Yggdrasil: Faster Decision Trees Using Column Partitioning in Spark

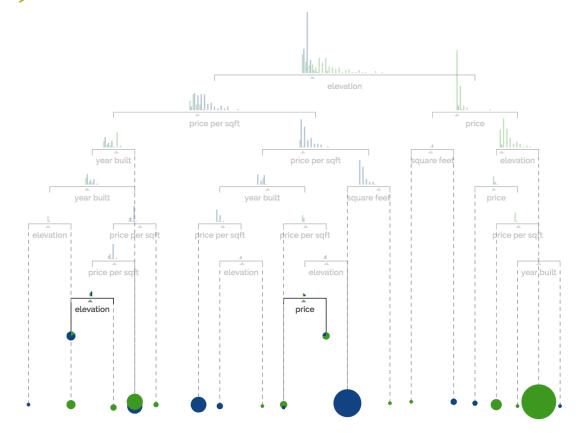
Firas Abuzaid, Joseph Bradley, Feynman Liang, Andrew Feng, Lee Yang, Matei Zaharia, Ameet Talwalkar

MIT, UCLA, Databricks, Yahoo!

A (Brief) Decision Tree Tutorial

Suppose you're trying to predict whether a house is located in *San Francisco* or *New York* based on the following features:

- price
- sq ft
- price per sq ft
- year built
- elevation
- # bathrooms
- # bedrooms



Why Use Decision Trees?

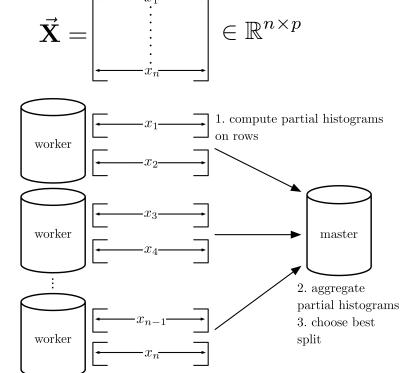
- Arbitrarily expressive, but easy to interpret
- Simple to tune
- Natural support for different feature types
- Can easily extend to ensembles and boosting techniques

Why Use <u>Deep</u> Decision Trees?

- Today's datasets are growing both in size *and* dimension
 - More rows and more columns
- To model high-dimensional data, we need to consider more splits
 - More splits \Rightarrow deeper trees

Decision Trees in Spark

- Partition training set <u>by row</u>
- Histograms used to compute splits
- Workers compute partial histograms on subsets of rows
- Master aggregates partial histograms, picks best feature to split on



What's wrong with row-partitioning?

- 1. High communication costs, esp. for deep trees & many features
 - Exponential in the depth of the tree, linear in the number of features
- 2. To reduce communication, small number of thresholds are considered
 - Approximate split-finding using histograms
 - User specifies # thresholds
 - NB: Optimal split may not always be found

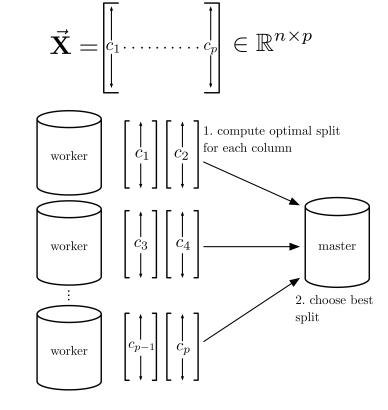
PROBLEM: PARTITIONING BY ROW ⇒ INEFFICIENT FOR DEEP TREES AND MANY FEATURES

PROBLEM: PARTITIONING BY ROW ⇒ TRADEOFF BETWEEN ACCURACY AND EFFICIENCY

SOLUTION: PARTITION BY <u>COLUMN</u>

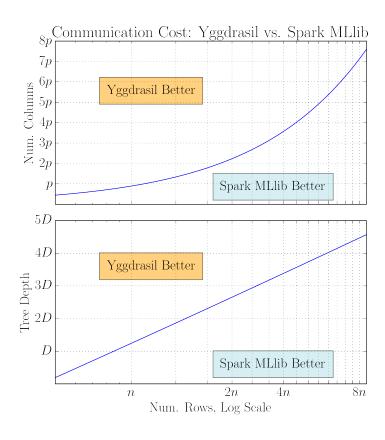
Yggdrasil: The New Approach

- Workers compute sufficient stats on *entire columns*
- Master has one job: pick best global split
- No approximation; all thresholds considered



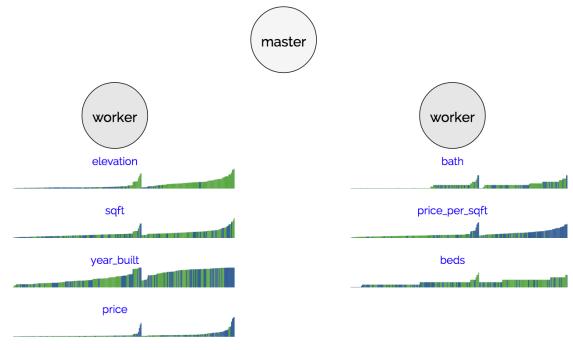
Yggdrasil: The New Approach

Communication cost much lower for deep trees & many features



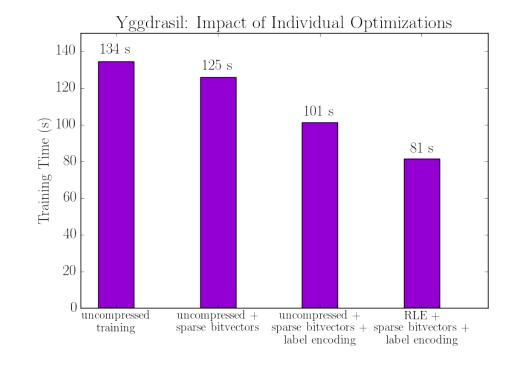
Yggdrasil in Action

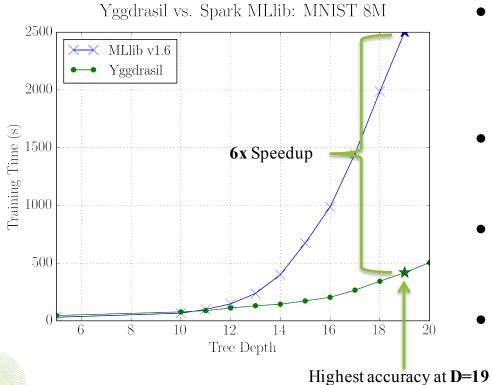
- Partition features across workers
- 2. Workers sort each feature by value
- 3. Compute best split for each feature
- 4. Pick best split for each worker & send to master
- Master selects best global split among the candidates, requests bit vector from worker
- 6. Master broadcasts bit vector for best global split to all workers
- Workers re-partition their features into sorted sub-arrays



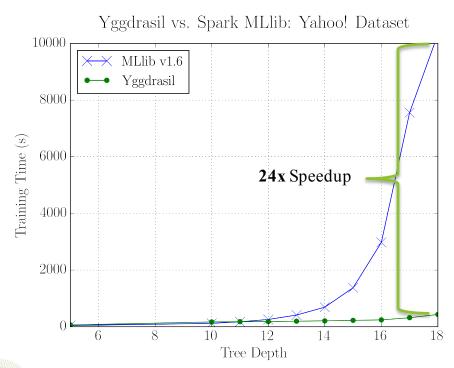
Optimizations in Yggdrasil

- Columnar compression using RLE
 - Train directly on columns without decompressing
- Label encoding for fewer cache misses
- Sparse bit vectors to reduce communication overheads

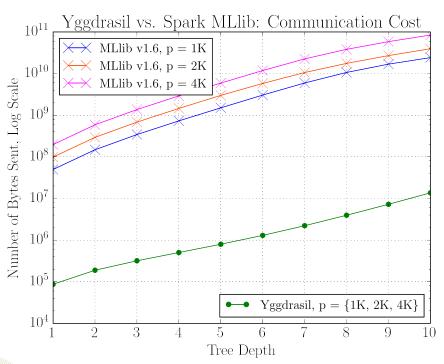




- Classifying handwritten digits
- 8.1 million rows
- 784 columns
- 18.2 GB (< 1% non-zeros)

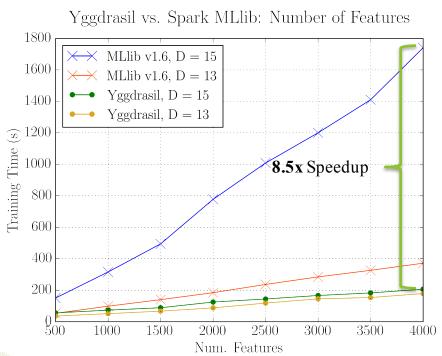


- Regression task
- 2 million rows
- 3500 columns
- 52.2 GB (< 1% zeros)



• 2 million rows

 For Yggdrasil, communication cost is independent of the number of features



• 2 million rows

 Yggdrasil empirically outperforms Spark MLlib for deep trees and many features

Using Yggdrasil

- Available as a Spark package <u>download here</u>
- Direct integration with Spark ML Pipeline API
- Support for various inputs: DataFrame, RDD[Labeled Point], or Parquet files

Using Yggdrasil

Before:

```
val dt = new DecisionTreeClassifier()
    .setFeaturesCol("indexedFeatures")
    .setLabelCol(labelColName)
    .setMaxDepth(params.maxDepth)
    .setMaxBins(params.maxBins)
    .setMinInstancesPerNode(params.minInstancesPerNode)
    .setMinInfoGain(params.minInfoGain)
    .setCacheNodeIds(params.cacheNodeIds)
    .setCheckpointInterval(params.checkpointInterval)
```

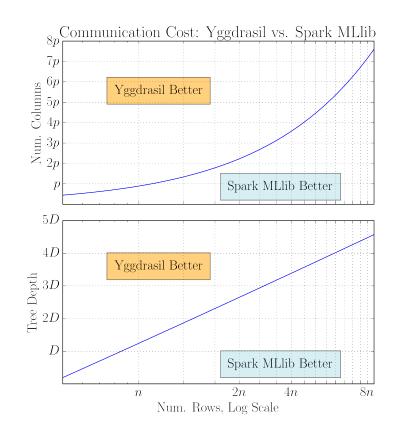

Using Yggdrasil

After:

```
val dt = new YggdrasilClassifier()
    .setFeaturesCol("indexedFeatures")
    .setLabelCol(labelColName)
    .setMaxDepth(params.maxDepth)
    .setMaxBins(params.maxBins)
    .setMinInstancesPerNode(params.minInstancesPerNode)
    .setMinInfoGain(params.minInfoGain)
    .setCacheNodeIds(params.cacheNodeIds)
    .setCheckpointInterval(params.checkpointInterval)
```


Why should I have to choose?

- If Spark MLlib is better for shallow trees and few features...
- And Yggdrasil is better for deeper trees and many features...
- Why can't I have both?



Future Work

- You should be able to have both!
- Next steps:
 - Merge Yggdrasil into Spark MLlib v2.x
 - Add decision rule that automatically chooses the best partitioning strategy for you:
 - by row (MLlib v1.6); or
 - by column (Yggdrasil)

THANKS!

Email: fabuzaid@csail.mit.edu

GitHub: https://github.com/fabuzaid21/

Twitter: <u>@FirasTheBoss</u>

Website: http://firasabuzaid.com

