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Who Is This Person?

e Spark Cassandra Connector committer

e Akka contributor (Akka Cluster)

e Scala & Big Data conference speaker

e Sr Software Engineer, Analytics @ DataStax

e Sr Cloud Engineer, VMware,CrowdStrike,SpringSource...

e (Prev) Spring committer - Spring AMQP, Spring Integration
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The one thing in your infrastructure

you can always rely on.
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Talk Roadmap

What
Why  Spark, Kafka, Cassandra & Akka

Delivering Meaning

How Deployment Architecture & Code

App Robust Implementation

No Time For Questions but...

Spark




¥ @helenaedelson
github.com/helena
slideshare.net/helenaedelson
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S0, how do | query the
database?

N
/

\

t's not a database. It's
key-value store!

Fault-tolerance

e

by @jrecursive

You write a distributed

map reduce function in
Erlang!

Did you just tell me to go

w
—
| believe | did, Bob.

Ok, it's not a database.
How do | query it?

N
/

\
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Strategies

Scalable Infrastructure
Partition For Scale

Replicate For Resiliency

Share Nothing

Asynchronous Message Passing
Parallelism

Isolation

Location Transparency
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Strategy

Technologies

Scalable Infrastructure / Elastic
scale on demand

Partition For Scale, Network Topology Aware

Replicate For Resiliency

span racks and datacenters, survive reaional outages
Share Nothing, Masterless

decentralized cluster membership
Fault Tolerance / No Single Point of Failure

Replay From Any Point Of Failure
Failure Detection

Consensus

Parallelism

Asynchronous Message Passing
Fast, Low Latency, Data Locality

Location Transparency

Spark, Cassandra, Kafka

Cassandra, Spark, Kafka, Akka Cluster
Spark,Cassandra, Akka Cluster all hash the node ring
Cassandra, Akka Cluster both Dynamo style

Spark, Cassandra, Kafka

Spark, Cassandra, Kafka, Akka + Akka Persistence

Cassandra, Spark, Akka, Kafka

Cassandra & Akka Cluster use Paxos Algo
& Gossip throuahout the node ring

Spark, Cassandra, Kafka, Akka
Kafka, Akka, Spark

Cassandra, Spark, Kafka

Akka, Spark, Cassandra, Kafka

Other technologies like Mesos are very helpful too but that’s part of a larger discussion.
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Ask me to write a word count Map Reduce,
In Java...
| dare you...

| write functional one-liners
with Spark in Scala




| ambda Architecture

A data-processing architecture designed to handle
massive quantities of data by taking advantage of both
batch and stream processing methods.

Spark - one of the few data processing framework that
allows you to seamlessly integrate batch and stream
processing of petabytes of data in the same
application.
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I need fast access to historical data on the fly for
predictive modeling

I also need to be able s
to replay my data from any point of failure




Spark Spark Spark _
Streaming Jj Streaming g Cassandra e Ilelgning
real-time Kafka Connector

Spark Core
Akka Cluster
Apache Kafka Cluster

Apache Cassandra Cluster
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* Massively Scalable
* High Performance
* Always On
* Masterless
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% kafkao

Kafka decouples data-pipelines

Producers | Front End |

Brokers

HadooD Security Real-time oofw)::'nor
Con sumers Clusters systerms monftoring sarvioe

Service
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AR akka

e Fault tolerant

e Hierarchical Supervision

e Customizable Failure Strategies & Detection
e Asynchronous Data Passing

e Parallelized

o Adaptive / Predictive

e Load-Balanced Spqﬁ‘(‘z
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Public Cassandra Users
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Apache Cassandra

e Elasticity - scale to as many nodes as you need, when you need
e Always On - No single point of failure, Continuous availability

e Masterless peer to peer architecture
e Replication Across DataCenters

e Flexible Data Storage

e Read and write to any node syncs across the cluster

e (Operational simplicity - all nodes in a cluster are the same
e Fast Linear-Scale Performance

e Transaction Support
Spcwr‘lgZ
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Always On - No Single Point of Failure

Big Data
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Financial Security

%f“ll‘w ®p| [ [K '}_J_JLJl_J o [ A

Fri Aug 3 12 pm 2 pm Mon Aug 6 12 Tue Aug 7 12 pm 2 pm

Scientific Data

1 think Tm addicted o replim

Probably because of my relationship
Nith my parent Shvmd “sigh” }

abom#e o W(JD

APACHE
CASSANDRA

Gene +herO-PY‘ Beatrice +he Biologist
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Data Storage for Machine Learning

| THINK MY NEST SMOKE
ALARM IS GOING OFF.
GOOGLE ADWORDS JUST
PITCHED ME A FIRE
EXTINGUISHER AND AN OFFER
FORTEMPORARY HOUSING.

/é:\\% CARTOONSTOCK
| | .com

Search ID: jcerll 1193

© marketoonist.com

APACHE
CASSANDRA
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Cassandra

Cassandra

Availability Model
 Amazon Dynamo Paper
e Distributed masterless
Data Model

« Google BigTable

« Column family data model
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Network Topology Aware

 Availability Model
« Amazon Dynamo Paper
 Distributed masterless
 Data Model
« Google BigTable
e Column family data model

« Multi data center replication

Sp qu
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Spark with Cassandra

* Availability Model

« Amazon Dynamo Paper

 Distributed masterless
 Data Model

» Google BigTable

e Column family data model
« Multi data center replication

 Analytics with Apache Spark

Spcrr‘llg

SUMMIT EAST




Handling Failure




When Nodes Come Back?

e Hinted handoff to the rescue

» Coordinators keep writes for downed nodes for
a configurable amount of time, default 3 hours

 Longer than that run a repair

(DID YOU MISS ME?)

Spqr‘lzz
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Did you hear node 1
was down??
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CQL - Easy

CREATE TABLE users (
username varchar,
firstname varchar,
lasthname varchar,
emaill listcvarchar>,
password varchar,

created_date timestamp,
PRIMARY KEY (username)

);

INSERT INTO users (username, firsthame, lastname,
email, password, created_date)
VALUES ('hedelson’,'Helena’,'Edelson’,

[‘helena.edelson@datastax.com’],'ba27e03fd95e507daf2937¢c937d499ab’,'”2014-11-15 13:50:00’)

IF NOT EXISTS;

* Familiar syntax

* Many Tools & Drivers

* Many Languages

* Friendly to programmers

* Paxos for locking

Spa

SUMMIT EAST
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CQL
Powerful & Expressive

CREATE TABLE weather.raw _data (
wsid text, year int, month int, day int, hour int,
temperature double, dewpoint double, pressure double,
wind direction int, wind speed double, one hour_precip
PRIMARY KEY ((wsid), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

| |

C* Clustering Columns Writes by most recent
Reads return most recent first

Spar‘lgZ

SUMMIT EAST




Spark Cassandra
Integration
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Spark Cassandra Connector

* Write data from Spark to Cassandra

* Read data from Cassandra to Spark

* Data Locality for Speed

* Easy and often implicit type conversions
* Offers an object mapper

* Server-Side Filtering

* Natural Timeseries Integration

* Implemented in Scala

* Also a Java API

github.com/datastax/spark-cassandra-connector
Spcwr‘lgZ
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https://github.com/datastax/spark-cassandra-connector

Co-locate Spark and Cassandra
for Best Performance

Running Spark Workers on
the same nodes as your C*
Cluster saves network hops

Spark




Spark Cassandra Connector

Data Locality-Aware Soaik’




Writing and Reading

SparkContext
import com.datastax.spark.connector._

StreamingContext
import com.datastax.spark.connector.streaming._

sparkConf.set("spark.cassandra.connection.host", '"10.20.3.45")

Spar‘lgZ
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Write From Spark to Cassandra

SparkContext Keyspace Table

i 1 i

sc.parallelize(collection).saveToCassandra("keyspace", "raw data")

Spark RDD  JOIN with NOSQL!

l l

predictionsRdd.join(music).saveToCassandra("music”, "predictions")

Spcwr‘lgZ
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Spark SQL with Cassandra

import org.apache.spark.sqgl.cassandra.CassandraSQLContext

val cc = new CassandraSQLContext(sparkContext)
cc.setKeyspace(keyspaceName)
cc.sql ("""
SELECT tablel.a, tablel.b, table.c, table2.a
FROM tablel AS tablel
JOIN table2 AS table2 ON tablel.a = tablel2.a
AND tablel.b = table2.b
AND tablel.c table2.c
)
.map(Data(_))

.saveToCassandra(keyspacel, table3)
ySP Spqﬁg
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Spark SQL, Cassandra & JSON

cqlsh> CREATE TABLE github stats.commits aggr(user VARCHAR PRIMARY KEY, commits INT..);

val json = Seq(
nunftuser":"helena", "commits":98, "month":3, "year":2015}""",
nrf'user":"jacek-lewandowski", "commits":72, "month":3, "year":2015}""",
nunfluser":"pkolaczk", "commits":42, "month":3, "year":2015}""")

val sgl = new SQLContext(sparkContext)

sql.jsonRDD(json).map(CommitStats(_))
. flatMap(compute)
.saveToCassandra("github _stats","monthly commits")

val rdd = sc.cassandraTable[MonthlyCommits] ("github stats","monthly commits") ‘QZ
Spark
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Cassandra, Kafka, Spark Streaming
& JSON

KafkaUtils.createStream([String, String, StringDecoder, StringDecoder] (
ssc, kafkaParams, topicMap, StorageLevel.MEMORY_ONLY))
.map{ case (_,json) => JsonParser.parse(json).extract[MonthlyCommits]}
. saveToCassandra("github stats","commits aggr")

cqlsh> select * from github stats.commits aggr;

user | commits | month | year
+ + +
pkolaczk | 42 | 3 | 2015
jacek-lewandowski | 43 | 3 | 2015
helena | 98 | 3 | 2015
(3 rows)

.S‘pcwr‘l?z
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Cassandra, Spark Streaming, Kafka

val streamingContext = new StreamingContext(sparkCtx, Seconds(30))

KafkaUtils.createStream[String, String, StringDecoder, StringDecoder]
(streamingContext, kafkaParams, topicMap, StoragelLevel.MEMORY_ONLY)
.map(_._2)
. countByValue( )
.saveToCassandra("my keyspace","wordcount")

Spar‘lgZ
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Cassandra, Spark Streaming, Twitter

CREATE TABLE IF NOT EXISTS keyspace.table (
topic text, interval text, mentions counter,
PRIMARY KEY(topic, interval)

) WITH CLUSTERING ORDER BY (interval DESC)

/** Cassandra 1s doing the sorting for you here. */
TwitterUtils.createStream(
ssc, auth, tags, StorageLevel.MEMORY ONLY_SER 2)

. flatMap(_.getText.toLowerCase.split("""\s+"""))

. filter(tags.contains(_))

. countByValueAndWindow(Seconds(5), Seconds(5))

.transform((rdd, time) =>

rdd.map { case (term, count) => (term, count, now(time))})

. saveToCassandra(keyspace, table) ¢
Spark
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Reading: From C* to Spark

CassandraRDD[CassandraRow]

SparkContext Keyspace Table

U i |

val rdd = sc.cassandraTable("github", "commits™)

Server-Side Column .select("user”,"count”, "year", "month™)
and Row Filtering { .where("commits >= ? and year = ?", 1000, 2015)

Spcwr‘lgZ
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Rows: Custom Objects

StreamingContext CassandraRow Keyspace Table

i I i I

val rdd = ssc.cassandraTable[MonthlyCommits]("github", "commits aggregate™)
.where("user = ? and project name = ? and year = ?",
"helena", "spark-cassandra-connector", 2015)

Spcwr‘I‘(\Z
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val tuplesRdd = sc.cassandraTable[ (Int,Date,String)](db, tweetsTable)
.select("cluster_id","time", "cluster name")

.where("time > ? and time < ?",

"2014-07-12 20:00:01", "2014-07-12 20:00:03”)

val keyValuesPairsRdd = sc.cassandraTable[ (Key,Value) ](keyspace, table)

ROWS

.S‘pcwr‘lgZ
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val

val
val

val
val
val

val

rdd: RDD[Song]

Columns

= sc.cassandraTable([Song] (keyspace, table).collect

row: CassandraRow[Song] = rdd.first

date: org.joda.time.DateTime = row.getDateTime("publication date™)

listl =
list2 =
list3 =

nullable

row.get
row.get
row.get

= row.get[Option[String]]("nullable column™)

‘Set[UUID]]("collection™)
List[UUID]]("collection™)

‘Vector[UUID]]("collection™)

Spar‘lgZ
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Specify Rows

val rdd = ssc.cassandraTable[MyDataType] ("stats", "clustering time")
rdd.where("key = 1").1lim1it(10).collect
rdd.where("key = 1").take(10).collect

val rdd ssc.cassandraTable[ (Int,DateTime,String)]("stats"”, "clustering time")

.where("key = 1").withAscOrder.collect

val rdd = ssc.cassandraTable[ (Int,DateTime,String)]("stats”, "clustering time")
.where("key = 1").withDescOrder.collect

Spar‘lgZ
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Working With Date Types

val rdd = ssc.cassandraTable("github"”, "c aggregate™)
rdd.where("time >= ?", "2014-07-12 20:00:02")
rdd.where("time >= ?", new org.joda.time.DateTime(2015,2,12,20,0,2)

rdd.where("time > ? and time < ?", "2014-07-12 20:00:01", "2015-03-18 20:00:03")

.Spcwr‘lgZ
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User Defined Types

CREATE TYPE address ( - UDT = Your Field Type In C*
street text,
city text,
Z1p_code 1nt,
country text,
cross_streets set<text>

) ;

TypeConverter.registerConverter(new TypeConverter [MyUDT] {
def targetTypeTag = typeTag[CustomerId]
def convertPF = { case x: String => MyUDT(x) }

})

val udtRdd: RDD[(UUID, Int, MyUDT)] = sc.cassandraTable(keyspace, table) 27
Spark
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UDT's With JSON

"productId": 2,
"name'": "Kitchen Table",
"price': 249.99,

"description”™ : "Rectangular table with oak finish",

"dimensions': {
"units": "inches",
"length": 50.0,
"width": 66.0,

"height": 32
}
"categories": {
{
"category" : "Home Furnishings" A
"catalogPage": 45,
"url": "/home/furnishings"”
¥
{
"category" : "Kitchen Furnishings" {
"catalogPage': 108,
"url": "/kitchen/furnishings™
}
}

CREATE TYPE dimensions (
units text,
length float,
width float,
height float

) ;

CREATE TYPE category (
catalogPage int,
url text

) ;

CREATE TABLE product (
productId int,
name text,
price float,
description text,
dimensions frozen <dimensions>,
categories map <text, frozen <category>>,
PRIMARY KEY (productld)

);
Spcwr‘lgZ
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Time Series

CREATE TABLE weather.raw weather data (
wsid text, year int, month int, day int, hour int,
temperature double, dewpoint double, pressure double,
wind direction int, wind speed double, one hour precip
PRIMARY KEY ((wsid), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

|

Cassandra will automatically sort by most recent for both write and read

Spqr‘llg
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A record of every event, in order in which it happened, per URL

CREATE TABLE IF NOT EXISTS requests_ks.timeline (
timesegment bigint, url text, t uuid timeuuid, method text, headers map <text, text>, body text,
PRIMARY KEY ((url, timesegment) , t uuid)

) ;

val multipleStreams = (1 to numDstreams).map { i =>
streamingContext.receiverStream[HttpRequest] (new HttpReceiver(port))
I3

streamingContext.union(multipleStreams)
.map { httpRequest => TimelineRequestEvent(httpRequest)}
.saveToCassandra("requests_ks", "timeline")

.Spcwr‘lgZ
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Application
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Robust Application

e Weather station collects data

OO NhO =

8&0\0\ L e

» Cassandra stores in sequence T B e e e

in Hy

* Application reads In sequence

e~ 300 |

29.9

MR g Speed Mind Gust

Temperature  Dew Point - Normal Highs/Low o
- 21
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7
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2
g 9 1M M
Barometric Pressure hPa
1016
midnigt1 2 3 4 5 6 7 & 9 10 Mnoon 1 2 3 4 5 9 10 1M1
ki

25.0
20.0
15.0
10.0

5.0

0.0
midnigt1 2 3 4 5 6 7 & 9 10 Mmnoon 1 2 3 4 35

360.0 —M Wind Dir (deq)

9 10 N

2700 U
180.0
90.0

0.0 ==
midhigt1 2 3 4 5 6 ¢ & 9 10 Mnoon 1 2 3 4 5

9 10 Wgmens

\
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Weather Station Analysis

* Weather station collects data Windsor
California

* Cassandra stores in sequence
* Application reads in seguence

* Spark rolls up data into new
tables of aggregations

July 1, 2014

Spor‘l‘g
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Data model should look like
your queries

SpariZ
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Queries | Need

» Get data by weather station

» Get data for a single date and time

» Get data for a range of dates and times

» Compute, store and retrieve daily, monthly, annual aggregations
Design Data Model to support queries
e Store raw data per weather station
e Store time series in order: most recent to oldest

e Compute and store aggregate data in the stream

e Set TTLs on historic data Spme,’(‘z
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Data Model

CREATE TABLE temperature (

quggﬁhmstamn text, * Weather Station Id and Time are unique
il * Store as many as needed

ay 1nt,

hour 1nt,

temperature double,
PRIMARY KEY (weather station,year,month,day,hour)

)

INSERT INTO temperature(weather station,year,month,day,hour,temperature)
VALUES (°10010:99999°,2005,12,1,7,-5.6);

INSERT INTO temperature(weather station,year,month,day,hour,temperature)
VALUES (°10010:99999°,2005,12,1,8,-5.1);

INSERT INTO temperature(weather station,year,month,day,hour,temperature)
VALUES (°10010:99999°,2005,12,1,9,-4.9);

INSERT INTO temperature(weather station,year,month,day,hour,temperature) ‘QZ
VALUES (°10010:99999°,2005,12,1,10,-5.3); SPQI'K
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Spark Computation & Aggregation

Akka Actors

Raw Data
Feeds

Spark Streaming ng\snm;: Apache Cassandra

Cluster

Event-Driven
Data
Sources

Receive Akka Event-Driven Requests ‘-‘ '._.

h Spark Computation
Pipes Future Responses

Event-Driven
Data
Sources

| Spori?z
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Kafka Producer as Akka Actor

class KafkaProducerActor[K, V](config: ProducerConfig) extends Actor {

}

override val supervisorStrategy =
OneForOneStrategy (maxNrOfRetries = 10, withinTimeRange = 1l.minute) {

}

case _: ActorInitializationException => Stop
case _: FailledloSendMessageException  => Restart
case _: ProducerClosedException => Restart
case _: NoBrokersForPartitionException => Escalate
case : KafkaException => Escalate
case _: Exception => Escalate

private val producer = new KafkaProducer[K, VI (producerConfig)

override def postStop(): Unit = producer.close()

def
C
+

receive = A
ase e: KafkaMessageEnvelopelK,V] => producer.send(e)

.Spcwr‘l?Z
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HTTP Receiver as Akka Actor

class HttpDataFeedActor(kafka: ActorRef) extends Actor with ActorLogging A
implicit val materializer = FlowMaterializer()

I0O(Http) ! Http.Bind(HttpHost, HttpPort)

val requestHandler: HttpRequest => HttpResponse = {
case HttpRequest(POST, Uri.Path("/weather/data"), headers, entity, ) =>
HttpSource.unapply(headers,entity).collect { case s: HeaderSource =>
source.extract.foreach({ fs: FileSource =>
kafka ! KafkaMessageEnvelopel[String, Stringl(topic, key, fs.data:_ x)

)
HttpResponse(200, entity = HttpEntity(MediaTypes. text/html , s"POST successful."))

}.getOrElse(HttpResponse (404, entity = s"Unsupported request"))
s

def receive ! Actor.Receive = {
case Http.ServerBinding(localAddress, stream) =>
Source(stream).foreach({
case Http.IncomingConnection(remoteAddress, requestProducer, responseConsumer) =>
log.info("Accepted new connection from {}.", remoteAddress)
Source(requestProducer).map(requestHandler).to(Sink(responseConsumer)).run()

}}}) Spar‘lgZ
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Akka: Load-Balanced Kafka Work

final class HttpNodeGuardian extends ClusterAwareNodeGuardianActor A
val router = context.actorOf(

BalancingPool(10).props(Props(
new KafkaPublisherActor(KafkaHosts, KafkaBatchSendSize))))

cluster registerOnMemberUp {

val router = context.actorOf(BalancingPool(10).props/
Props(new HttpDataFeedActor(router))), "dynamic-data-feed")

}

def initialized: Actor.Receive = { .. }

}

.Spcwr‘lgZ
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Store Raw Data In The Stream First

val kafkaStream = KafkaUtils.createStream|[String, String, StringDecoder,StringDecoder]
(ssc, kafkaParams, topicMap, StorageLevel.DISK ONLY 2)
.map(_. 2.split(","))

.map (RawWeatherData(_)) /_EJETRLL THE
0 0 C
kafkaStream.saveToCassandra(keyspace, raw_ws_data) :vNeF'f.fmr?{wa? ZﬁUAAN:

USE FOR (T LATER.

Spqr‘lzz

SUMMIT EAST




First Level of Aggregation

/**% Per "wsid and timestamp, aggregates hourly precipitation by day in the stream. x/
kafkaStream.map { weather =>

(weather.wsid, weather.year, weather.month, weather.day, weather.oneHourPrecip)
y.saveToCassandra(keyspace, daily precipitation_aggregations)

I |

Gets the partition key: Data Locality Cassandra Counter column in our schema,

Spark C* Connector feeds this to Spark no e):pen§|ve reduceB_yKey needed. Simply
let C* do it: not expensive and fast.

.Spcwr‘lgZ
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Second Level of Aggregation

class TemperatureActor(sc: SparkContext, settings: WeatherSettings)
extends AggregationActor {
import akka.pattern.pipe

def receive: Actor.Receive = {
case e: GetMonthlyHiLowTemperature => highLow(e, sender)

}

def highLow(e: GetMonthlyHiLowTemperature, requester: ActorRef): Unit =
sc.cassandraTable[DailyTemperature] (keyspace, daily_temperature_agqgr)
.where("wsid = ? AND year = ? AND month = ?", e.wsid, e.year, e.month)
. collectAsync()
.map(MonthlyTemperature(_, e.wsid, e.year, e.month)) pipeTo requester

e C* data is automatically sorted by most recent - due to our data model
o Additional Spark or collection sort not needed
e Batch and streaming in the same app

Spar‘lgZ
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abstract class ClusterAware extends Actor with ActorlLogging 1

Cluster(context.system)

val cluster

override def preStart(): Unit = cluster.subscribe(self, classOf[ClusterDomainEvent])
override def postStop(): Unit = cluster.unsubscribe(self)

def receive : Actor.Receive = {
case MemberUp(member) =>
log.info("Member {} joined cluster.", member.address)
case UnreachableMember(member) =>
log.info("Member detected as unreachable: {}", member)
case MemberRemoved(member, previousStatus) =>
log.info("Member 1s Removed: {} after {}", member.address, previousStatus)
case ClusterMetricsChanged(forNode) =>
forNode collectFirst { case m if m.address == cluster.selfAddress =>

log.debug("{}", filter(m.metrics))
s

case : MemberEvent =>

Spar‘lgZ
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abstract class ClusterAwareNodeGuardian extends ClusterAware {
import akka.actor.SupervisorStrategy._

override val supervisorStrateqgy = // customize

OneForOneStrategy (maxNrOfRetries = 10, withinTimeRange = 1l.minute) {
case _: ActorInitializationException => Stop
case _: IllegalArgumentException => Stop
case _: IllegalStateException => Restart
case _: TimeoutException => Escalate
case _: Exception => Escalate

I3

override def preStart(): Unit = {
super.preStart()

log.info("Starting at {}", cluster.selfAddress)
s

override def postStop(): Unit = {
super.postStop()
cluster.leave(self.path.address)
gracefulShutdown()

}

override def receive = uninitialized orElse initialized orElse super.receive

def uninitialized: Actor.Receive = {
case OQutputStreamInitialized => initialize()

}

def gracefulShutdown(): Unit = {
val timeout = Timeout(5.seconds)

context.children foreach (gracefulStop(_, timeout.duration)) J\Z
I3
b Spark
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class NodeGuardian(ssc: StreamingContext, kafka: EmbeddedKafka, settings: Settings)
extends ClusterAwareNodeGuardian with AggregationActor with Assertions {
import WeatherEvent. _
import settings._

context.actorOf(Props(new KafkaStreamingActor(kafka.kafkaParams, ssc, settings, self)))

val temperature = context.actorOf(Props(new TemperatureActor(ssc.sparkContext, settings)))
val precipitation = context.actorOf(Props(new PrecipitationActor(ssc, settings)))
val station = context.actorOf(Props(new WeatherStationActor(ssc.sparkContext, settings)))

override def preStart(): Unit = {
super.preStart()
cluster.joinSeedNodes (Vector(cluster.selfAddress))

}

override def initialize(): Unit = {
super.initialize()
ssc.checkpoint(SparkCheckpointDir)
ssc.start()
context become initialized

}

def initialized: Actor.Receive = {
case e: TemperatureRequest => temperature forward e
case e: PrecipitationRequest => precipitation forward e
case e: WeatherStationRequest => station forward e

}
}
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Roadmap
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Recent Additions

Better write performance

e Token-aware writes

e Smarter batching

e Write throttling

Better read performance

e spanBy / spanByKey - timeseries data, better than groupBy
e Pushing down ORDER BY / LIMIT / COUNT to Cassandra

Spcwr‘I‘(\Z
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Recent Additions

Scala 2.11 support and cross build

Mapping user-defined classes to Cassandra UDTs
Namespace support for multiple Cassandra clusters
Transform RDD of PrimaryKeys into a CassandraRDD of another Table
Spark SQL Integration Improvements
e More predicate pushdowns
e Support for joins across multiple clusters
Metrics

Spcwr‘I‘(\Z

SUMMIT EAST




Support For

e Push-down joins between generic RDD’s and C* Tables
e Partitioning any RDD to the same strategy as a C* Table

e Uses the source RDD's partitioning and placement for data locality

.Spcwr‘lgZ
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CassandralnputDStream - stream from a cassandra table (soon)

Roadmap

Performance Improvements

e Token-aware data repartitioning

e Token-aware saving

e \Wide-row support - no costly groupBy call

Python API support

Official Scala Driver for Cassandra

Java 8 API

.Spcwr‘lgZ
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twitter.com/helenaedelson

github.com/helena

slideshare.net/helenaedelson

Spark



https://twitter.com/helenaedelson
http://github.com/helena
http://slideshare.net/helenaedelson

Resources

Spark Cassandra Connector

github.com/datastax/spark-cassandra-connector

github.com/Kkillrweather/killrweather

groups.google.com/a/lists.datastax.com/forum/# !forum/spark-connector-user

Apache Spark spark.apache.org

Apache Cassandra cassandra.apache.org

Apache Kafka kafka.apache.org

Akka akka.io
.S‘pcwrl‘?Z
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https://github.com/datastax/spark-cassandra-connector
https://github.com/killrweather/killrweather
https://groups.google.com/a/lists.datastax.com/forum/#!forum/spark-connector-user
http://spark.apache.org
http://cassandra.apache.org
http://kafka.apache.org
http://akka.io

Thanks for listening!

WORLD'S LARGEST GATHERING
OF CASSANDRA DEVELOPERS.

nqlees in 2014

< L SERIOUSLY. &

SEPTEMBER 22 - 24, 2015 | Santa Clara Convention Center, Santa Clara, CA
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http://www.cvent.com/d/w4qp2t?RefID=stephaniehuynh

