
UC	
 BERKELEY	

GraphX
Graph Analytics in Spark

Ankur Dave���
Graduate Student, UC Berkeley AMPLab

Joint work with Joseph Gonzalez, Reynold Xin, Daniel
Crankshaw, Michael Franklin, and Ion Stoica

Graphs

Social Networks

Web Graphs

⋆⋆⋆⋆⋆

⋆

⋆⋆⋆⋆

⋆⋆⋆⋆⋆
⋆⋆⋆⋆

User-Item Graphs

Graph Algorithms

PageRank

Triangle Counting

Collaborative Filtering

U
se

rs Products
Ratings

U
se

rs

≈
x

Products

f(i)

f(j)

⋆⋆⋆⋆⋆

Collaborative Filtering

r13

r14

r24

r25

f(1)

f(2)

f(3)

f(4)

f(5)
U

se
r F

ac
to

rs
Product Factors

f [i] = arg min
w2Rd

X

j2Nbrs(i)

�
rij � wT f [j]

�2
+ �||w||22

The Graph-Parallel Pattern

The Graph-Parallel Pattern

The Graph-Parallel Pattern

Collaborative Filtering
»  Alternating Least Squares
»  Stochastic Gradient Descent
»  Tensor Factorization

Structured Prediction
»  Loopy Belief Propagation
»  Max-Product Linear

Programs
»  Gibbs Sampling

Semi-supervised ML
»  Graph SSL
»  CoEM

Community Detection
»  Triangle-Counting
»  K-core Decomposition
»  K-Truss

Graph Analytics
»  PageRank
»  Personalized PageRank
»  Shortest Path
»  Graph Coloring

Classification
»  Neural Networks

Many Graph-Parallel Algorithms

Challenges:

1.  Storage: How to store a graph where one
vertex’s edges don’t fit on a machine?

2.  API: How to expose parallelism within vertex
neighborhoods?

High-Degree Vertices

Complex Pipelines

Raw
Wikipedia

< / >< / >< / >
XML

Hyperlinks PageRank Top 20 Pages
Title PR

Link Table
Title Link

Editor Graph
Community
Detection

User
Community

User Com.

Editor
Table

Editor Title

Top Communities
Com. PR..

Solution: Embed graph processing within a table-
oriented system (Spark)

Challenges:

1.  Storage: How to store graphs as tables?

2.  Computation: How to express graph ops as
table ops (map, reduce, join, etc.)?

3.  API: How to present the two views to the
user?

Complex Pipelines

The GraphX API

Property Graphs

Vertex Property:
•  User Profile
•  Current PageRank Value

Edge Property:
•  Weights
•  Relationships
•  Timestamps

Graphtype	
 VertexId	
 =	
 Long	

	

val	
 vertices:	
 RDD[(VertexId,	
 String)]	
 =	

	
 	
 sc.parallelize(List(

	
 	
 	
 	
 (1L,	
 “Alice”),	

	
 	
 	
 	
 (2L,	
 “Bob”),	

	
 	
 	
 	
 (3L,	
 “Charlie”)))	

	

class	
 Edge[ED](

	
 	
 val	
 srcId:	
 VertexId,	

	
 	
 val	
 dstId:	
 VertexId,	

	
 	
 val	
 attr:	
 ED)	

	

val	
 edges:	
 RDD[Edge[String]]	
 =	

	
 	
 sc.parallelize(List(

	
 	
 	
 	
 Edge(1L,	
 2L,	
 “coworker”),	

	
 	
 	
 	
 Edge(2L,	
 3L,	
 “friend”)))	

	

val	
 graph	
 =	
 Graph(vertices,	
 edges)	

Creating a Graph (Scala)

1

3

2

Alice

Bob

Charlie

coworker

friend

class	
 Graph[VD,	
 ED]	
 {	

	
 //	
 Table	
 Views	
 -­‐	

	
 def	
 vertices:	
 RDD[(VertexId,	
 VD)]	

	
 def	
 edges:	
 RDD[Edge[ED]]	

	
 def	
 triplets:	
 RDD[EdgeTriplet[VD,	
 ED]]	

	
 //	
 Transformations	
 -­‐	

	
 def	
 mapVertices[VD2](f:	
 (VertexId,	
 VD)	
 =>	
 VD2):	
 Graph[VD2,	
 ED]	

	
 def	
 mapEdges[ED2](f:	
 Edge[ED]	
 =>	
 ED2):	
 Graph[VD2,	
 ED]	

	
 def	
 reverse:	
 Graph[VD,	
 ED]	

	
 def	
 subgraph(epred:	
 EdgeTriplet[VD,	
 ED]	
 =>	
 Boolean,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 vpred:	
 (VertexId,	
 VD)	
 =>	
 Boolean):	
 Graph[VD,	
 ED]	

	
 //	
 Joins	
 -­‐	

	
 def	
 outerJoinVertices[U,	
 VD2]	

	
 	
 	
 	
 	
 	
 	
 	
 (tbl:	
 RDD[(VertexId,	
 U)])	

	
 	
 	
 	
 	
 	
 	
 	
 (f:	
 (VertexId,	
 VD,	
 Option[U])	
 =>	
 VD2):	
 Graph[VD2,	
 ED]	

	
 //	
 Computation	
 -­‐	

	
 def	
 aggregateMessages[A](

	
 	
 	
 	
 	
 	
 	
 	
 sendMsg:	
 EdgeContext[VD,	
 ED,	
 A]	
 =>	
 Unit,	

	
 	
 	
 	
 	
 	
 	
 	
 mergeMsg:	
 (A,	
 A)	
 =>	
 A):	
 RDD[(VertexId,	
 A)]	

	

Graph Operations (Scala)

Built-in Algorithms (Scala)
	
 //	
 Continued	
 from	
 previous	
 slide	

	
 def	
 pageRank(tol:	
 Double):	
 Graph[Double,	
 Double]	

	
 def	
 triangleCount():	
 Graph[Int,	
 ED]	

	
 def	
 connectedComponents():	
 Graph[VertexId,	
 ED]	

	
 //	
 ...and	
 more:	
 org.apache.spark.graphx.lib	

}	

PageRank Triangle Count Connected
Components

RDD

The triplets view

Graph

1

3

2

Alice

Bob

Charlie

coworker

friend

class	
 Graph[VD,	
 ED]	
 {	

	
 def	
 triplets:	
 RDD[EdgeTriplet[VD,	
 ED]]	

}	

	

class	
 EdgeTriplet[VD,	
 ED](

	
 	
 val	
 srcId:	
 VertexId,	
 val	
 dstId:	
 VertexId,	
 val	
 attr:	
 ED,	

	
 	
 val	
 srcAttr:	
 VD,	
 val	
 dstAttr:	
 VD)	

srcAttr dstAttr attr
Alice coworker Bob
Bob friend Charlie

triplets	

The subgraph transformation
class	
 Graph[VD,	
 ED]	
 {	

	
 def	
 subgraph(epred:	
 EdgeTriplet[VD,	
 ED]	
 =>	
 Boolean,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 vpred:	
 (VertexId,	
 VD)	
 =>	
 Boolean):	
 Graph[VD,	
 ED]	

}	

	

graph.subgraph(epred	
 =	
 (edge)	
 =>	
 edge.attr	
 !=	
 “relative”)	

subgraph	

Graph

Alice Bob

Charlie

relative
friend

coworker

Davidrelative

Graph

Alice Bob

Charlie

friend

coworker

David

The subgraph transformation
class	
 Graph[VD,	
 ED]	
 {	

	
 def	
 subgraph(epred:	
 EdgeTriplet[VD,	
 ED]	
 =>	
 Boolean,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 vpred:	
 (VertexId,	
 VD)	
 =>	
 Boolean):	
 Graph[VD,	
 ED]	

}	

	

graph.subgraph(vpred	
 =	
 (id,	
 name)	
 =>	
 name	
 !=	
 “Bob”)	

subgraph	

Graph

Alice Bob

Charlie

relative
friend

coworker

Davidrelative

Graph

Alice

Charlie

relative

Davidrelative

Computation with aggregateMessages
class	
 Graph[VD,	
 ED]	
 {	

	
 	
 def	
 aggregateMessages[A](

	
 	
 	
 	
 sendMsg:	
 EdgeContext[VD,	
 ED,	
 A]	
 =>	
 Unit,	

	
 	
 	
 	
 mergeMsg:	
 (A,	
 A)	
 =>	
 A):	
 RDD[(VertexId,	
 A)]	

}	

	

class	
 EdgeContext[VD,	
 ED,	
 A](

	
 	
 	
 	
 val	
 srcId:	
 VertexId,	
 val	
 dstId:	
 VertexId,	
 val	
 attr:	
 ED,	

	
 	
 	
 	
 val	
 srcAttr:	
 VD,	
 val	
 dstAttr:	
 VD)	
 {	

	
 	
 def	
 sendToSrc(msg:	
 A)	

	
 	
 def	
 sendToDst(msg:	
 A)	

}	

	

graph.aggregateMessages(

	
 	
 ctx	
 =>	
 {	

	
 	
 	
 	
 ctx.sendToSrc(1)	

	
 	
 	
 	
 ctx.sendToDst(1)	

	
 	
 },	

	
 	
 _	
 +	
 _)	

Graph

Alice Bob

Charlie

relative
friend

coworker

Davidrelative

aggregateMessages	

RDD

vertex id degree
Alice 2
Bob 2
Charlie 3
David 1

Computation with aggregateMessages

Example: Graph Coarsening
Web Pages

Intra-Domain Links
subgraph	

Pages by Domain
Connected  

Components

Domains

Domain Graph

Graph  
constructor

How GraphX Works

Storing Graphs as Tables

B C

A D

F E

A DD

Property Graph

B C

D

E

AA

F

Vertex
Table

(RDD)

M
achine 1

M
achine 2

B

C

D

E

A

F

Edge Table
(RDD)
A B

A C

C D

B C

A E

A F

E F

E D

Reuse vertices or edges across multiple graphs

Simple Operations

Input Graph

Transform Vertex
Properties

Transformed Graph
Vertex
Table

Edge
Table

Vertex
Table

Edge
Table

Implementing triplets	

Vertex
Table

(RDD)

M
achine 1

M
achine 2

B

C

D

E

A

F

Edge Table
(RDD)
A B

A C

C D

B C

A E

A F

E F

E D

Routing
Table

(RDD)

B

C

D

E

A

F

1	

2	

1	
 2	

1	
 2	

1	

2	

Implementing triplets
Edge Table

(RDD)
A B

A C

C D

B C

A E

A F

E F

E D

Mirror
Cache

B
C
D

A

Mirror
Cache

D
E
F

A

Vertex
Table

(RDD)

B

C

D

E

A

F

B

C

D

E

A

F

A

D

Routing
Table

(RDD)

B

C

D

E

A

F

1	

2	

1	
 2	

1	
 2	

1	

2	

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16

N
et

w
or

k
Co

m
m

. (
M

B)

Iteration

Connected Components on Twitter Graph (1.4B edges)

Reduction in Communication Due to Cached Updates

Most vertices are within 8 hops���
of all vertices in their component

Implementing aggregateMessages
Edge Table

(RDD)
A B

A C

C D

B C

A E

A F

E F

E D

Mirror
Cache

B
C
D

A

Mirror
Cache

D
E
F

A

Scan

Result
Vertex
Table

B

C

D

E

A

F

B

C

D

E

A

F

A

D

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

Ru
nt

im
e

(S
ec

on
ds

)

Iteration

Connected Components on Twitter (1.4B edges)

Scan Indexed

Speedup Due To Access Method Selection

Scan All Edges

Index of “Active” Edges

PageRank Benchmark

0
500

1000
1500
2000
2500
3000
3500

GraphX GraphLab Giraph Naïve
Spark

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

GraphX GraphLab Giraph Naïve
Spark

Twitter Graph (42M Vertices,1.5B Edges) UK-Graph (106M Vertices, 3.7B Edges)

GraphX performs comparably to ���
state-of-the-art graph processing systems.

Ru
nt

im
e

(S
ec

on
ds

)

EC2 Cluster of 16 x m2.4xLarge (8 cores) + 1GigE

7x 18x

•  Alpha release with Spark 0.9.0 in Feb 2014

•  Stable release with Spark 1.2.0 in Dec 2014

Open Source

1.  Language support
a)  Java API: PR #3234
b)  Python API: collaborating with Intel, SPARK-3789

2.  More algorithms
a)  LDA (topic modeling): PR #2388
b)  Correlation clustering

3.  Research
a)  Local graphs
b)  Streaming/time-varying graphs
c)  Graph database–like queries

Future of GraphX

IndexedRDD
Support efficient updates to immutable RDDs using
purely functional data structures

https://github.com/amplab/spark-indexedrdd

Thanks!

ankurd@eecs.berkeley.edu

jegonzal@eecs.berkeley.edu
rxin@eecs.berkeley.edu

crankshaw@eecs.berkeley.edu

http://spark.apache.org/graphx

