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— Container
@ [pid=28352,containerlD=container 1464692140
815 0006 _01_000004] is running beyond

/\ physical memory limits. Current usage: 5 GB of

5 GB physical memory used; 6.8 GB of 10.5 GB
/\ virtual memory used. Killing container.

spark-submit --class SortByKey --num-executors 10 --executor-memory 4G --executor-cores 16




Searches on StackOverflow

Container is running beyond memory limits

Using all resources in Apache Spark with Yarn
/\ Spark - Container is running beyond physical memory limits
/ \ Spark streaming on yarn - Container running beyond physical memory limits

| am getting the executor running beyond memory limits when running big join in spark

How to avoid Spark executor from getting lost and yarn container killing it due to memory limit?
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Fix #1: Turn off Yarn’s Memory Policing

yarn.nodemanager.pmem-check-enabled=false

/
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But, wait a minute

-

This fix is not multi-tenant friendly!

- Ops will not be happy




Fix #2: Use a Hint from Spark

"WARN yarn.YamAllocator: Container killed by YARN
for exceeding memory limits. 5 GB of 5 GB physical
memory used. Consider boosting

kspark. yarn.executor.memoryOverhead y
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What is this Memory Overhead?

Node memory

Container

OS overhead Executor memory

Shared | Memory
native | mapped
libs files

Thread NIO
Stacks | buffers
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Executor: 1464692140815_0007_6.txt
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But, what did we do here?

-

~

We traded off memory efficiency

for reliability
4




Memory (Bytes)

5.5E9

5E9

4.5E9

4E9

3.5E9

3E9

2.5E9

1.5E9

1E9

5E8

0EO -* ‘ ‘ . . ‘ . . . . ‘ ‘ . ‘
0 20 40 60 80 100 120 140 160 180 200 220 240 260

Executor: 1464692140815_0006_4.txt

H1OO

Container is
e killed by Yarn

80
75
65
60

" Each task is fetching shuffle

50

s files over NIO channel. The

40

s puffers required are allocated

30
25 from OS overheads
20
15
10
5
0

Sample index




Less Concurrent Tasks = Less Overhead Space

spark-submit --class SortByKey --num-executors 10 --executor-memory 4G --executor-cores 8

mmmmmm




But, what did we really do here?

4 )

We traded off performance and

CPU efficiency for reliability
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JVM'’s View of Executor Memory

Node memory

Container

OS overhead Executor memory
Off-heap Heap

JZVM
" Internal Young Old

(Code Cache Gen Gen
+ Perm Gen)
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But, what did we do now?

~

/Reliability IS achieved at the cost
of extra CPU cycles spent in GC,

Kdegrading performance by 15%/
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So far, we have sacrificed either

performance or efficiency for reliability
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Executor: 1447540585201_1396_6.txt

o Tungsten’s custom serialization
o reduces memory footprint

i while also reducing processing time
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Objectives
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ML
[ Streaming }
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Memory management options
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Yarn-level Memory Management




Yarn-level Memory Management

Node memory

Container

OS overhead Executor memory

« Executor memory

« OS memory overhead per executor
« Cores per executor

 Number of executors




Impact of Changing Executor Memory

€ 16k204ckES

= 50
7] @a.Iang.OutOfMemoryError: Java heap space\
..% 40 4 at java.util.Arrays.copyOf(Arrays.java:2271)
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- 30 i) utputStream.java:118)
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Spark-level Memory Management




Spark-level Memory Management

Node memory

Container
OS overhead Executor memory

spark.executor.memory spark.executor.memory

Unified pool
spark.memory.fraction

spark.memory. Storage | Execution
storageFraction

Storage Execution

spark.storage.memoryFraction spark.shuffle.memoryFraction

spark.shuffle.safetyFraction
Gl

paseuewun
padeuewun

[Legacy] [ Unified }
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« Legacy or unified?

— If legacy, what is size of storage pool Vs. execution pool?
« Caching

— On heap or off-heap (e.g., Tachyon)?

— Data format (deserialized or serialized)

— Provision for data unrolling
« Execution data

— Java-managed or Tungsten-managed
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‘ SortByKey J

Increasing storage pool size,
Decreasmg executlon pool S|ze

K Means Unified

@ Spark Storage @ Spark Execution = Used Heap —— Max Heap

Spt:\‘l:Z

summrt




Unified does as Expected, But...

50 "0 =0.2=0.4 =0.6 =0.8,=unified Executors fail due to OOM errors
» Y while receiving shuffle blocks
9 40 legacy
)
(= =
€ 30 _—
- ﬁ/a.Iang.OutOfMemoryError: Java heap space\
()} 20 A at java.util.Arrays.copyOf(Arrays.java:2271)
at
'_g, X java.io.ByteArrayOutputStream.grow(ByteArrayO
c 10 ~E utputStream java:118)
é ™
at
0 org.apache.spark.storage.BlockManager.dataSeri
SortByKey K-means alize(BlockManager.scala:1202)
at

org.apache.spark.network.netty.NettyBlockRpcSe
Vool rver.receive(NettyBlockRpcServer.scala:58)
Spof
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/Unified Memory Manager is:
* A step in the right direction

N Not unified enough




« Legacy or unified?

— If legacy, what is size of storage pool Vs. execution pool?
« Caching

— On heap or off-heap (e.g., Tachyon)?

— Data format (deserialized or serialized)

— Provision for data unrolling
« Execution data

— Java-managed or Tungsten-managed
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Deserialized Vs. Serialized cache

50 I\O m0.2=04=0.6 50.9 = unified
Q 40 legacy Memory footprint of data in
E - I ® cache goes down by ~20%
3 30 - % making more partitions fit in the
céJ 20 = 4 /@torage pool )
é 10 B
0

K-means K-means SER
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Another Application, Another Story!

20 CO m0.2504=0.6 DO./8 = ynified

Executors fail due to OOM
errors while serializing data
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* Legacy or unified?

— If legacy, what is size of storage pool Vs. execution pool?
« Caching

— On heap or off-heap (e.g., Tachyon)?

— Data format (deserialized or serialized)

— Provision for data unrolling
« Execution data

— Java-managed or Tungsten-managed
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We have seen that Tungsten-managed heap improves the
performance significantly. (Fix #5)
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JVM-level Memory Management




JVM-level Memory Management

Node memory

* Which GC algorithm? (Parallel GC, G1 GC, ...)
* Size cap for a GC pool
* Frequency of collections

 Number of parallel GC threads




Keep JVM OIldGen size at least as big as

RDD cache

I 100 =0.82 =1.10 =1.23 . :
@ Keeping Spark storage pool size
5 ©0 I constant, the size of OldGen pool
g 60 i is increased from left to right
GE) 40 - K-means executors display more
:
§ 20 skew in data compared to
Y - y PageRank

0

K-means PageRank
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Objiitives ° AUtOmatIC rOOt-Cause
analysis of memory-
related issues

e o Auto-tuning algorithms
for memory allocation in
multi-tenant clusters
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