
Power Hive with Spark

1

Marcelo Vanzin and Chao Sun
Cloudera, Inc.

What we’ll talk about...

•  Hive-on-Spark primer

•  Spark additions for HoS

• Dynamic Executor Allocation

• Remote Spark Context

•  What remains to be done

Hive-on-Spark Primer

•  Hive is the “standard” engine for SQL in Hadoop

•  HoS is a Spark-based execution engine for Hive

•  Goal is twofold:

• Run Hive on a modern distributed execution engine

• Drive enhancements (performance and usability)
for both

•  Distinct from Spark SQL / HiveContext

HoS Primer (continued)

•  Many organizations involved, plus individual
contributors from both communities

•  Part of Apache Hive 1.1
• Still a young project, lots left to be done

Spark Additions

• Enhancements to Spark
• repartitionAndSortWithinPartitions()
• Recursive addFile()
• Dynamic Executor Allocation

• Libraries built on top of Spark

• Remote Spark Context

Dynamic Executor
Allocation

•  Problems:
• Hard to know beforehand how many executors /
cores will be needed to run a query

• Interactive Spark sessions (e.g. Spark shell or Hive
session) hold on to cluster resources while idle

•  Solution: grow and shrink the Spark application as
needed

•  Currently available for YARN backend

DEA (continued)

SparkContext

Job 1

Task Task

Executor 1

Task

Task
Executor 2

Task

DEA: Future Work

•  Goal: default allocation mode for Spark on YARN
•  Better heuristics (faster ramp up for large jobs)
•  Data locality hints
•  Support Spark’s RDD caching mechanism

Remote Spark Context

•  Problem: HiveServer2 services several users. Lots of
issues ensue.
• SparkContext uses non-trivial amount of memory
• Spark doesn’t support multiple SparkContexts
• `new SparkContext()` doesn’t support cluster mode
• Need to isolate user’s sessions
• Need to account for user’s resource usage

• Solution: allow HS2 to start Spark apps out-of-process
and interact with them.

RSC (continued)

• Long-lived SparkContext tied to user’s HS2 session
• On YARN, run with the user’s credentials
• Remoting API allows fine-grained control of remote
SparkContext instance

SparkClient client = SparkClientFactory.createClient(...);
try {
 JobHandle<Integer> handle = client.submit(rjc ->
 rjc.sc().parallelize(Arrays.asList(1,2,3))
 .reduce((i1, i2) -> i1 + i2));
 System.out.println(“Result is: “ + handle.get());
} finally {
 client.close();
}

HoS: What’s Left

• Functionally complete
• Needs more testing and benchmarking
• Performance optimizations

• Dynamic Partition Pruning
• Table Caching
• Multiple Outputs from same RDD

• HIVE-7292 tracks current and future work

Questions?

