 140 160 180 200 220 240 260

Executor: 1464692140815_0006_4.txt

H1OO

Container is
e killed by Yarn

80
75
65
60

" Each task is fetching shuffle

50

s files over NIO channel. The

40

s puffers required are allocated

30
25 from OS overheads
20
15
10
5
0

Sample index

Less Concurrent Tasks = Less Overhead Space

spark-submit --class SortByKey --num-executors 10 --executor-memory 4G --executor-cores 8

mmmmmm

But, what did we really do here?

4)

We traded off performance and

CPU efficiency for reliability
_ /

Executor: 1464692140815_0006_4.txt

100
5.5E9 95
5E9 90
85
4.5E9 80
4E9 ;z
;.w:S.SEQ 23 -
E 3E9 %5
- 50 .
5 259 5 Why is so much
py 40
S 26 s L memory consumed
30 .
1.5E9 25 in Executor heap?
20
5E8 10
5
0EO 0 w=

0O 20 40 60 80 100 120 140 160 180 200 220 240 260
Sample index

Spark

summit

JVM'’s View of Executor Memory

Node memory

Container

OS overhead Executor memory
Off-heap Heap

JZVM
" Internal Young Old

(Code Cache Gen Gen
+ Perm Gen)

Spsu?nﬁ - SPARK SUMMIT 2016

5.5E9 -

5E9 -

4.5E9 1

4E9 -

Memory (Bytes)

1.5E9 1

1E9 1

5E8 -

0EO ‘!

S;:Jt:\r‘lj(\ir

summit

n @
o) o
m m m
© © ©

2E9

Executor: 1464692140815_0006_4.txt

0

20 40 60 80 100 120 140 160 180 200 220 240 260
Sample index

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

(%) NdD

® OldGen
® YoungGen
® JVMInternal
Spark Off-heap
- RSS
Max Heap

— Max Physical
Used CPU

Executor: 1464692140815_0006_4.txt Executor: 1464827213907_0003_9.txt

5.5E9

100

5.5E9 -

Memory (Bytes)

5E9 | 5E9
4.5E9 - 4.5E9
4E9 4E9
3.5E9 | & 3.5E9
= 2]
J m o
3E9 0 3E9 2
> L)
by)
2.5E9 0 2.5E9 3
£
(4]
2E9 | = 2E9
1.5E9 | 1.5E9
1E9 || 1E9
5E8 | 5E8
OEO-Z : 0E(Q ' Leasi
0 20 40 60 80 100 120 140 160 180 200 220 240 260 0 100 200 300 400 500 600 700 800

Sample index Sample index

. spark-submit --class SortByKey --num-executors 10 --executor-memory 4G --executor-cores 16
o - --conf "spark.executor.extraJavaOptions=-XX:0ldSize=100m -XX:MaxNewSize=100m"

But, what did we do now?

~

/Reliability IS achieved at the cost
of extra CPU cycles spent in GC,

Kdegrading performance by 15%/

/

\

So far, we have sacrificed either

performance or efficiency for reliability

~

/

Executor: 1447540585201_1396_6.txt

o Tungsten’s custom serialization
o reduces memory footprint

i while also reducing processing time

4E9

r
-~

(%) nd

Memory (Bytes)
N w
n 2 w o
m m m m
[(e] © [(e] ©

1.5E9

1E9

5E8

OEOQ - ===
0 50 100 150 200 250 300 350 400 450

Sample index
spark-submit --class SortByKeyDF --num-executors 10 --executor-memory 4G --executor-cores 16

Spark

summit

Objectives

Challenges in ~
Memo ry Predictability
Manageme nt Performance

Efficiency

Reliability

S \ g > Workloads
QA 'R 'R
'f/
5%

Memory management options

Bl
ML
[Streaming }

- Spsu%‘ﬁ SPARK SUMMIT 2016

Memory management options

Soaikt

Objectives
VAN

Predictability

Performance

Reliability

> Workloads

Key insights from
experimental analysis

Current work

Yarn-level Memory Management

Yarn-level Memory Management

Node memory

Container

OS overhead Executor memory

« Executor memory

« OS memory overhead per executor
« Cores per executor

 Number of executors

Impact of Changing Executor Memory

€ 16k204ckES

= 50
7] @a.Iang.OutOfMemoryError: Java heap space\
..% 40 4 at java.util.Arrays.copyOf(Arrays.java:2271)
at
£ java.io.ByteArrayOutputStream.grow(ByteArrayO
- 30 i) utputStream.java:118)
" O
D 20 o at
g « org.apache.spark.storage.BlockManager.dataSeri
'E 10 h alize(BlockManager.scala:1202)
>
' —— at
O {rg.apache.spark.CacheManager.putlnBIockMay
heM .scala:17
K-means ager(CacheManager.scala:175)

. Spsu%ﬁ SPARK SUMMIT 2016

Spark-level Memory Management

Spark-level Memory Management

Node memory

Container
OS overhead Executor memory

spark.executor.memory spark.executor.memory

Unified pool
spark.memory.fraction

spark.memory. Storage | Execution
storageFraction

Storage Execution

spark.storage.memoryFraction spark.shuffle.memoryFraction

spark.shuffle.safetyFraction
Gl

paseuewun
padeuewun

[Legacy] [Unified }

- Spsu?n‘ﬁi SPARK SUMMIT 2016

« Legacy or unified?

— If legacy, what is size of storage pool Vs. execution pool?
« Caching

— On heap or off-heap (e.g., Tachyon)?

— Data format (deserialized or serialized)

— Provision for data unrolling
« Execution data

— Java-managed or Tungsten-managed

mmmmmm

‘ SortByKey J

Increasing storage pool size,
Decreasmg executlon pool S|ze

K Means Unified

@ Spark Storage @ Spark Execution = Used Heap —— Max Heap

Spt:\‘l:Z

summrt

Unified does as Expected, But...

50 "0 =0.2=0.4 =0.6 =0.8,=unified Executors fail due to OOM errors
» Y while receiving shuffle blocks
9 40 legacy
)
(= =
€ 30 _—
- ﬁ/a.Iang.OutOfMemoryError: Java heap space\
()} 20 A at java.util.Arrays.copyOf(Arrays.java:2271)
at
'_g, X java.io.ByteArrayOutputStream.grow(ByteArrayO
c 10 ~E utputStream java:118)
é ™
at
0 org.apache.spark.storage.BlockManager.dataSeri
SortByKey K-means alize(BlockManager.scala:1202)
at

org.apache.spark.network.netty.NettyBlockRpcSe
Vool rver.receive(NettyBlockRpcServer.scala:58)
Spof

. summit SPARK SUMMIT 2016

/Unified Memory Manager is:
* A step in the right direction

N Not unified enough

« Legacy or unified?

— If legacy, what is size of storage pool Vs. execution pool?
« Caching

— On heap or off-heap (e.g., Tachyon)?

— Data format (deserialized or serialized)

— Provision for data unrolling
« Execution data

— Java-managed or Tungsten-managed

mmmmmm

Deserialized Vs. Serialized cache

50 I\O m0.2=04=0.6 50.9 = unified
Q 40 legacy Memory footprint of data in
E - I ® cache goes down by ~20%
3 30 - % making more partitions fit in the
céJ 20 = 4 /@torage pool)
é 10 B
0

K-means K-means SER

Spsu‘f%’ﬁ SPARK SUMMIT 2016

Another Application, Another Story!

20 CO m0.2504=0.6 DO./8 = ynified

Executors fail due to OOM
errors while serializing data

) Y
Q9 15 legacy
> ma.Iang.OutOfMemoryError: Java heap space\
E w X a: java.util.Arrays.copyOf(Arrays.java:2271)
a
~ 10 java.io.ByteArrayOutputStream.grow(ByteArrayO
GE) & ‘ utputStream.java:118)
'-E £33 ! ° at
= 5 = e .i-_’ org.apache.spark.storage.BlockManager.dataSeri
e e g alize(BlockManager.scala:1202)
O at
PageRank PageRank SER org.apache.spark.CacheManager.putinBlockMan
wer(CacheManager.scalaﬂ75) /

SPARK SUMMIT 2016

* Legacy or unified?

— If legacy, what is size of storage pool Vs. execution pool?
« Caching

— On heap or off-heap (e.g., Tachyon)?

— Data format (deserialized or serialized)

— Provision for data unrolling
« Execution data

— Java-managed or Tungsten-managed

mmmmmm

We have seen that Tungsten-managed heap improves the
performance significantly. (Fix #5)

Executor: 1447540585201_1396_6.txt Executor: 1447540585201_1371_6.txt

100
5.5E9
95

We did not notice much further

improvements by pushing
ikl “ I““«‘Ml :
-l ;

objects to off-heap

[All objects in Heap | [Up to 2GB objects in |
off-heap at any time

Memory (Bytes)
N w
(%) Nndd

Sample index

Sgork

ummit

JVM-level Memory Management

JVM-level Memory Management

Node memory

* Which GC algorithm? (Parallel GC, G1 GC, ...)
* Size cap for a GC pool
* Frequency of collections

 Number of parallel GC threads

Keep JVM OIldGen size at least as big as

RDD cache

I 100 =0.82 =1.10 =1.23 . :
@ Keeping Spark storage pool size
5 ©0 I constant, the size of OldGen pool
g 60 i is increased from left to right
GE) 40 - K-means executors display more
:
§ 20 skew in data compared to
Y - y PageRank

0

K-means PageRank

mmmmmm

Objiitives ° AUtOmatIC rOOt-Cause
analysis of memory-
related issues

e o Auto-tuning algorithms
for memory allocation in
multi-tenant clusters

mmmmmm

Get Free Trial Edition:

bit.ly/getunravel

K =
AUTOMATIC ALERTS & PERFORMANCE
OPTIMIZATION | | DASHBOARDS || ANALYTICS
a

UNCOVER ISSUES

dOOdvH

AYVdS

VA4V

UNLEASH RESOURCES
UNRAVEL PERFORMANCE

C
-
=
10SON 9
@
ddI

HOYdV3S
SY43H1O

VHdANVYSSVD

