
Cassandra Indexing Techniques

Ed Anuff
Founder, Usergrid

Cassandra Summit SF July, 2011

Agenda

•  Background

•  Basics of Indexes

•  Native Secondary Indexes

•  "Wide rows" and CF-based Indexes

•  Inverted-indexes Using SuperColumns

•  Inverted-indexes Using Composite Columns

•  Q&A

Background

This presentation is based on:

•  What we learned over the last year in building a
highly indexed system on Cassandra

•  Participation in the Hector client project

•  Common questions and issues posted to the
Cassandra mailing lists

Brief History - Cassandra 0.6

•  No built-in secondary indexes

•  All indexes were custom-built, usually using
super-columns

•  Pros
–  Forced you to learn how Cassandra works

•  Cons
–  Lots of work
–  Super-columns proved a dead-end

Brief History - Cassandra 0.7

•  Built-in secondary indexes

•  New users flocked to these

•  Pros
–  Easy to use, out of the box

•  Cons
– Deceptively similar to SQL indexes but not the same
– Reinforce data modeling that plays against Cassandra’s

strengths

Present Day

•  New users can now get started with Cassandra
without really understanding it (CQL, etc.)

•  Veteran users are using advanced techniques
(Composites, etc.) that aren’t really documented
anywhere*

•  New user panic mode when they try to go to the
next level and suddenly find themselves in the
deep end

*Actually, they are, Google is your friend…

Let’s try to bridge the gap…

A Quick Review

There are essentially two ways of finding rows:

The Primary Index
(row keys)

Alternate Indexes
(everything else)

The “Primary Index”

•  The “primary index” is your row key*

•  Sometimes it’s meaningful (“natural id”):

*Yeah. No. But if it helps, yes.

Users = {
 "edanuff" : {
 email: "ed@anuff.com"
 }
}

The “Primary Index”

•  The “primary index” is your row key*

•  But usually it’s not:

*Yeah. No. But if it helps, yes.

Users = {
 "4e3c0423-aa84-11e0-a743-58b0356a4c0a" : {
 username: "edanuff",
 email: "ed@anuff.com"
 }
}

Get vs. Find

•  Using the row key is the best way to retrieve
something if you’ve got a precise and
immutable 1:1 mapping

•  If you find yourself ever planning to iterate
over keys, you’re probably doing something
wrong
–  i.e. avoid the Order Preserving Partitioner*

•  Use alternate indexes to find (search) things
*Feel free to disregard, but don’t complain later

Alternate Indexes

Anything other than using the row key:

•  Native secondary indexes

•  Wide rows as lookup and grouping tables

•  Custom secondary indexes

Remember, there is no magic here…

Native Secondary Indexes

•  Easy to use

•  Look (deceptively) like SQL indexes, especially
when used with CQL

CREATE INDEX ON Users(username);

SELECT * FROM Users WHERE
username="edanuff";

Under The Hood

•  Every index is stored as its own "hidden" CF

•  Nodes index the rows they store

•  When you issue a query, it gets sent to all
nodes

•  Currently does equality operations, the range
operations get performed by in memory by
coordinator node

Some Limitations

•  Not recommended for high cardinality values (i.e.
timestamps, birthdates, keywords, etc.)

•  Requires at least one equality comparison in a
query – not great for less-than/greater-than/range
queries

•  Unsorted - results are in token order, not query
value order

•  Limited to search on data types Cassandra
natively understands

I can’t live with those limitations,

what are my options?

Complain on the mailing list

Switch to Mongo

Build my indexes in my application

Actually, it’s not, but it does require

us to revisit some of Cassandra’s

unique features

That sounds hard…

Wide Rows

“Why would a row need 2B columns”?

•  Basis of all indexing, organizing, and
relationships in Cassandra

•  If your data model has no rows with over a
hundred columns, you’re either doing
something wrong or shouldn’t be using
Cassandra*

*IMHO J

Conventional Rows As Records

Users = {
 "4e3c0423-…” : {
 username: "edanuff",
 email: "ed@anuff.com",
 … : …
 },
 "e5d61f2b-…” : {
 username: "jdoe",
 email: "john.doe@gmail.com",
 … : …
 }

}

Wide Row For Grouping

Departments = {
 "Engineering" : {
 "e5d61f2b-…" : null,
 "e5d61f2b-…" : null,
 "e66afd40-…" : null,
 "e719962b-…" : null,
 "e78ece0f-…" : null,
 "e80a17ba-…" : null,
 … : …,
 }

}

Column names
are keys of rows
in “Users” CF

Wide Row As A Simple Index

Indexes = {
 "User_Keys_By_Last_Name" : {
 "adams" : "e5d61f2b-…",
 "alden" : "e80a17ba-…",
 "anderson" : "e5d61f2b-…",
 "davis" : "e719962b-…",
 "doe" : "e78ece0f-…",
 "franks" : "e66afd40-…",
 … : …,
 }

}

Comparator = “UTF8Type”

Column Families As Indexes

•  CF column operations very fast

•  Column slices can be retrieved by range, are
always sorted, can be reversed, etc.

•  If target key a TimeUUID you get both grouping
and sort by timestamp
– Good for inboxes, feeds, logs, etc. (Twissandra)

•  Best option when you need to combine groups,
sort, and search
–  Search friends list, inbox, etc.

But, only works for 1:1

Indexes = {
 "User_Keys_By_Last_Name" : {
 "adams" : "e5d61f2b-…",
 "alden" : "e80a17ba-…",
 "anderson" : "e5d61f2b-…",
 "anderson" : "e719962b-…",
 "doe" : "e78ece0f-…",
 "franks" : "e66afd40-…",
 … : …,
 }

}

What happens when I’ve got one to many?

✖ ! Not Allowed

SuperColumns to the rescue?

Indexes = {
 "User_Keys_By_Last_Name" : {
 "adams" : {
 "e5d61f2b-…" : null
 },
 "anderson" : {
 "e5d61f2b-…" : null,
 "e66afd40-…" : null
 }
 }

}

Use with caution

•  Not officially deprecated, but not highly
recommended either

•  Sorts only on the supercolumn, not subcolumn

•  Some performance issues

•  What if I want more nesting?
– Can subcolumns have subcolumns? NO!

•  Anecdotally, many projects have moved away
from using supercolumns

So, let’s revisit regular CF’s

Indexes = {
 "User_Keys_By_Last_Name" : {
 "adams" : "e5d61f2b-…",
 "alden" : "e80a17ba-…",
 "anderson" : "e5d61f2b-…",
 "anderson" : "e719962b-…",
 "doe" : "e78ece0f-…",
 "franks" : "e66afd40-…",
 … : …,
 }

}

What happens when I’ve got one to many?

✖ ! Not Allowed

So, let’s revisit regular CF’s

Indexes = {
 "User_Keys_By_Last_Name" : {
 {"adams", 1} : "e5d…",
 {"alden", 1} : "e80…",
 {"anderson", 1} : "e5f…",
 {"anderson", 2} : "e71…",
 {"doe", 1} : "e78…",
 {"franks", 1} : "e66…",
 … : …,
 }

}

What if we could turn it back to one to one?

✔ ! Allowed!!!

Composite Column Names

{"anderson", 1, 1, 1, …} : "e5f…"

Comparator = “CompositeType” or “DynamicCompositeType”

1..N Components

Build your column name out of one or more
“component” values which can be of any of the

columns types Cassandra supports
(i.e. UTF8, IntegerType, UUIDType, etc.)

Composite Column Names

{"anderson", 1, 1, 2, …} : "e5f…"

{"anderson", 1, 1, 1, …} : "e5f…"

{"anderson", 1, 2, 1, …} : "e5f…"

{"anderson", 1, 2, 2, …} : "e5f…"

Comparator = “CompositeType” or “DynamicCompositeType”

Sorts by component values using each
component type’s sort order

Retrieve using normal column slice technique

Two Types Of Composites

- column_families:
 - name: My_Composite_Index_CF
 - compare_with:
 CompositeType(UTF8Type, UUIDType)

 - name: My_Dynamic_Composite_Index_CF
 - compare_with:
 DynamicCompositeType(s=>UTF8Type, u=>UUIDType)

Main difference for use in indexes is whether you
need to create one CF per index vs one CF for

all indexes with one row per index

Static Composites

- column_families:
 - name: My_Composite_Index_CF
 - compare_with:
 CompositeType(UTF8Type, UUIDType)

{"anuff", "e5f…"} : "e5f…"

Fixed # and order
defined in column

configuration

Dynamic Composites

- column_families:
 - name: My_Dynamic_Composite_Index_CF
 - compare_with:
 DynamicCompositeType(s=>UTF8Type, u=>UUIDType)

{"anuff", "e5f…", "e5f…"} : "…"

Any # and
order of
types at
runtime

Typical Composite Index Entry

{<term 1>, …, <term N>, <key>, <ts>}

<term 1…N> - terms to query on (i.e. last_name, first_name)

<ts> - unique timestamp, usually time-based UUID

<key> - target row key

How does this work?

•  Queries are easy
– regular column slice operations

•  Updates are harder
– Need to remove old value and insert the new

value
– Uh oh, read before write??!!!

Example – Users By Location

•  We need 3 Column Families (not 2)

•  First 2 CF’s are obvious:
– Users
–  Indexes

•  We also need a third CF:
– Users_Index_Entries

Users CF

Users = {
 <user_key> : {
 "username" : "…",
 "location" : <location>,
 … : …,
 }
}

Comparator = “BytesType”

Indexes CF

Indexes = {
 "Users_By_Location" : {
 {<location>, <user_key>, <ts>} : …,
 … : …,
 }
}

Comparator = “CompositeType”

Users Index Entries CF

Users_Index_Entries = {
 <user_key> : {
 {"location", <ts 1>} : <location 1>,
 {"location", <ts 2>} : <location 2>,
 {"location", <ts N>} : <location N>,
 {"last_name", <ts 1>} : "…",
 … : …,
 }
}

Comparator = “CompositeType”

Users Index Entries CF

Users_Index_Entries = {
 <user_key> : {
 {"location", <ts 1>} : <location 1>,
 {"location", <ts 2>} : <location 2>,
 {"location", <ts N>} : <location N>,
 {"last_name", <ts 1>} : "…",
 … : …,
 }
}

Comparator = “CompositeType”

Users Index Entries CF

Users_Index_Entries = {
 <user_key> : {
 {"location", <ts 1>} : <location 1>,
 {"location", <ts 2>} : <location 2>,
 {"location", <ts N>} : <location N>,
 {"last_name", <ts 1>} : "…",
 … : …,
 }
}

Comparator = “CompositeType”

Updating The Index

•  We read previous index values from the
Users_Index_Entries CF rather than the
Users CF to deal with concurrency

•  Columns in Index CF and
Users_Index_Entries CF are timestamped so
no locking is needed for concurrent updates

Get Old Values For Column
SELECT {"location"}..{"location",*}
FROM Users_Index_Entries WHERE KEY = <user_key>;

BEGIN BATCH

DELETE {"location", ts1}, {"location", ts2}, …
FROM Users_Index_Entries WHERE KEY = <user_key>;

DELETE {<value1>, <user_key>, ts1}, {<value2>, <user_key>, ts2}, …
FROM Users_By_Location WHERE KEY = <user_key>;

UPDATE Users_Index_Entries SET {"location", ts3} = <value3>
WHERE KEY = <user_key>;

UPDATE Indexes SET {<value3>, <user_key>, ts3) = null
WHERE KEY = "Users_By_Location";

UPDATE Users SET location = <value3>
WHERE KEY = <user_key>;

APPLY BATCH

Remove Old Column Values
SELECT {"location"}..{"location",*}
FROM Users_Index_Entries WHERE KEY = <user_key>;

BEGIN BATCH

DELETE {"location", ts1}, {"location", ts2}, …
FROM Users_Index_Entries WHERE KEY = <user_key>;

DELETE {<value1>, <user_key>, ts1}, {<value2>, <user_key>, ts2}, …
FROM Users_By_Location WHERE KEY = <user_key>;

UPDATE Users_Index_Entries SET {"location", ts3} = <value3>
WHERE KEY = <user_key>;

UPDATE Indexes SET {<value3>, <user_key>, ts3) = null
WHERE KEY = "Users_By_Location";

UPDATE Users SET location = <value3>
WHERE KEY = <user_key>;

APPLY BATCH

Insert New Column Values In Index
SELECT {"location"}..{"location",*}
FROM Users_Index_Entries WHERE KEY = <user_key>;

BEGIN BATCH

DELETE {"location", ts1}, {"location", ts2}, …
FROM Users_Index_Entries WHERE KEY = <user_key>;

DELETE {<value1>, <user_key>, ts1}, {<value2>, <user_key>, ts2}, …
FROM Users_By_Location WHERE KEY = <user_key>;

UPDATE Users_Index_Entries SET {"location", ts3} = <value3>
WHERE KEY = <user_key>;

UPDATE Indexes SET {<value3>, <user_key>, ts3) = null
WHERE KEY = "Users_By_Location";

UPDATE Users SET location = <value3>
WHERE KEY = <user_key>;

APPLY BATCH

Set New Value For User
SELECT {"location"}..{"location",*}
FROM Users_Index_Entries WHERE KEY = <user_key>;

BEGIN BATCH

DELETE {"location", ts1}, {"location", ts2}, …
FROM Users_Index_Entries WHERE KEY = <user_key>;

DELETE {<value1>, <user_key>, ts1}, {<value2>, <user_key>, ts2}, …
FROM Users_By_Location WHERE KEY = <user_key>;

UPDATE Users_Index_Entries SET {"location", ts3} = <value3>
WHERE KEY = <user_key>;

UPDATE Indexes SET {<value3>, <user_key>, ts3) = null
WHERE KEY = "Users_By_Location";

UPDATE Users SET location = <value3>
WHERE KEY = <user_key>;

APPLY BATCH

Frequently Asked Questions
•  Do I need locking for concurrency?

–  No, the index will always be eventually consistent

•  What if something goes wrong?
–  You will have to have provisions to repeat the batch operation

until it completes, but its idempotent, so it’s ok

•  Can’t I get a false positive?
–  Depending on updates being in-flight, you might get a false

positive, if this is a problem, filter on read

•  Who else is using this approach?
–  Actually very common with lots of variations, this isn’t the only

way to do this but at least composite format is now standard

Some Things To Think About

•  Indexes can be derived from column values
– Create a “last_name, first_name” index from a

“fullname” column
– Unroll a JSON object to construct deep indexes of

serialized JSON structures

•  Include additional denormalized values in the
index for faster lookups

•  Use composites for column values too not just
column names

How can I learn more?
Sample implementation using Hector:
https://github.com/edanuff/CassandraIndexedCollections

JPA implementation using this for Hector:
https://github.com/riptano/hector-jpa

Jira entry on native composites for Cassandra:
https://issues.apache.org/jira/browse/CASSANDRA-2231

Background blog posts:
http://www.anuff.com/2011/02/indexing-in-cassandra.html
http://www.anuff.com/2010/07/secondary-indexes-in-cassandra.html

What is Usergrid?
•  Cloud PaaS backend for mobile and rich-client applications

•  Powered by Cassandra

•  In private Beta now

•  Entire stack to be open-sourced in August so people can
run their own

•  Sign up to get admitted to Beta and to be notified when
about source code

http://www.usergrid.com

Thank You

