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Exploratory Visualization

“Critical part of data analysis”

—William S. Cleveland

Put visualization back in the normal workflow of data analysis

regardless of data size.

 |nteractive
« Collaborative
* Reproducible
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Expository Visualization

Communication is often the bottleneck in data science,
and a graph is worth a thousand words.

« Control over details
- Shareable
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Requirements

* Interactive

- Collaborative Use the browser

- Shareable

 Reproducible

» Control over details Use visualization libraries

€databricks



Visualization as programming

 For complex tasks point and click may not be enough
- Best expressed with a grammar (API)

« Scripts are reproducible

- Control over all details

- Data scientists are already familiar with these tools

D3.js, Three.js, matplotlib, ggplot, Bokeh, Vincent, ...
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Do it in the browser

- Output of these tools can be readily used on the web

(PNG, SVG, Canvas, WebGL)

* No need to transfer data and results
- Browser is conducive to collaboration (e.g.,

Notebooks)

- Separating data manipulation from rendering enables
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users to freely choose the best tool for each job



Challenges with big data visualization

1.Manipulating large data can take a long time

2.\We have more data points than pixels

Apache Spark can help solve both problems ﬂ
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Challenges

1. Manipulating large data can take a long time

> Memory
>CPU
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Reducing latency: caching

Take advantage of memory and storage hierarchy

- Serialized storage levels (for memory)
* Memory & GC tuning
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Reducing latency: parallelism

Increase number of CPUs
> (Get more executors with Mesos or Yarn
> Click a button to increase cluster size in DBC

» Control level of parallelism for map and reduce tasks
- Configure spark locality if needed
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Challenges

1. Manipulating large data can take a long time
2. We have more data points than possible pixels

> Summarize
> Model
> Sample
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More data than pixels? Summarize

- Extensively used by Bl tools
> Aggregation
> Pivoting

- Most data scientists’ nightly
jobs summarize data

duration
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More data than pixels? Model

MLLib supports a large (and growing)
set of distributed algorithms

» Clustering: k-means, GMM, LDA

- Classification and regression:
LM, DT, NB

 Dimensionality reduction: SVD, PCA

» Collaborative filtering: ALS
- Correlation, hypothesis testing
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More data than pixels? Sample

Extensively used in statistics

500-

450-

Spark offers native support for:
- Approximate and exact samplinc

300-

- Approximate and exact stratifiec ..
sampling

Approximate sampling is faster
and is good enough in most cases

jittered_year
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Demo



Summary
Using Spark we can extend interactive visualization of large data

Reduce interaction latency to seconds
> Cache data in memory
> [ncrease parallelism

To visualize millions of points in the browser
> Summarize
> Model

> Sample
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