Delivering Meaning In Near-
Real Time At High Velocity &
Massive Scale

Helena Edelson
@helenaedelson

Spaﬁ(\'z

SUMMIT EAST

Who Is This Person?

e Spark Cassandra Connector committer

e Akka contributor (Akka Cluster)

e Scala & Big Data conference speaker

e Sr Software Engineer, Analytics @ DataStax

e Sr Cloud Engineer, VMware,CrowdStrike,SpringSource...

e (Prev) Spring committer - Spring AMQP, Spring Integration

Spcwr‘lgZ

SUMMIT EAST

The one thing in your infrastructure

you can always rely on.

cassandm

Talk Roadmap

What
Why Spark, Kafka, Cassandra & Akka

Delivering Meaning

How Deployment Architecture & Code

App Robust Implementation

No Time For Questions but...

Spark

¥ @helenaedelson
github.com/helena
slideshare.net/helenaedelson

Spark

S0, how do | query the
database?

N
/

\

t's not a database. It's
key-value store!

Fault-tolerance

e

by @jrecursive

You write a distributed

map reduce function in
Erlang!

Did you just tell me to go

w
—
| believe | did, Bob.

Ok, it's not a database.
How do | query it?

N
/

\

.Spcwr‘lgZ

SUMMIT EAST

Strategies

Scalable Infrastructure
Partition For Scale

Replicate For Resiliency

Share Nothing

Asynchronous Message Passing
Parallelism

Isolation

Location Transparency

Spcwr‘I'(\Z

SUMMIT EAST

Strategy

Technologies

Scalable Infrastructure / Elastic
scale on demand

Partition For Scale, Network Topology Aware

Replicate For Resiliency

span racks and datacenters, survive reaional outages
Share Nothing, Masterless

decentralized cluster membership
Fault Tolerance / No Single Point of Failure

Replay From Any Point Of Failure
Failure Detection

Consensus

Parallelism

Asynchronous Message Passing
Fast, Low Latency, Data Locality

Location Transparency

Spark, Cassandra, Kafka

Cassandra, Spark, Kafka, Akka Cluster
Spark,Cassandra, Akka Cluster all hash the node ring
Cassandra, Akka Cluster both Dynamo style

Spark, Cassandra, Kafka

Spark, Cassandra, Kafka, Akka + Akka Persistence

Cassandra, Spark, Akka, Kafka

Cassandra & Akka Cluster use Paxos Algo
& Gossip throuahout the node ring

Spark, Cassandra, Kafka, Akka
Kafka, Akka, Spark

Cassandra, Spark, Kafka

Akka, Spark, Cassandra, Kafka

Other technologies like Mesos are very helpful too but that’s part of a larger discussion.

Spcwr‘lgZ

SUMMIT EAST

Ask me to write a word count Map Reduce,
In Java...
| dare you...

| write functional one-liners
with Spark in Scala

| ambda Architecture

A data-processing architecture designed to handle
massive quantities of data by taking advantage of both
batch and stream processing methods.

Spark - one of the few data processing framework that
allows you to seamlessly integrate batch and stream
processing of petabytes of data in the same
application.

Spcwr‘I'(\Z

SUMMIT EAST

I need fast access to historical data on the fly for
predictive modeling

I also need to be able s
to replay my data from any point of failure

Spark Spark Spark _
Streaming Jj Streaming g Cassandra e Ilelgning
real-time Kafka Connector

Spark Core
Akka Cluster
Apache Kafka Cluster

Apache Cassandra Cluster

Spor‘lgz

SUMMIT EAST

Spa

wramazon

% webservices

7S

Streaming

7o\

0...0’

\ EUROPE

. WESTERN .

7o\ 7\

‘ NORTH ’

\ AMERICA ’ \ AMERICA ’
00 T+x0.0
cassandra

* Massively Scalable
* High Performance
* Always On
* Masterless

7O\
‘ EASTERN ‘

‘oo’

.SOUTH.

7o\

SUMMIT EAST

S

% kafkao

Kafka decouples data-pipelines

Producers | Front End |

Brokers

HadooD Security Real-time oofw)::'nor
Con sumers Clusters systerms monftoring sarvioe

Service

Spar‘l?Z

SUMMIT EAST

AR akka

e Fault tolerant

e Hierarchical Supervision

e Customizable Failure Strategies & Detection
e Asynchronous Data Passing

e Parallelized

o Adaptive / Predictive

e Load-Balanced Spqﬁ‘(‘z

SUMMIT EAST

cassandra

Public Cassandra Users

B = = Clemelry Mvedigits - M« O academicworks xcmiwe @ CTUATE. wa AcUunu odconen B3 AddThis ¢+ adform Oadgear i\ Aeris . AGENTIS @uaih
fyairpim GALED BAdMYND Savvoros ERIINR Sorpush « M. AOl, Gapereo apigee “@wi APIXIO % opplifier)) Y focne @ MA-Apptegic Arise® ARKIVUM
it Qe o DRI Cavanade o X Oy AZUL backupify @ (Lcios Bbose b De-mODIle ® soss == ooy (REDAAVAAN M erocao: = Burt,
bwin.party C3eneyy WCABLEVISION CABOT oS5 Ycarie Captora cardserine €carTeRa PBaserta = Howode ChartyUSA®™ @owrs Chegs Clifl
BEE cinnober vt @ A . cdoudkik @ Cloudrassage Clgudsoft v Mcloze e ? Blooocmermic 2 coitast ol @ BCOMVETGE O @ (@mastone (@correlor T
*» CrowdRiff ®_ SR @ CURALATE 2 DGowws, WDATADIO 1B D00t @ & force DeNA despegariom digby & @R25., 33 DigitalRiver ®we DISQUS

docomo FPRILSTER G druua «iwy, CODyn Ebros €3 ou mear ebay Buas, & “onvte Jj cuisbor @eeear eNanoPay EN(DINE “gissesst Yenkoto epsilon) @ 2 (5 EUROTECH

EEm Qoosae @ F Qmee @ Fangridge ROEND feedzal JK. @EID @ fold3F @ fomsping &% “fmousecrnc Ericon: Y= &F)GAMEFY oo || §Gazzang & gemalto

car, GQowacoooo GitHub oo glispa CGlobant @ o GNP B GOGRID @ (2 GoSquared (L TIME? e+« GRAINGER n5 . GRIDPOINT @ grubknb
GX> & +« Mangtime wEEA O . @iHealthline Health)x HOBSONS) & <55 () Huspdt hulu PO IEiF 2 8" -+ IMP=TUS &= &N ihklihg

instaclustr @ Mustogom (3 oficor @integral (S5 BN "o £S50D INTUIT o~ @Ooveron BISIDOREY [JiSIGHTPARMNERS M- | T H A K A IXONOS QDixsrersor il
wiepac JiNigm ‘dmopp JUNIPEN @ kafpzriky: A\ Keen 1O @QKISSmetrics S»xvewron jkrux ™kwarter kweo & l!acuna LeaseEagle € lxewet I | ibon Blibrato. @u

LiresTacer G Tlingotek @ qudwes LiLAIUNN livedffice 3 1ivi « ks looplogic Jucid tyTics Mahalo e o martini o020 TiSane MatelCom weiowm W
mmedidata @ medic MedProcuret MEIF Bosicost & Microsoft ™ mid 2 e MNUDO Moliom® Menitis 00, meadyo MORNNGTR ™ s mene nanigans
““.napshare @ natve/ NAVTEQ nearbuy@ nNetseer NEUSCAr @ @ Qwie nexft Bl X2 ngmoco:) IEENE INREL nscaceoc # NUTANI < #$08e 2

ONste <+« onesto® - wOOYALA v os: Openviric. @PEINMS® € .., opentiacker [Porwwave penx OpsToC FENFE Other@» ©utbrain
533 paddypower page:)rss QPalantir eswmeon paperli B BRSNS -~Vvparseix & # mfooe R Fecoron Qpentcho PeopleBrowsr « “FEET @ emesuvia Bl PING4
&% PitneyBowes Pjyotal P{ @ & PRESSE = - 2, proofpoint> PRGS @rowawse ()PUSAR gofd *oem Qualtera [8]quandl
quontcast quaddae QUOVA @ @QRakuten ™= o ® itAZoitbs T @2al Recruitingcom [EEEEEE veon 0, &5 referentia Q RelatelQ iiiretaysz (Reltio *..,

<} retaigence W3 @Rhopsody RIGHTSCALE riptidemm @ rockyou pmruckus (010000 Szhre SAFEWAYE) Sandisk sss SBRnet IS Scandit Scoop.T]
screen9 == SeaChange WM SEEMETO ww sesonm wxfseven D oVo T T [l @@sherethis @swazam T SHIFT @SHOOAN - chopsavwy ghore.li ¥ews SimpleGeo
slereach @ singlewire Fmme p srco SITA - Govision:: CKBKOHMYPEY - skillpages sky — smest SMX Socialflrtisan 3 SOCIALFLOw 88 ocuemen TR Sonico
Qi il S = splunk>) spotify @<= spotdfchonge iSpredfast &) Springer SPrincfuse spring - a & e B % Satap @ @seee (Stormpath
= sltratio Slmpwp stuq, @sumologic @ B “Iswiftkey symante HEENANEVSSISIN oo Tabla talentica L. Teads® teamfQcus Taefinia
Sateiyoug TENDRIL techonest @ w@ @ H§ Fowowonms TheNewdlorkTimes [-thinglink.. 3t « rvomsonreuters D TDE (Pl rink TinyCo trap!t F..o, Tl TRIGRST P~ {trivadis
Pruo #F Pl Orwenca F TVIMPACT wwitpic W [© NN ®unexo @) -H Vast & (Cvecoo fooeen MiaSat () e @Viglink VisualDNA ¢
o Vawsour YTEX W0 JJQJQM Walmart vrayin W webcolioge ‘R Where @ WIDESPRACE g é¢wwrmes WILLIAMS-SONOMA
C COMMERCE ZAWORKWARESYSTEMS W@, - <cwem. Yebia xobni = 0&5559 O Nzangbezang zebx[] Zemanta zmd) zipwhip SPQ’-"F

. J ZONAR ¥Plonefox 3¢ zoominfo, Fe¥n e (@ zscaler
zoe Ay ZONAR ¥ Zonefo X3 Yuew @zscoer SUMMIT EAST

Apache Cassandra

e Elasticity - scale to as many nodes as you need, when you need
e Always On - No single point of failure, Continuous availability

e Masterless peer to peer architecture
e Replication Across DataCenters

e Flexible Data Storage

e Read and write to any node syncs across the cluster

e (Operational simplicity - all nodes in a cluster are the same
e Fast Linear-Scale Performance

e Transaction Support
Spcwr‘lgZ

SUMMIT EAST

Always On - No Single Point of Failure

Big Data

Spqr‘llg

SUMMIT EAST

Financial Security

%f“ll‘w ®p| [[K '}_J_JLJl_J o [A

Fri Aug 3 12 pm 2 pm Mon Aug 6 12 Tue Aug 7 12 pm 2 pm

Scientific Data

1 think Tm addicted o replim

Probably because of my relationship
Nith my parent Shvmd “sigh” }

abom#e o W(JD

APACHE
CASSANDRA

Gene +herO-PY‘ Beatrice +he Biologist

SUMMIT EAST

Data Storage for Machine Learning

| THINK MY NEST SMOKE
ALARM IS GOING OFF.
GOOGLE ADWORDS JUST
PITCHED ME A FIRE
EXTINGUISHER AND AN OFFER
FORTEMPORARY HOUSING.

/é:\\% CARTOONSTOCK
| | .com

Search ID: jcerll 1193

© marketoonist.com

APACHE
CASSANDRA

Spcrr‘lgz

SUMMIT EAST

Cassandra

Cassandra

Availability Model
 Amazon Dynamo Paper
e Distributed masterless
Data Model

« Google BigTable

« Column family data model

Spc:wr‘l?Z

SUMMIT EAST

Network Topology Aware

 Availability Model
« Amazon Dynamo Paper
 Distributed masterless
 Data Model
« Google BigTable
e Column family data model

« Multi data center replication

Sp qu

SUMMIT EAST

Spark with Cassandra

* Availability Model

« Amazon Dynamo Paper

 Distributed masterless
 Data Model

» Google BigTable

e Column family data model
« Multi data center replication

 Analytics with Apache Spark

Spcrr‘llg

SUMMIT EAST

Handling Failure

When Nodes Come Back?

e Hinted handoff to the rescue

» Coordinators keep writes for downed nodes for
a configurable amount of time, default 3 hours

 Longer than that run a repair

(DID YOU MISS ME?)

Spqr‘lzz

UMMIT EAST

Did you hear node 1
was down??

Spar‘lgZ

SUMMIT EAST

CQL - Easy

CREATE TABLE users (
username varchar,
firstname varchar,
lasthname varchar,
emaill listcvarchar>,
password varchar,

created_date timestamp,
PRIMARY KEY (username)

);

INSERT INTO users (username, firsthame, lastname,
email, password, created_date)
VALUES ('hedelson’,'Helena’,'Edelson’,

[‘helena.edelson@datastax.com’],'ba27e03fd95e507daf2937¢c937d499ab’,'”2014-11-15 13:50:00’)

IF NOT EXISTS;

* Familiar syntax

* Many Tools & Drivers

* Many Languages

* Friendly to programmers

* Paxos for locking

Spa

SUMMIT EAST

S

CQL
Powerful & Expressive

CREATE TABLE weather.raw _data (
wsid text, year int, month int, day int, hour int,
temperature double, dewpoint double, pressure double,
wind direction int, wind speed double, one hour_precip
PRIMARY KEY ((wsid), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

| |

C* Clustering Columns Writes by most recent
Reads return most recent first

Spar‘lgZ

SUMMIT EAST

Spark Cassandra
Integration

Spaﬁ(\'z

SUMMIT EAST

Spark Cassandra Connector

* Write data from Spark to Cassandra

* Read data from Cassandra to Spark

* Data Locality for Speed

* Easy and often implicit type conversions
* Offers an object mapper

* Server-Side Filtering

* Natural Timeseries Integration

* Implemented in Scala

* Also a Java API

github.com/datastax/spark-cassandra-connector
Spcwr‘lgZ

SUMMIT EAST

https://github.com/datastax/spark-cassandra-connector

Co-locate Spark and Cassandra
for Best Performance

Running Spark Workers on
the same nodes as your C*
Cluster saves network hops

Spark

Spark Cassandra Connector

Data Locality-Aware Soaik’

Writing and Reading

SparkContext
import com.datastax.spark.connector._

StreamingContext
import com.datastax.spark.connector.streaming._

sparkConf.set("spark.cassandra.connection.host", '"10.20.3.45")

Spar‘lgZ

SUMMIT EAST

Write From Spark to Cassandra

SparkContext Keyspace Table

i 1 i

sc.parallelize(collection).saveToCassandra("keyspace", "raw data")

Spark RDD JOIN with NOSQL!

l l

predictionsRdd.join(music).saveToCassandra("music”, "predictions")

Spcwr‘lgZ

SUMMIT EAST

Spark SQL with Cassandra

import org.apache.spark.sqgl.cassandra.CassandraSQLContext

val cc = new CassandraSQLContext(sparkContext)
cc.setKeyspace(keyspaceName)
cc.sql ("""
SELECT tablel.a, tablel.b, table.c, table2.a
FROM tablel AS tablel
JOIN table2 AS table2 ON tablel.a = tablel2.a
AND tablel.b = table2.b
AND tablel.c table2.c
)
.map(Data(_))

.saveToCassandra(keyspacel, table3)
ySP Spqﬁg

SUMMIT EAST

Spark SQL, Cassandra & JSON

cqlsh> CREATE TABLE github stats.commits aggr(user VARCHAR PRIMARY KEY, commits INT..);

val json = Seq(
nunftuser":"helena", "commits":98, "month":3, "year":2015}""",
nrf'user":"jacek-lewandowski", "commits":72, "month":3, "year":2015}""",
nunfluser":"pkolaczk", "commits":42, "month":3, "year":2015}""")

val sgl = new SQLContext(sparkContext)

sql.jsonRDD(json).map(CommitStats(_))
. flatMap(compute)
.saveToCassandra("github _stats","monthly commits")

val rdd = sc.cassandraTable[MonthlyCommits] ("github stats","monthly commits") ‘QZ
Spark

SUMMIT EAST

Cassandra, Kafka, Spark Streaming
& JSON

KafkaUtils.createStream([String, String, StringDecoder, StringDecoder] (
ssc, kafkaParams, topicMap, StorageLevel.MEMORY_ONLY))
.map{ case (_,json) => JsonParser.parse(json).extract[MonthlyCommits]}
. saveToCassandra("github stats","commits aggr")

cqlsh> select * from github stats.commits aggr;

user | commits | month | year
+ + +
pkolaczk | 42 | 3 | 2015
jacek-lewandowski | 43 | 3 | 2015
helena | 98 | 3 | 2015
(3 rows)

.S‘pcwr‘l?z

SUMMIT EAST

Cassandra, Spark Streaming, Kafka

val streamingContext = new StreamingContext(sparkCtx, Seconds(30))

KafkaUtils.createStream[String, String, StringDecoder, StringDecoder]
(streamingContext, kafkaParams, topicMap, StoragelLevel.MEMORY_ONLY)
.map(_._2)
. countByValue()
.saveToCassandra("my keyspace","wordcount")

Spar‘lgZ

SUMMIT EAST

Cassandra, Spark Streaming, Twitter

CREATE TABLE IF NOT EXISTS keyspace.table (
topic text, interval text, mentions counter,
PRIMARY KEY(topic, interval)

) WITH CLUSTERING ORDER BY (interval DESC)

/** Cassandra 1s doing the sorting for you here. */
TwitterUtils.createStream(
ssc, auth, tags, StorageLevel.MEMORY ONLY_SER 2)

. flatMap(_.getText.toLowerCase.split("""\s+"""))

. filter(tags.contains(_))

. countByValueAndWindow(Seconds(5), Seconds(5))

.transform((rdd, time) =>

rdd.map { case (term, count) => (term, count, now(time))})

. saveToCassandra(keyspace, table) ¢
Spark

SUMMIT EAST

Reading: From C* to Spark

CassandraRDD[CassandraRow]

SparkContext Keyspace Table

U i |

val rdd = sc.cassandraTable("github", "commits™)

Server-Side Column .select("user”,"count”, "year", "month™)
and Row Filtering { .where("commits >= ? and year = ?", 1000, 2015)

Spcwr‘lgZ

SUMMIT EAST

Rows: Custom Objects

StreamingContext CassandraRow Keyspace Table

i I i I

val rdd = ssc.cassandraTable[MonthlyCommits]("github", "commits aggregate™)
.where("user = ? and project name = ? and year = ?",
"helena", "spark-cassandra-connector", 2015)

Spcwr‘I‘(\Z

SUMMIT EAST

val tuplesRdd = sc.cassandraTable[(Int,Date,String)](db, tweetsTable)
.select("cluster_id","time", "cluster name")

.where("time > ? and time < ?",

"2014-07-12 20:00:01", "2014-07-12 20:00:03”)

val keyValuesPairsRdd = sc.cassandraTable[(Key,Value)](keyspace, table)

ROWS

.S‘pcwr‘lgZ

SUMMIT EAST

val

val
val

val
val
val

val

rdd: RDD[Song]

Columns

= sc.cassandraTable([Song] (keyspace, table).collect

row: CassandraRow[Song] = rdd.first

date: org.joda.time.DateTime = row.getDateTime("publication date™)

listl =
list2 =
list3 =

nullable

row.get
row.get
row.get

= row.get[Option[String]]("nullable column™)

‘Set[UUID]]("collection™)
List[UUID]]("collection™)

‘Vector[UUID]]("collection™)

Spar‘lgZ

SUMMIT EAST

Specify Rows

val rdd = ssc.cassandraTable[MyDataType] ("stats", "clustering time")
rdd.where("key = 1").1lim1it(10).collect
rdd.where("key = 1").take(10).collect

val rdd ssc.cassandraTable[(Int,DateTime,String)]("stats"”, "clustering time")

.where("key = 1").withAscOrder.collect

val rdd = ssc.cassandraTable[(Int,DateTime,String)]("stats”, "clustering time")
.where("key = 1").withDescOrder.collect

Spar‘lgZ

SUMMIT EAST

Working With Date Types

val rdd = ssc.cassandraTable("github"”, "c aggregate™)
rdd.where("time >= ?", "2014-07-12 20:00:02")
rdd.where("time >= ?", new org.joda.time.DateTime(2015,2,12,20,0,2)

rdd.where("time > ? and time < ?", "2014-07-12 20:00:01", "2015-03-18 20:00:03")

.Spcwr‘lgZ

SUMMIT EAST

User Defined Types

CREATE TYPE address (- UDT = Your Field Type In C*
street text,
city text,
Z1p_code 1nt,
country text,
cross_streets set<text>

) ;

TypeConverter.registerConverter(new TypeConverter [MyUDT] {
def targetTypeTag = typeTag[CustomerId]
def convertPF = { case x: String => MyUDT(x) }

})

val udtRdd: RDD[(UUID, Int, MyUDT)] = sc.cassandraTable(keyspace, table) 27
Spark

SUMMIT EAST

UDT's With JSON

"productId": 2,
"name'": "Kitchen Table",
"price': 249.99,

"description”™ : "Rectangular table with oak finish",

"dimensions': {
"units": "inches",
"length": 50.0,
"width": 66.0,

"height": 32
}
"categories": {
{
"category" : "Home Furnishings" A
"catalogPage": 45,
"url": "/home/furnishings"”
¥
{
"category" : "Kitchen Furnishings" {
"catalogPage': 108,
"url": "/kitchen/furnishings™
}
}

CREATE TYPE dimensions (
units text,
length float,
width float,
height float

) ;

CREATE TYPE category (
catalogPage int,
url text

) ;

CREATE TABLE product (
productId int,
name text,
price float,
description text,
dimensions frozen <dimensions>,
categories map <text, frozen <category>>,
PRIMARY KEY (productld)

);
Spcwr‘lgZ

SUMMIT EAST

Time Series

CREATE TABLE weather.raw weather data (
wsid text, year int, month int, day int, hour int,
temperature double, dewpoint double, pressure double,
wind direction int, wind speed double, one hour precip
PRIMARY KEY ((wsid), year, month, day, hour)
) WITH CLUSTERING ORDER BY (year DESC, month DESC, day DESC, hour DESC);

|

Cassandra will automatically sort by most recent for both write and read

Spqr‘llg

SUMMIT EAST

A record of every event, in order in which it happened, per URL

CREATE TABLE IF NOT EXISTS requests_ks.timeline (
timesegment bigint, url text, t uuid timeuuid, method text, headers map <text, text>, body text,
PRIMARY KEY ((url, timesegment) , t uuid)

) ;

val multipleStreams = (1 to numDstreams).map { i =>
streamingContext.receiverStream[HttpRequest] (new HttpReceiver(port))
I3

streamingContext.union(multipleStreams)
.map { httpRequest => TimelineRequestEvent(httpRequest)}
.saveToCassandra("requests_ks", "timeline")

.Spcwr‘lgZ

SUMMIT EAST

Application

Spcwrl‘gZ

SUMMIT EAST

Robust Application

e Weather station collects data

OO NhO =

8&0\0\ L e

» Cassandra stores in sequence T B e e e

in Hy

* Application reads In sequence

e~ 300 |

29.9

MR g Speed Mind Gust

Temperature Dew Point - Normal Highs/Low o
- 21
18
16
13
10
7
4
2
g 9 1M M
Barometric Pressure hPa
1016
midnigt1 2 3 4 5 6 7 & 9 10 Mnoon 1 2 3 4 5 9 10 1M1
ki

25.0
20.0
15.0
10.0

5.0

0.0
midnigt1 2 3 4 5 6 7 & 9 10 Mmnoon 1 2 3 4 35

360.0 —M Wind Dir (deq)

9 10 N

2700 U
180.0
90.0

0.0 ==
midhigt1 2 3 4 5 6 ¢ & 9 10 Mnoon 1 2 3 4 5

9 10 Wgmens

\
Spc:wr‘l?Z

SUMMIT EAST

Weather Station Analysis

* Weather station collects data Windsor
California

* Cassandra stores in sequence
* Application reads in seguence

* Spark rolls up data into new
tables of aggregations

July 1, 2014

Spor‘l‘g

SUMMIT EAST

Data model should look like
your queries

SpariZ

SUMMIT EAST

Queries | Need

» Get data by weather station

» Get data for a single date and time

» Get data for a range of dates and times

» Compute, store and retrieve daily, monthly, annual aggregations
Design Data Model to support queries
e Store raw data per weather station
e Store time series in order: most recent to oldest

e Compute and store aggregate data in the stream

e Set TTLs on historic data Spme,’(‘z

SUMMIT EAST

Data Model

CREATE TABLE temperature (

quggﬁhmstamn text, * Weather Station Id and Time are unique
il * Store as many as needed

ay 1nt,

hour 1nt,

temperature double,
PRIMARY KEY (weather station,year,month,day,hour)

)

INSERT INTO temperature(weather station,year,month,day,hour,temperature)
VALUES (°10010:99999°,2005,12,1,7,-5.6);

INSERT INTO temperature(weather station,year,month,day,hour,temperature)
VALUES (°10010:99999°,2005,12,1,8,-5.1);

INSERT INTO temperature(weather station,year,month,day,hour,temperature)
VALUES (°10010:99999°,2005,12,1,9,-4.9);

INSERT INTO temperature(weather station,year,month,day,hour,temperature) ‘QZ
VALUES (°10010:99999°,2005,12,1,10,-5.3); SPQI'K

SUMMIT EAST

Spark Computation & Aggregation

Akka Actors

Raw Data
Feeds

Spark Streaming ng\snm;: Apache Cassandra

Cluster

Event-Driven
Data
Sources

Receive Akka Event-Driven Requests ‘-‘ '._.

h Spark Computation
Pipes Future Responses

Event-Driven
Data
Sources

| Spori?z

SUMMIT EAST

Kafka Producer as Akka Actor

class KafkaProducerActor[K, V](config: ProducerConfig) extends Actor {

}

override val supervisorStrategy =
OneForOneStrategy (maxNrOfRetries = 10, withinTimeRange = 1l.minute) {

}

case _: ActorInitializationException => Stop
case _: FailledloSendMessageException => Restart
case _: ProducerClosedException => Restart
case _: NoBrokersForPartitionException => Escalate
case : KafkaException => Escalate
case _: Exception => Escalate

private val producer = new KafkaProducer[K, VI (producerConfig)

override def postStop(): Unit = producer.close()

def
C
+

receive = A
ase e: KafkaMessageEnvelopelK,V] => producer.send(e)

.Spcwr‘l?Z

SUMMIT EAST

HTTP Receiver as Akka Actor

class HttpDataFeedActor(kafka: ActorRef) extends Actor with ActorLogging A
implicit val materializer = FlowMaterializer()

I0O(Http) ! Http.Bind(HttpHost, HttpPort)

val requestHandler: HttpRequest => HttpResponse = {
case HttpRequest(POST, Uri.Path("/weather/data"), headers, entity,) =>
HttpSource.unapply(headers,entity).collect { case s: HeaderSource =>
source.extract.foreach({ fs: FileSource =>
kafka ! KafkaMessageEnvelopel[String, Stringl(topic, key, fs.data:_ x)

)
HttpResponse(200, entity = HttpEntity(MediaTypes. text/html , s"POST successful."))

}.getOrElse(HttpResponse (404, entity = s"Unsupported request"))
s

def receive ! Actor.Receive = {
case Http.ServerBinding(localAddress, stream) =>
Source(stream).foreach({
case Http.IncomingConnection(remoteAddress, requestProducer, responseConsumer) =>
log.info("Accepted new connection from {}.", remoteAddress)
Source(requestProducer).map(requestHandler).to(Sink(responseConsumer)).run()

}}}) Spar‘lgZ

SUMMIT EAST

Akka: Load-Balanced Kafka Work

final class HttpNodeGuardian extends ClusterAwareNodeGuardianActor A
val router = context.actorOf(

BalancingPool(10).props(Props(
new KafkaPublisherActor(KafkaHosts, KafkaBatchSendSize))))

cluster registerOnMemberUp {

val router = context.actorOf(BalancingPool(10).props/
Props(new HttpDataFeedActor(router))), "dynamic-data-feed")

}

def initialized: Actor.Receive = { .. }

}

.Spcwr‘lgZ

SUMMIT EAST

Store Raw Data In The Stream First

val kafkaStream = KafkaUtils.createStream|[String, String, StringDecoder,StringDecoder]
(ssc, kafkaParams, topicMap, StorageLevel.DISK ONLY 2)
.map(_. 2.split(","))

.map (RawWeatherData(_)) /_EJETRLL THE
0 0 C
kafkaStream.saveToCassandra(keyspace, raw_ws_data) :vNeF'f.fmr?{wa? ZﬁUAAN:

USE FOR (T LATER.

Spqr‘lzz

SUMMIT EAST

First Level of Aggregation

/**% Per "wsid and timestamp, aggregates hourly precipitation by day in the stream. x/
kafkaStream.map { weather =>

(weather.wsid, weather.year, weather.month, weather.day, weather.oneHourPrecip)
y.saveToCassandra(keyspace, daily precipitation_aggregations)

I |

Gets the partition key: Data Locality Cassandra Counter column in our schema,

Spark C* Connector feeds this to Spark no e):pen§|ve reduceB_yKey needed. Simply
let C* do it: not expensive and fast.

.Spcwr‘lgZ

SUMMIT EAST

Second Level of Aggregation

class TemperatureActor(sc: SparkContext, settings: WeatherSettings)
extends AggregationActor {
import akka.pattern.pipe

def receive: Actor.Receive = {
case e: GetMonthlyHiLowTemperature => highLow(e, sender)

}

def highLow(e: GetMonthlyHiLowTemperature, requester: ActorRef): Unit =
sc.cassandraTable[DailyTemperature] (keyspace, daily_temperature_agqgr)
.where("wsid = ? AND year = ? AND month = ?", e.wsid, e.year, e.month)
. collectAsync()
.map(MonthlyTemperature(_, e.wsid, e.year, e.month)) pipeTo requester

e C* data is automatically sorted by most recent - due to our data model
o Additional Spark or collection sort not needed
e Batch and streaming in the same app

Spar‘lgZ

SUMMIT EAST

abstract class ClusterAware extends Actor with ActorlLogging 1

Cluster(context.system)

val cluster

override def preStart(): Unit = cluster.subscribe(self, classOf[ClusterDomainEvent])
override def postStop(): Unit = cluster.unsubscribe(self)

def receive : Actor.Receive = {
case MemberUp(member) =>
log.info("Member {} joined cluster.", member.address)
case UnreachableMember(member) =>
log.info("Member detected as unreachable: {}", member)
case MemberRemoved(member, previousStatus) =>
log.info("Member 1s Removed: {} after {}", member.address, previousStatus)
case ClusterMetricsChanged(forNode) =>
forNode collectFirst { case m if m.address == cluster.selfAddress =>

log.debug("{}", filter(m.metrics))
s

case : MemberEvent =>

Spar‘lgZ

SUMMIT EAST

abstract class ClusterAwareNodeGuardian extends ClusterAware {
import akka.actor.SupervisorStrategy._

override val supervisorStrateqgy = // customize

OneForOneStrategy (maxNrOfRetries = 10, withinTimeRange = 1l.minute) {
case _: ActorInitializationException => Stop
case _: IllegalArgumentException => Stop
case _: IllegalStateException => Restart
case _: TimeoutException => Escalate
case _: Exception => Escalate

I3

override def preStart(): Unit = {
super.preStart()

log.info("Starting at {}", cluster.selfAddress)
s

override def postStop(): Unit = {
super.postStop()
cluster.leave(self.path.address)
gracefulShutdown()

}

override def receive = uninitialized orElse initialized orElse super.receive

def uninitialized: Actor.Receive = {
case OQutputStreamInitialized => initialize()

}

def gracefulShutdown(): Unit = {
val timeout = Timeout(5.seconds)

context.children foreach (gracefulStop(_, timeout.duration)) J\Z
I3
b Spark

SUMMIT EAST

class NodeGuardian(ssc: StreamingContext, kafka: EmbeddedKafka, settings: Settings)
extends ClusterAwareNodeGuardian with AggregationActor with Assertions {
import WeatherEvent. _
import settings._

context.actorOf(Props(new KafkaStreamingActor(kafka.kafkaParams, ssc, settings, self)))

val temperature = context.actorOf(Props(new TemperatureActor(ssc.sparkContext, settings)))
val precipitation = context.actorOf(Props(new PrecipitationActor(ssc, settings)))
val station = context.actorOf(Props(new WeatherStationActor(ssc.sparkContext, settings)))

override def preStart(): Unit = {
super.preStart()
cluster.joinSeedNodes (Vector(cluster.selfAddress))

}

override def initialize(): Unit = {
super.initialize()
ssc.checkpoint(SparkCheckpointDir)
ssc.start()
context become initialized

}

def initialized: Actor.Receive = {
case e: TemperatureRequest => temperature forward e
case e: PrecipitationRequest => precipitation forward e
case e: WeatherStationRequest => station forward e

}
}

Spaﬁ’(\Z

SUMMIT EAST

Roadmap

Spor‘llg

SUMMIT EAST

Recent Additions

Better write performance

e Token-aware writes

e Smarter batching

e Write throttling

Better read performance

e spanBy / spanByKey - timeseries data, better than groupBy
e Pushing down ORDER BY / LIMIT / COUNT to Cassandra

Spcwr‘I‘(\Z

SUMMIT EAST

Recent Additions

Scala 2.11 support and cross build

Mapping user-defined classes to Cassandra UDTs
Namespace support for multiple Cassandra clusters
Transform RDD of PrimaryKeys into a CassandraRDD of another Table
Spark SQL Integration Improvements
e More predicate pushdowns
e Support for joins across multiple clusters
Metrics

Spcwr‘I‘(\Z

SUMMIT EAST

Support For

e Push-down joins between generic RDD’s and C* Tables
e Partitioning any RDD to the same strategy as a C* Table

e Uses the source RDD's partitioning and placement for data locality

.Spcwr‘lgZ

SUMMIT EAST

CassandralnputDStream - stream from a cassandra table (soon)

Roadmap

Performance Improvements

e Token-aware data repartitioning

e Token-aware saving

e \Wide-row support - no costly groupBy call

Python API support

Official Scala Driver for Cassandra

Java 8 API

.Spcwr‘lgZ

SUMMIT EAST

twitter.com/helenaedelson

github.com/helena

slideshare.net/helenaedelson

Spark

https://twitter.com/helenaedelson
http://github.com/helena
http://slideshare.net/helenaedelson

Resources

Spark Cassandra Connector

github.com/datastax/spark-cassandra-connector

github.com/Kkillrweather/killrweather

groups.google.com/a/lists.datastax.com/forum/# !forum/spark-connector-user

Apache Spark spark.apache.org

Apache Cassandra cassandra.apache.org

Apache Kafka kafka.apache.org

Akka akka.io
.S‘pcwrl‘?Z

SUMMIT EAST

https://github.com/datastax/spark-cassandra-connector
https://github.com/killrweather/killrweather
https://groups.google.com/a/lists.datastax.com/forum/#!forum/spark-connector-user
http://spark.apache.org
http://cassandra.apache.org
http://kafka.apache.org
http://akka.io

Thanks for listening!

WORLD'S LARGEST GATHERING
OF CASSANDRA DEVELOPERS.

nqlees in 2014

< L SERIOUSLY. &

SEPTEMBER 22 - 24, 2015 | Santa Clara Convention Center, Santa Clara, CA

Cassandra Summit ook’

SUMMIT EAST

http://www.cvent.com/d/w4qp2t?RefID=stephaniehuynh

