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User-Item Graphs



Graph Algorithms
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Triangle Counting



Collaborative Filtering
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The Graph-Parallel Pattern



The Graph-Parallel Pattern



The Graph-Parallel Pattern



Collaborative Filtering
»  Alternating Least Squares
»  Stochastic Gradient Descent
»  Tensor Factorization

Structured Prediction
»  Loopy Belief Propagation
»  Max-Product Linear 

Programs
»  Gibbs Sampling

Semi-supervised ML
»  Graph SSL 
»  CoEM

Community Detection
»  Triangle-Counting
»  K-core Decomposition
»  K-Truss

Graph Analytics
»  PageRank
»  Personalized PageRank
»  Shortest Path
»  Graph Coloring

Classification
»  Neural Networks

Many Graph-Parallel Algorithms



Challenges:

1.  Storage: How to store a graph where one 
vertex’s edges don’t fit on a machine?

2.  API: How to expose parallelism within vertex 
neighborhoods?

High-Degree Vertices



Complex Pipelines
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Solution: Embed graph processing within a table-
oriented system (Spark)

Challenges:

1.  Storage: How to store graphs as tables?

2.  Computation: How to express graph ops as 
table ops (map, reduce, join, etc.)?

3.  API: How to present the two views to the 
user?

Complex Pipelines



The GraphX API



Property Graphs

Vertex Property:
•  User Profile
•  Current PageRank Value

Edge Property:
•  Weights
•  Relationships
•  Timestamps



Graphtype	
  VertexId	
  =	
  Long	
  
	
  
val	
  vertices:	
  RDD[(VertexId,	
  String)]	
  =	
  
	
  	
  sc.parallelize(List(	
  
	
  	
  	
  	
  (1L,	
  “Alice”),	
  
	
  	
  	
  	
  (2L,	
  “Bob”),	
  
	
  	
  	
  	
  (3L,	
  “Charlie”)))	
  
	
  
class	
  Edge[ED](	
  
	
  	
  val	
  srcId:	
  VertexId,	
  
	
  	
  val	
  dstId:	
  VertexId,	
  
	
  	
  val	
  attr:	
  ED)	
  
	
  
val	
  edges:	
  RDD[Edge[String]]	
  =	
  
	
  	
  sc.parallelize(List(	
  
	
  	
  	
  	
  Edge(1L,	
  2L,	
  “coworker”),	
  
	
  	
  	
  	
  Edge(2L,	
  3L,	
  “friend”)))	
  
	
  
val	
  graph	
  =	
  Graph(vertices,	
  edges)	
  

Creating a Graph (Scala)
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class	
  Graph[VD,	
  ED]	
  {	
  
	
  //	
  Table	
  Views	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
	
  def	
  vertices:	
  RDD[(VertexId,	
  VD)]	
  
	
  def	
  edges:	
  RDD[Edge[ED]]	
  
	
  def	
  triplets:	
  RDD[EdgeTriplet[VD,	
  ED]]	
  
	
  //	
  Transformations	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
	
  def	
  mapVertices[VD2](f:	
  (VertexId,	
  VD)	
  =>	
  VD2):	
  Graph[VD2,	
  ED]	
  
	
  def	
  mapEdges[ED2](f:	
  Edge[ED]	
  =>	
  ED2):	
  Graph[VD2,	
  ED]	
  
	
  def	
  reverse:	
  Graph[VD,	
  ED]	
  
	
  def	
  subgraph(epred:	
  EdgeTriplet[VD,	
  ED]	
  =>	
  Boolean,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  vpred:	
  (VertexId,	
  VD)	
  =>	
  Boolean):	
  Graph[VD,	
  ED]	
  
	
  //	
  Joins	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
	
  def	
  outerJoinVertices[U,	
  VD2]	
  

	
  	
  	
  	
  	
  	
  	
  	
  (tbl:	
  RDD[(VertexId,	
  U)])	
  
	
  	
  	
  	
  	
  	
  	
  	
  (f:	
  (VertexId,	
  VD,	
  Option[U])	
  =>	
  VD2):	
  Graph[VD2,	
  ED]	
  

	
  //	
  Computation	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
	
  def	
  aggregateMessages[A](	
  

	
  	
  	
  	
  	
  	
  	
  	
  sendMsg:	
  EdgeContext[VD,	
  ED,	
  A]	
  =>	
  Unit,	
  
	
  	
  	
  	
  	
  	
  	
  	
  mergeMsg:	
  (A,	
  A)	
  =>	
  A):	
  RDD[(VertexId,	
  A)]	
  
	
  

Graph Operations (Scala)



Built-in Algorithms (Scala)
	
  //	
  Continued	
  from	
  previous	
  slide	
  
	
  def	
  pageRank(tol:	
  Double):	
  Graph[Double,	
  Double]	
  
	
  def	
  triangleCount():	
  Graph[Int,	
  ED]	
  
	
  def	
  connectedComponents():	
  Graph[VertexId,	
  ED]	
  
	
  //	
  ...and	
  more:	
  org.apache.spark.graphx.lib	
  

}	
  

PageRank Triangle Count Connected 
Components



RDD

The triplets view
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class	
  Graph[VD,	
  ED]	
  {	
  
	
  def	
  triplets:	
  RDD[EdgeTriplet[VD,	
  ED]]	
  
}	
  
	
  
class	
  EdgeTriplet[VD,	
  ED](	
  
	
  	
  val	
  srcId:	
  VertexId,	
  val	
  dstId:	
  VertexId,	
  val	
  attr:	
  ED,	
  
	
  	
  val	
  srcAttr:	
  VD,	
  val	
  dstAttr:	
  VD)	
  

srcAttr dstAttr attr
Alice coworker Bob
Bob friend Charlie

triplets	
  



The subgraph transformation
class	
  Graph[VD,	
  ED]	
  {	
  
	
  def	
  subgraph(epred:	
  EdgeTriplet[VD,	
  ED]	
  =>	
  Boolean,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  vpred:	
  (VertexId,	
  VD)	
  =>	
  Boolean):	
  Graph[VD,	
  ED]	
  
}	
  
	
  
graph.subgraph(epred	
  =	
  (edge)	
  =>	
  edge.attr	
  !=	
  “relative”)	
  

subgraph	
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The subgraph transformation
class	
  Graph[VD,	
  ED]	
  {	
  
	
  def	
  subgraph(epred:	
  EdgeTriplet[VD,	
  ED]	
  =>	
  Boolean,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  vpred:	
  (VertexId,	
  VD)	
  =>	
  Boolean):	
  Graph[VD,	
  ED]	
  
}	
  
	
  
graph.subgraph(vpred	
  =	
  (id,	
  name)	
  =>	
  name	
  !=	
  “Bob”)	
  

subgraph	
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Computation with aggregateMessages
class	
  Graph[VD,	
  ED]	
  {	
  
	
  	
  def	
  aggregateMessages[A](	
  
	
  	
  	
  	
  sendMsg:	
  EdgeContext[VD,	
  ED,	
  A]	
  =>	
  Unit,	
  
	
  	
  	
  	
  mergeMsg:	
  (A,	
  A)	
  =>	
  A):	
  RDD[(VertexId,	
  A)]	
  
}	
  
	
  
class	
  EdgeContext[VD,	
  ED,	
  A](	
  
	
  	
  	
  	
  val	
  srcId:	
  VertexId,	
  val	
  dstId:	
  VertexId,	
  val	
  attr:	
  ED,	
  
	
  	
  	
  	
  val	
  srcAttr:	
  VD,	
  val	
  dstAttr:	
  VD)	
  {	
  
	
  	
  def	
  sendToSrc(msg:	
  A)	
  
	
  	
  def	
  sendToDst(msg:	
  A)	
  
}	
  
	
  
graph.aggregateMessages(	
  
	
  	
  ctx	
  =>	
  {	
  
	
  	
  	
  	
  ctx.sendToSrc(1)	
  
	
  	
  	
  	
  ctx.sendToDst(1)	
  
	
  	
  },	
  
	
  	
  _	
  +	
  _)	
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Computation with aggregateMessages



Example: Graph Coarsening
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How GraphX Works



Storing Graphs as Tables
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Reuse vertices or edges across multiple graphs

Simple Operations

Input Graph

Transform Vertex 
Properties

Transformed Graph
Vertex
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Implementing triplets	
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Implementing triplets
Edge Table 
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Implementing aggregateMessages
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PageRank Benchmark
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•  Alpha release with Spark 0.9.0 in Feb 2014

•  Stable release with Spark 1.2.0 in Dec 2014

Open Source



1.  Language support
a)  Java API: PR #3234
b)  Python API: collaborating with Intel, SPARK-3789

2.  More algorithms
a)  LDA (topic modeling): PR #2388
b)  Correlation clustering

3.  Research
a)  Local graphs
b)  Streaming/time-varying graphs
c)  Graph database–like queries

Future of GraphX



IndexedRDD
Support efficient updates to immutable RDDs using 
purely functional data structures

https://github.com/amplab/spark-indexedrdd



Thanks!

ankurd@eecs.berkeley.edu

jegonzal@eecs.berkeley.edu
rxin@eecs.berkeley.edu

crankshaw@eecs.berkeley.edu

http://spark.apache.org/graphx 


