
@helenaedelson
Helena Edelson

Delivering Meaning In Near-
Real Time At High Velocity &
Massive Scale

1

Who Is This Person?

• Spark Cassandra Connector committer

• Akka contributor (Akka Cluster)

• Scala & Big Data conference speaker

• Sr Software Engineer, Analytics @ DataStax

• Sr Cloud Engineer, VMware,CrowdStrike,SpringSource…

• (Prev) Spring committer - Spring AMQP, Spring Integration

The one thing in your infrastructure

 you can always rely on.

Talk Roadmap
What Delivering Meaning

Why Spark, Kafka, Cassandra & Akka

How Deployment Architecture & Code

App Robust Implementation

No Time For Questions but…

@helenaedelson
github.com/helena
slideshare.net/helenaedelson

• 7

Strategies
• Scalable Infrastructure

• Partition For Scale

• Replicate For Resiliency

• Share Nothing

• Asynchronous Message Passing

• Parallelism

• Isolation

• Location Transparency

Strategy Technologies

Scalable Infrastructure / Elastic
 scale on demand

Spark, Cassandra, Kafka

Partition For Scale, Network Topology Aware Cassandra, Spark, Kafka, Akka Cluster

Replicate For Resiliency
 span racks and datacenters, survive regional outages

Spark,Cassandra, Akka Cluster all hash the node ring

Share Nothing, Masterless
 decentralized cluster membership

Cassandra, Akka Cluster both Dynamo style

Fault Tolerance / No Single Point of Failure Spark, Cassandra, Kafka

Replay From Any Point Of Failure Spark, Cassandra, Kafka, Akka + Akka Persistence

Failure Detection Cassandra, Spark, Akka, Kafka

Consensus Cassandra & Akka Cluster use Paxos Algo
& Gossip throughout the node ring

Parallelism Spark, Cassandra, Kafka, Akka

Asynchronous Message Passing Kafka, Akka, Spark

Fast, Low Latency, Data Locality Cassandra, Spark, Kafka

Location Transparency Akka, Spark, Cassandra, Kafka

Other technologies like Mesos are very helpful too but that’s part of a larger discussion.

Even count() needs to be
distributed

• 7

Ask me to write a word count Map Reduce,
in Java…

I dare you…

I write functional one-liners
with Spark in Scala

Lambda Architecture

A data-processing architecture designed to handle
massive quantities of data by taking advantage of both
batch and stream processing methods.

Spark - one of the few data processing framework that
allows you to seamlessly integrate batch and stream
processing of petabytes of data in the same
application.

I need fast access to historical data on the fly for
predictive modeling

I also need to be able
to replay my data from any point of failure

Your Code

• Massively Scalable
• High Performance
• Always On
• Masterless

• Fault tolerant

• Hierarchical Supervision

• Customizable Failure Strategies & Detection

• Asynchronous Data Passing

• Parallelized

• Adaptive / Predictive

• Load-Balanced

Apache Cassandra
 • Elasticity - scale to as many nodes as you need, when you need

 • Always On - No single point of failure, Continuous availability

 • Masterless peer to peer architecture

 • Replication Across DataCenters

 • Flexible Data Storage

 • Read and write to any node syncs across the cluster

 • Operational simplicity - all nodes in a cluster are the same
• Fast Linear-Scale Performance

• Transaction Support

Always On - No Single Point of Failure

APACHE

CASSANDRA

Sensor Data

Financial Security

Scientific Data

APACHE

CASSANDRA

IoT
Data Storage for Machine Learning

Cassandra
Availability Model

• Amazon Dynamo Paper

• Distributed masterless

Data Model

• Google BigTable

• Column family data model

Cassandra

Europe

US

• Availability Model

• Amazon Dynamo Paper

• Distributed masterless

• Data Model

• Google BigTable

• Column family data model

• Multi data center replication

Network Topology Aware

Spark with Cassandra

Online

Analytics

• Availability Model

• Amazon Dynamo Paper

• Distributed masterless

• Data Model

• Google BigTable

• Column family data model

• Multi data center replication

• Analytics with Apache Spark

Handling Failure

Async Replication

When Nodes Come Back?
• Hinted handoff to the rescue
• Coordinators keep writes for downed nodes for

a configurable amount of time, default 3 hours
• Longer than that run a repair

Did you hear node 1
was down??

Gossip

Consensus?

CREATE TABLE users (
 username varchar,
 firstname varchar,
 lastname varchar,
 email list<varchar>,
 password varchar,
 created_date timestamp,
 PRIMARY KEY (username)
);

INSERT INTO users (username, firstname, lastname,
 email, password, created_date)
VALUES ('hedelson','Helena','Edelson',
[‘helena.edelson@datastax.com'],'ba27e03fd95e507daf2937c937d499ab','2014-11-15 13:50:00’)
IF NOT EXISTS;

CQL - Easy
• Familiar syntax

• Many Tools & Drivers

• Many Languages

• Friendly to programmers

• Paxos for locking

CQL
Powerful & Expressive

CREATE	
 TABLE	
 weather.raw_data	
 ( 
	
 	
 	
 wsid	
 text,	
 year	
 int,	
 month	
 int,	
 day	
 int,	
 hour	
 int,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
  
	
 	
 	
 temperature	
 double,	
 dewpoint	
 double,	
 pressure	
 double,	
 	

	
 	
 	
 wind_direction	
 int,	
 wind_speed	
 double,	
 one_hour_precip	
 	
 	
 	

	
 	
 	
 PRIMARY	
 KEY	
 ((wsid),	
 year,	
 month,	
 day,	
 hour)  
)	
 WITH	
 CLUSTERING	
 ORDER	
 BY	
 (year	
 DESC,	
 month	
 DESC,	
 day	
 DESC,	
 hour	
 DESC);	

C* Clustering Columns Writes by most recent
Reads return most recent first

Spark Cassandra
Integration

32

Spark Cassandra Connector
• Write data from Spark to Cassandra

• Read data from Cassandra to Spark

• Data Locality for Speed

• Easy and often implicit type conversions

• Offers an object mapper

• Server-Side Filtering

• Natural Timeseries Integration

• Implemented in Scala

• Also a Java API

github.com/datastax/spark-cassandra-connector

https://github.com/datastax/spark-cassandra-connector

Co-locate Spark and Cassandra
for Best Performance

C*

C*C*

C*

Spark  
Worker

Spark  
Worker

Spark
Master

Spark
WorkerRunning Spark Workers on

the same nodes as your C*
Cluster saves network hops

Spark Cassandra Connector

C*

C*

C*C*

Spark Executor

C* Driver

Spark-Cassandra Connector

User Application

Cassandra

Data Locality-Aware

Writing and Reading

SparkContext
import com.datastax.spark.connector._

StreamingContext
import com.datastax.spark.connector.streaming._

sparkConf.set("spark.cassandra.connection.host", "10.20.3.45")  

sc.parallelize(collection).saveToCassandra("keyspace",	
 "raw_data")

SparkContext Keyspace Table

Spark RDD JOIN with NOSQL!

predictionsRdd.join(music).saveToCassandra("music",	
 "predictions")

Write From Spark to Cassandra

Spark SQL with Cassandra
import org.apache.spark.sql.cassandra.CassandraSQLContext

val cc = new CassandraSQLContext(sparkContext)
cc.setKeyspace(keyspaceName)
cc.sql("""
 SELECT table1.a, table1.b, table.c, table2.a
 FROM table1 AS table1
 JOIN table2 AS table2 ON table1.a = table2.a
 AND table1.b = table2.b
 AND table1.c = table2.c
 """)
.map(Data(_))
.saveToCassandra(keyspace1, table3)

Spark SQL, Cassandra & JSON
cqlsh>	
 CREATE	
 TABLE	
 github_stats.commits_aggr(user	
 VARCHAR	
 PRIMARY	
 KEY,	
 commits	
 INT…);

val json = Seq( 
 """{"user":"helena","commits":98, "month":3, "year":2015}""",  
 """{"user":"jacek-lewandowski", "commits":72, "month":3, "year":2015}""",  
 """{"user":"pkolaczk", "commits":42, "month":3, "year":2015}""")

 
val sql = new SQLContext(sparkContext)

sql.jsonRDD(json).map(CommitStats(_))
 .flatMap(compute)
 .saveToCassandra("github_stats","monthly_commits")

val rdd = sc.cassandraTable[MonthlyCommits]("github_stats","monthly_commits")

Cassandra, Kafka, Spark Streaming
& JSON

cqlsh>	
 select	
 *	
 from	
 github_stats.commits_aggr;	

 
	
 user | commits | month | year
-------------------+---------+-------+------
 pkolaczk | 42 | 3 | 2015
 jacek-lewandowski | 43 | 3 | 2015
 helena | 98 | 3 | 2015 
(3	
 rows)	

KafkaUtils.createStream[String, String, StringDecoder, StringDecoder]( 
 ssc, kafkaParams, topicMap, StorageLevel.MEMORY_ONLY) 
 .map{ case (_,json) => JsonParser.parse(json).extract[MonthlyCommits]} 
 .saveToCassandra("github_stats","commits_aggr")

Cassandra, Spark Streaming, Kafka

val streamingContext = new StreamingContext(sparkCtx, Seconds(30)) 

KafkaUtils.createStream[String, String, StringDecoder, StringDecoder]
(streamingContext, kafkaParams, topicMap, StorageLevel.MEMORY_ONLY)
.map(_._2)
.countByValue()
.saveToCassandra("my_keyspace","wordcount")

Cassandra, Spark Streaming, Twitter

/** Cassandra is doing the sorting for you here. */ 
TwitterUtils.createStream(
 ssc, auth, tags, StorageLevel.MEMORY_ONLY_SER_2)  
 .flatMap(_.getText.toLowerCase.split("""\s+"""))  
 .filter(tags.contains(_)) 
 .countByValueAndWindow(Seconds(5), Seconds(5))  
 .transform((rdd, time) =>
 rdd.map { case (term, count) => (term, count, now(time))}) 
 .saveToCassandra(keyspace, table)

CREATE TABLE IF NOT EXISTS keyspace.table ( 
 topic text, interval text, mentions counter, 
 PRIMARY KEY(topic, interval) 
) WITH CLUSTERING ORDER BY (interval DESC)

Reading: From C* to Spark

val	
 rdd	
 =	
 sc.cassandraTable("github",	
 "commits")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .select("user","count","year","month")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .where("commits	
 >=	
 ?	
 and	
 year	
 =	
 ?",	
 1000,	
 2015)

CassandraRDD[CassandraRow]

Keyspace Table

Server-Side Column
and Row Filtering

SparkContext

val	
 rdd	
 =	
 ssc.cassandraTable[MonthlyCommits]("github",	
 "commits_aggregate")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .where("user	
 =	
 ?	
 and	
 project_name	
 =	
 ?	
 and	
 year	
 =	
 ?",	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "helena",	
 "spark-­‐cassandra-­‐connector",	
 2015)

CassandraRow Keyspace TableStreamingContext

Rows: Custom Objects

Rows
val	
 tuplesRdd	
 =	
 sc.cassandraTable[(Int,Date,String)](db,	
 tweetsTable)	

	
 .select("cluster_id","time",	
 "cluster_name")	

	
 .where("time	
 >	
 ?	
 and	
 time	
 <	
 ?",	

	
 	
 	
 	
 	
 	
 	
 	
 "2014-­‐07-­‐12	
 20:00:01",	
 "2014-­‐07-­‐12	
 20:00:03”)	

val	
 keyValuesPairsRdd	
 =	
 sc.cassandraTable[(Key,Value)](keyspace,	
 table)	

Columns
val rdd: RDD[Song] = sc.cassandraTable[Song](keyspace, table).collect

val	
 row:	
 CassandraRow[Song]	
 =	
 rdd.first	

val	
 date:	
 org.joda.time.DateTime	
 =	
 row.getDateTime("publication_date")	
 	
 	

val	
 list1	
 =	
 row.get[Set[UUID]]("collection")	

val	
 list2	
 =	
 row.get[List[UUID]]("collection")	

val	
 list3	
 =	
 row.get[Vector[UUID]]("collection")	
 	

val	
 nullable	
 =	
 row.get[Option[String]]("nullable_column")	

 
 
 

Specify Rows
val rdd = ssc.cassandraTable[MyDataType]("stats", "clustering_time")
rdd.where("key = 1").limit(10).collect	

rdd.where("key = 1").take(10).collect

val	
 rdd	
 =	
 ssc.cassandraTable[(Int,DateTime,String)]("stats",	
 "clustering_time")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .where("key	
 =	
 1").withAscOrder.collect	

val	
 rdd	
 =	
 ssc.cassandraTable[(Int,DateTime,String)]("stats",	
 "clustering_time")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .where("key	
 =	
 1").withDescOrder.collect	

Working With Date Types

val	
 rdd	
 =	
 ssc.cassandraTable("github",	
 "c_aggregate")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

rdd.where("time	
 >=	
 ?",	
 "2014-­‐07-­‐12	
 20:00:02")	

	
 	

rdd.where("time	
 >=	
 ?",	
 new	
 org.joda.time.DateTime(2015,2,12,20,0,2)	

rdd.where("time	
 >	
 ?	
 and	
 time	
 <	
 ?",	
 "2014-­‐07-­‐12	
 20:00:01",	
 "2015-­‐03-­‐18	
 20:00:03")

User Defined Types

TypeConverter.registerConverter(new TypeConverter[MyUDT] { 
 def targetTypeTag = typeTag[CustomerId] 
 def convertPF = { case x: String => MyUDT(x) } 
})

val udtRdd: RDD[(UUID, Int, MyUDT)] = sc.cassandraTable(keyspace, table)

CREATE TYPE address (
 street text,
 city text,
 zip_code int,
 country text,
 cross_streets set<text>
);

UDT = Your Field Type In C*

UDT’s With JSON
{
 "productId": 2,
 "name": "Kitchen Table",
 "price": 249.99,
 "description" : "Rectangular table with oak finish",
 "dimensions": {
 "units": "inches",
 "length": 50.0,
 "width": 66.0,
 "height": 32
 },
 "categories": {
 {
 "category" : "Home Furnishings" {
 "catalogPage": 45,
 "url": "/home/furnishings"
 },
 {
 "category" : "Kitchen Furnishings" {
 "catalogPage": 108,
 "url": "/kitchen/furnishings"
 }
 }
}

CREATE TYPE dimensions (
 units text,
 length float,
 width float,
 height float
);

CREATE TYPE category (
 catalogPage int,
 url text
);

CREATE TABLE product (
 productId int,
 name text,
 price float,
 description text,
 dimensions frozen <dimensions>,
 categories map <text, frozen <category>>,
 PRIMARY KEY (productId)
);

CREATE	
 TABLE	
 weather.raw_weather_data	
 ( 
	
 	
 	
 wsid	
 text,	
 year	
 int,	
 month	
 int,	
 day	
 int,	
 hour	
 int,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
  
	
 	
 	
 temperature	
 double,	
 dewpoint	
 double,	
 pressure	
 double,	
 	

	
 	
 	
 wind_direction	
 int,	
 wind_speed	
 double,	
 one_hour_precip	
 	
 	
 	

	
 	
 	
 PRIMARY	
 KEY	
 ((wsid),	
 year,	
 month,	
 day,	
 hour)  
)	
 WITH	
 CLUSTERING	
 ORDER	
 BY	
 (year	
 DESC,	
 month	
 DESC,	
 day	
 DESC,	
 hour	
 DESC);	

Cassandra will automatically sort by most recent for both write and read

Time Series

val multipleStreams = (1 to numDstreams).map { i =>
 streamingContext.receiverStream[HttpRequest](new HttpReceiver(port))
}

streamingContext.union(multipleStreams)
.map { httpRequest => TimelineRequestEvent(httpRequest)}
.saveToCassandra("requests_ks", "timeline")

CREATE TABLE IF NOT EXISTS requests_ks.timeline (
 timesegment bigint, url text, t_uuid timeuuid, method text, headers map <text, text>, body text,
 PRIMARY KEY ((url, timesegment) , t_uuid)
);

A record of every event, in order in which it happened, per URL

Application

53

Robust Application
• Weather station collects data
• Cassandra stores in sequence
• Application reads in sequence

Weather Station Analysis
Windsor

California
July 1, 2014

• Weather station collects data
• Cassandra stores in sequence
• Application reads in sequence
• Spark rolls up data into new
tables of aggregations

Data model should look like
your queries

• Store raw data per weather station

• Store time series in order: most recent to oldest

• Compute and store aggregate data in the stream

• Set TTLs on historic data

• Get data by weather station

• Get data for a single date and time

• Get data for a range of dates and times

• Compute, store and retrieve daily, monthly, annual aggregations

Design Data Model to support queries

Queries I Need

Data Model
CREATE TABLE temperature (
 weather_station text,
 year int,
 month int,
 day int,
 hour int,
 temperature double,
 PRIMARY KEY (weather_station,year,month,day,hour)
);

INSERT INTO temperature(weather_station,year,month,day,hour,temperature)
VALUES (‘10010:99999’,2005,12,1,7,-5.6);

INSERT INTO temperature(weather_station,year,month,day,hour,temperature)
VALUES (‘10010:99999’,2005,12,1,8,-5.1);

INSERT INTO temperature(weather_station,year,month,day,hour,temperature)
VALUES (‘10010:99999’,2005,12,1,9,-4.9);

INSERT INTO temperature(weather_station,year,month,day,hour,temperature)
VALUES (‘10010:99999’,2005,12,1,10,-5.3);

• Weather Station Id and Time are unique
• Store as many as needed

Kafka Producer as Akka Actor
class KafkaProducerActor[K, V](config: ProducerConfig) extends Actor { 
  
 override val supervisorStrategy =  
 OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1.minute) { 
 case _: ActorInitializationException => Stop 
 case _: FailedToSendMessageException => Restart
 case _: ProducerClosedException => Restart
 case _: NoBrokersForPartitionException => Escalate
 case _: KafkaException => Escalate 
 case _: Exception => Escalate 
 }
 

 private val producer = new KafkaProducer[K, V](producerConfig) 
 
 override def postStop(): Unit = producer.close()

 
 def receive = { 
 case e: KafkaMessageEnvelope[K,V] => producer.send(e) 
 } 
}

HTTP Receiver as Akka Actor
class HttpDataFeedActor(kafka: ActorRef) extends Actor with ActorLogging {
 implicit val materializer = FlowMaterializer()

 IO(Http) ! Http.Bind(HttpHost, HttpPort)  
 
 val requestHandler: HttpRequest => HttpResponse = { 
 case HttpRequest(POST, Uri.Path("/weather/data"), headers, entity, _) => 
 HttpSource.unapply(headers,entity).collect { case s: HeaderSource =>
 source.extract.foreach({ fs: FileSource => 
 kafka ! KafkaMessageEnvelope[String, String](topic, key, fs.data:_*) 
 })
 HttpResponse(200, entity = HttpEntity(MediaTypes.`text/html`, s"POST successful.")) 
 }.getOrElse(HttpResponse(404, entity = s"Unsupported request"))
 }
 
 def receive : Actor.Receive = { 
 case Http.ServerBinding(localAddress, stream) =>
 Source(stream).foreach({ 
 case Http.IncomingConnection(remoteAddress, requestProducer, responseConsumer) => 
 log.info("Accepted new connection from {}.", remoteAddress) 
 Source(requestProducer).map(requestHandler).to(Sink(responseConsumer)).run() 
 })
 }}

Akka: Load-Balanced Kafka Work
final class HttpNodeGuardian extends ClusterAwareNodeGuardianActor { 
 
 val router = context.actorOf(
 BalancingPool(10).props(Props(
 new KafkaPublisherActor(KafkaHosts, KafkaBatchSendSize)))) 
  
 cluster registerOnMemberUp { 

 val router = context.actorOf(BalancingPool(10).props( 
 Props(new HttpDataFeedActor(router))), "dynamic-data-feed")

 }

 def initialized: Actor.Receive = { … } 
}

val kafkaStream = KafkaUtils.createStream[String, String, StringDecoder,StringDecoder]
 (ssc, kafkaParams, topicMap, StorageLevel.DISK_ONLY_2)  
 .map(_._2.split(","))  
 .map(RawWeatherData(_)) 
 
kafkaStream.saveToCassandra(keyspace, raw_ws_data)

Store Raw Data In The Stream First

Gets the partition key: Data Locality
Spark C* Connector feeds this to Spark

Cassandra Counter column in our schema,
no expensive `reduceByKey` needed. Simply
let C* do it: not expensive and fast.

/** Per `wsid` and timestamp, aggregates hourly precipitation by day in the stream. */ 
kafkaStream.map { weather => 
 (weather.wsid, weather.year, weather.month, weather.day, weather.oneHourPrecip) 
}.saveToCassandra(keyspace, daily_precipitation_aggregations)  

First Level of Aggregation

class TemperatureActor(sc: SparkContext, settings: WeatherSettings)
 extends AggregationActor {
 import akka.pattern.pipe
 
 def receive: Actor.Receive = { 
 case e: GetMonthlyHiLowTemperature => highLow(e, sender) 
 } 
  
 def highLow(e: GetMonthlyHiLowTemperature, requester: ActorRef): Unit = 
 sc.cassandraTable[DailyTemperature](keyspace, daily_temperature_aggr)  
 .where("wsid = ? AND year = ? AND month = ?", e.wsid, e.year, e.month) 
 .collectAsync() 
 .map(MonthlyTemperature(_, e.wsid, e.year, e.month)) pipeTo requester

}

• C* data is automatically sorted by most recent - due to our data model
• Additional Spark or collection sort not needed
• Batch and streaming in the same app

Second Level of Aggregation

abstract class ClusterAware extends Actor with ActorLogging { 
 
 val cluster = Cluster(context.system) 
 
 override def preStart(): Unit = cluster.subscribe(self, classOf[ClusterDomainEvent]) 
 
 override def postStop(): Unit = cluster.unsubscribe(self)  
 
 def receive : Actor.Receive = { 
 case MemberUp(member) => 
 log.info("Member {} joined cluster.", member.address) 
 case UnreachableMember(member) => 
 log.info("Member detected as unreachable: {}", member) 
 case MemberRemoved(member, previousStatus) => 
 log.info("Member is Removed: {} after {}", member.address, previousStatus) 
 case ClusterMetricsChanged(forNode) => 
 forNode collectFirst { case m if m.address == cluster.selfAddress => 
 log.debug("{}", filter(m.metrics)) 
 } 
 case _: MemberEvent => 
 } 
}

abstract class ClusterAwareNodeGuardian extends ClusterAware { 
 import akka.actor.SupervisorStrategy._ 
 
 override val supervisorStrategy = // customize 
 OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1.minute) { 
 case _: ActorInitializationException => Stop 
 case _: IllegalArgumentException => Stop 
 case _: IllegalStateException => Restart 
 case _: TimeoutException => Escalate 
 case _: Exception => Escalate 
 } 
 
 override def preStart(): Unit = { 
 super.preStart() 
 log.info("Starting at {}", cluster.selfAddress) 
 } 
 
 override def postStop(): Unit = { 
 super.postStop() 
 cluster.leave(self.path.address) 
 gracefulShutdown() 
 } 
 
 override def receive = uninitialized orElse initialized orElse super.receive 
 
 def uninitialized: Actor.Receive = { 
 case OutputStreamInitialized => initialize() 
 } 
 
 def gracefulShutdown(): Unit = { 
 val timeout = Timeout(5.seconds) 
 context.children foreach (gracefulStop(_, timeout.duration))
 }  
}

class NodeGuardian(ssc: StreamingContext, kafka: EmbeddedKafka, settings: Settings) 
 extends ClusterAwareNodeGuardian with AggregationActor with Assertions { 
 import WeatherEvent._ 
 import settings._ 
 
 context.actorOf(Props(new KafkaStreamingActor(kafka.kafkaParams, ssc, settings, self))) 
 
 val temperature = context.actorOf(Props(new TemperatureActor(ssc.sparkContext, settings))) 
 val precipitation = context.actorOf(Props(new PrecipitationActor(ssc, settings))) 
 val station = context.actorOf(Props(new WeatherStationActor(ssc.sparkContext, settings))) 
 
 override def preStart(): Unit = { 
 super.preStart() 
 cluster.joinSeedNodes(Vector(cluster.selfAddress)) 
 } 
 
 override def initialize(): Unit = { 
 super.initialize() 
 ssc.checkpoint(SparkCheckpointDir)  
 ssc.start()  
 context become initialized 
 } 
 
 def initialized: Actor.Receive = { 
 case e: TemperatureRequest => temperature forward e 
 case e: PrecipitationRequest => precipitation forward e 
 case e: WeatherStationRequest => station forward e 
 } 
}

Roadmap

69

Recent Additions
Better write performance

• Token-aware writes

• Smarter batching

• Write throttling

Better read performance

• spanBy / spanByKey - timeseries data, better than groupBy

• Pushing down ORDER BY / LIMIT / COUNT to Cassandra

Recent Additions
• Scala 2.11 support and cross build

• Mapping user-defined classes to Cassandra UDTs

• Namespace support for multiple Cassandra clusters

• Transform RDD of PrimaryKeys into a CassandraRDD of another Table

• Spark SQL Integration Improvements

• More predicate pushdowns

• Support for joins across multiple clusters

• Metrics

Support For

• Push-down joins between generic RDD’s and C* Tables

• Partitioning any RDD to the same strategy as a C* Table

• Uses the source RDD's partitioning and placement for data locality

Roadmap
• CassandraInputDStream - stream from a cassandra table (soon)

• Performance Improvements

• Token-aware data repartitioning

• Token-aware saving

• Wide-row support - no costly groupBy call

• Python API support

• Official Scala Driver for Cassandra

• Java 8 API

twitter.com/helenaedelson

github.com/helena

slideshare.net/helenaedelson

https://twitter.com/helenaedelson
http://github.com/helena
http://slideshare.net/helenaedelson

Resources
Spark Cassandra Connector

github.com/datastax/spark-cassandra-connector

github.com/killrweather/killrweather

groups.google.com/a/lists.datastax.com/forum/#!forum/spark-connector-user

Apache Spark spark.apache.org

Apache Cassandra cassandra.apache.org

Apache Kafka kafka.apache.org

Akka akka.io

https://github.com/datastax/spark-cassandra-connector
https://github.com/killrweather/killrweather
https://groups.google.com/a/lists.datastax.com/forum/#!forum/spark-connector-user
http://spark.apache.org
http://cassandra.apache.org
http://kafka.apache.org
http://akka.io

Thanks	
 for	
 listening!	

Cassandra	
 Summit

SEPTEMBER	
 22	
 -­‐	
 24,	
 2015	
 	
 |	
 	
 Santa	
 Clara	
 Convention	
 Center,	
 Santa	
 Clara,	
 CA

3,000 attendees in 2014

http://www.cvent.com/d/w4qp2t?RefID=stephaniehuynh

