
A Guide to REST and API Design

If the Only Tool You Have is a Hammer...

In his 1966 book “The Psychology of Science,” American psychologist Abraham
Maslow tackled the idea that those in the field of psychology needed to approach
treatment from multiple perspectives, to take on new ideas, and not just continue
using the same theories and techniques created by Freud and his followers so many
years ago. Acknowledging that changing your point of view can be difficult, Maslow
wrote “[I]t is tempting, if the only tool you have is a hammer, to treat everything like
a nail.” We have all had this experience. We get so used to the way things have been
done in the past, we sometimes don’t question the reasons for doing them.

It may seem curious to refer to psychology
in a work on REST and API Design, but it
works to illustrate two distinctive points:
(1) that all design decisions, regardless
of whether they pertain to software or
architecture, should be made within the
context of functional, behavioral, and social
requirements—not random trends; (2) when
you only know how to do one thing well,
everything tends to look identical.

In his dissertation, “Architectural Styles
and the Design of Network-based Software
Architectures,”1 Roy Fielding defines
Representational State Transfer (REST):
“Consider how often we see software
projects begin with the adoption of the latest
fad in architectural design, and only later
discover whether or not the system
requirements call for such an architecture.”

Don’t have time to read Fielding’s full
dissertation? That’s OK. We created this
high-level overview with you in mind.
To get started, let’s take a look at REST in
some detail.

02

“If all you have is a hammer, then everything
looks like a nail.”
—Abraham Maslow, The Psychology of Science

1 Architectural Styles and the Design of Network-based Software Architectures

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

03

Style vs. Standard

An architectural style is an abstraction—not a concrete thing. Take, for example,
a Gothic cathedral. The cathedral is different from the Gothic architectural style.
The Gothic style defines the attributes or characteristics you would see in a
cathedral built in that style.

Comparatively, the National Institute of Standards (NIST) and the National
Electrical Codes (NEC) are governing bodies that produce rules we recognize as
standards. If you failed to wire a building correctly, the place could burn down
to the ground. People often get confused between standards—that which we
know is right or wrong—and styles; a particular mode of expression.

On the Internet, REST is a style and Hypertext Transfer Protocol (HTTP) is a
standard. REST relies on stateless, client-server cacheable communications
protocols like HTTP to facilitate application development. By applying REST
design principles to a protocol, such as HTTP, developers can build interfaces
that can be used from nearly any device or operating system.

What’s your style?

Three common Web architecture
styles are:

• Tunneling (Simple Object
Access Protocol—SOAP)

• Objects (Create/Read/Update/
Delete—CRUD)

• Hypermedia (Representational
State Transfer—REST)

Watch this video2 to understand
the key features of common
architectural styles and decide
which best fits your needs.

2 API Design, Lesson 201: Web API Architectural Styles, API Academy.

http://www.apiacademy.co/lessons/api-design/web-api-architectural-styles
http://www.apiacademy.co/lessons/api-design/web-api-architectural-styles

04

Styles Are Described by Constraints
An architectural style is described by the features that make a building or other
structure notable and identifiable. The characteristic forms of Gothic architecture, for
example, include the pointed arch, the rib vault, buttresses, large windows which are
often grouped, rose windows, towers, spires, pinnacles, and ornate facades.

Similarly, REST is described by a set of architectural constraints that attempt to minimize latency and network
communications while, at the same time, maximizing the independence and scalability of component
implementations. The six constraints of REST include:
1. Client-Server—requires that a service offer one or more operations and that services wait for clients to

request these operations.
2. Stateless—requires communication between service consumer (client) and service provider (server) to

be stateless.
3. Cache—requires responses to be clearly labeled as cacheable or non-cacheable.
4. Uniform Interface—requires all service providers and consumers within a REST-compliant architecture to

share a single common interface for all operations.
5. Layered System—requires the ability to add or remove intermediaries at runtime without disrupting the system.
6. Code-on-Demand (optional)—allows logic within clients (such as Web browsers) to be updated

independently from server-side logic using executable code shipped from service providers to consumers.

“Here is one of
the few effective
keys to the design
problem—the
ability of the
designer to
recognize as many
of the constraints
as possible—his
willingness and
enthusiasm for working within these
constraints. Constraints of price, of
size, of strength, of balance, of
surface, of time and so forth.”3

—Charles Eames, Eames Design.
Multiorg

Replicated

On-Demand

RR CS

CSS$ LSS COD

LS VM U

RESTLCODC$SSLC$SSC$SS

Stateless

Reliable

Separated
Layered

Programmable

Uniform Interface

Simple

Visible

Intermediate Processing

Shared

Mobile

Extensible Reusable

ScalableCacheable

Figure: REST Derivation by Style Constraints

3 http://www.eamesoffice.com/the-work/design-q-a-text/

http://www.eamesoffice.com/the-work/design-q-a-text/

05

Connector ≠ Component
According to Fielding, “[REST] is achieved by placing constraints on connector semantics where other styles have
focused on component semantics.” His design focuses on constraining the way things connect to each other—not
the way they operate internally—and he applies this theory to the entire network. When building large-scale
applications, the concept that the connector is not the same as the component is often overlooked. But Fielding
brings it to the forefront.

Components work to solve problems in unique ways. MySQL functions differently from SQL server,
as does CouchDB or MongoDB. The same can be said for file systems that are UNIX-, Windows-,
or Mac-based. The way you queue up information, the way you decide when a transaction starts
and ends; these are entirely local features of the component which can be manipulated by the
developer. They are the developer’s components, his/her operating system, tools and language, and
are therefore private.

Connectors, on the other hand, are public. They are a series of standardized pipes that all
developers work with. Based on Fielding’s principle, developers can be as creative or as mundane
as they want within their private components as long as they agree to transmit information back
and forth using standardized public connectors.

These differ from connectors,
which include:

• Web servers
• Browser agents
• Proxy servers
• Shared cache

So, what are components?
They include:

• Databases
• File systems
• Message queues
• Transaction manager tools
• Source code

Keep components and
connectors separate, making
it easier to interchange them
later on. For example, the
code you write for your Web
server is designed to speak
to many devices on the
public Internet. But, the
code you write for your
components is designed to
speak specifically to the tools
you have available to you.

06

Ensuring Connectors Work Together
When building client-based applications or server-side services, it is this matching of private components to public
connectors—wiring them up and chaining them together—that can make development both challenging and exciting.
So, how do you ensure a connector works? How can you design scalable applications if they’re communicating
over connectors?

Identification
of Resources—
URIs, URLs, and

URNs as identifiers

Resource
Representations—

media types as ways
to represent information
passed between parties

Self-Describing Messages—
combining metadata
in headers, as well

as the body of a
message, to create a

self-descriptive response

Hypermedia—
links and forms as a

way to describe to the
client the available
actions currently
supported by the

service

The uniform interface constraint is fundamental to the design of any REST service. It simplifies and decouples the
connectors, which enables each part to evolve independently. Because of how the Web is used today, the four constraints
above are the essential tools that help developers realize Fielding’s uniform interface. The next few pages explain these
tools in greater depth.

07

URIs for Identification

As RFC23964 describes it, “a Uniform Resource Identifier (URI) is a compact string of characters for identifying
an abstract or physical resource.” This identifier can be realized in one of two ways, a Uniform Resource Locator
(URL) or a Uniform Resource Name (URN). URLs (e.g. http://example.org/users/mike) are used to identify the
online location of an individual resource while URNs (e.g. urn:user:mike) are intended to be persistent,
location-independent identifiers. The URN functions like a person’s name and a URL resembles that person’s
street address. In other words, the URN defines an item’s identity (“the user’s name is mike”) and the URL
provides a method for finding it (“mike can be found at example.org/users/”).

The components of a URI include:
• Scheme Name—identifies the protocol (e.g., FTP:, HTTP:, HTTPS:, IRC:)

• Hierarchical Part—intended to hold information hierarchical in nature
– Authority—refers to the actual DNS resolution of the server (e.g., domain name or IP address)
– Path—pertains to a sequence of segments separated by a forward slash (“/”)

• Query—contains additional identification information that is non-hierarchical in nature and often separated by a question mark (“?”)

• Fragment—provides direction to a secondary resource within the primary one identified by the Authority and Path and separated
from the rest by a hash (“#”)

The structure of URIs

scheme authorityauthority path query fragment

URL:

URN:

foo://example.com:8042/over/there?name=ferret#nose

urn:example:animal:ferret:nose

4 https://tools.ietf.org/html/rfc2396

http://example.org/users/mike
https://tools.ietf.org/html/rfc2396

0908

Media Types for Representation
According to RFC20465, MIME type identifiers (media types) should be used to
“specify the nature of the data in the body of a MIME entity, along with any
auxiliary information that may be required.” MIME types were first used for email
transmissions, as is evidenced by its full name: Multipurpose Internet Mail Extensions.
Today, MIME types permit people to exchange different kinds of data files on the
Internet: audio, video, text, images and application programs.

MIME types (or media types) identify the nature of the data and auxiliary information. On the Web, media
types also identify processing rules for the message. The MIME type identifier string has a type and subtype
separated by a slash (e.g., text/plain, image/gif, etc.).

In addition to standard MIME type strings (e.g. application/json), identifiers can be created using the
following conventions:

• Use vnd. as a prefix to the subtype for vendor-specific MIME types which are part of a commercial
product (e.g. vnd.bigcompany.report/json).

• Use prs. as a prefix to the subtype for personal/vanity MIME types which are not part of a commercial
product (e.g. prs.smith.data/json).

MIME Type
Registry
A complete list of
official MIME types
assigned by the Internet
Assigned Number
Authority (IANA) can
be found here.

5 https://tools.ietf.org/html/rfc2396

http://www.iana.org/assignments/media-types/media-types.xhtml
https://tools.ietf.org/html/rfc2046

09

Headers+Body for
Self-Describing Messages
RFC26166 states that [in HTTP] messages consist of a start-line, zero or more header
fields (also known as “header”), an empty line (e.g., a line with nothing preceding the
CRFL) indicating the end of the header fields, and possibly a message-body.

Each client request and server response is a message, and REST-compliant applications expect each
message to be self-descriptive. That means each message must contain all the information necessary
to complete the task. Other ways to describe this kind of message are “stateless” or “context-free.”
Each message passed between client and server can have a body and metadata.

REST implementations also depend on the notion of a constrained set of operations that are fully
understood by both client and server at the outset. In HTTP, the operations are described on the “start
line” and the six most widely used operations in HTTP are:

• GET—return whatever information is identified by the Request-URI

• HEAD—identical to GET except that the server must not return a message-body in the response, only
the metadata

• OPTIONS—return information about the communication options available on the request/response
chain identified by the Request-URI

• PUT—requests that the enclosed entity be stored under the supplied Request-URI

• POST—requests that the origin server accept the entity enclosed in the request as a new subordinate
of the resource identified by the Request-URI

• DELETE—requests that the origin server delete the resource identified by the Request-URI

The first three are read-only operations, while the last three are write operations. In HTTP, there are
well-defined rules for how clients and servers are expected to behave when using these operators.
The names and meanings of the accompanying metadata elements (headers) are also well-defined.
REST-compliant applications running over HTTP understand and follow these rules very carefully.

Sample HTTP
“GET” Exchange

To retrieve a file at
http://www.somehost.com/path/file.
html, open a socket to the host
www.somehost.com, use the default
port of 80 because none is specified
in the URL, and send the following
through the socket:

GET/path/file.html HTTP/1.0

From: someuser@jmarshall.com

User-Agent: HTTPTool/1.0

[blank line here]

Sent back through the same socket, the
server should respond with:

HTTP/1.0 200 OK
Date: Fri, 31 Dec 1999 23:59:59 GMT
Content-Type: text/html
Content-Length: 1354

<html>

<body>

<h1>Happy New Year!</h1>

(more file contents)

</body>

</html>

6 https://tools.ietf.org/html/rfc2396

https://tools.ietf.org/html/rfc2616

10

Links and Forms for Hypermedia H Factors
When comparing media types,
it can be helpful to document the
existing H Factors in a simple visual
chart. In the example below, the
bottom row identifies basic link factors
—the most noticeable hypermedia
factors—while the top two rows
identify control data factors.

Hypermedia Factors

HTML

Link Support
[LE] Embedding links
[LO] Outbound links
[LT] Templated queries
[LN] Non-Idempotent updates
[LI] Idempotent updates

Control Data Support
[CR] Control data for read requests
[CU] Control data for update requests
[CM] Control data for interface methods
[CL] Control data for links

For more information on H-Factors:
http://amundsen.com/hypermedia/hfactor/.

CL

CR

LE

CU

LO

CM

LT LN LI

Links and forms are used within a media type to support Fielding’s hypermedia
constraint. For example, there are a handful of affordances in HTML and the common
Web browser understands the rules for all of them. The links and forms in an HTML
message are easy to recognize, but what might not be so clear are the processing rules,
or the semantics, that are associated with them.

Links and forms afford you the ability to take an action—they are affordances. HTML has a well-defined
set of affordances. Some affordances allow you to write data, like a form that has the method property
set to “POST.” Some affordances allow you to pull data from a remote location to view within the current
HTML document like the IMG element. The HTML A element is an affordance for navigating to a new
location on the Web.

According to Fielding, “Hypermedia is defined by the presence of application control information embedded
within, or as a layer above, the presentation of information.” For Fielding, REST offers service providers the
ability to send control information (links and forms) to client applications across the world by sending
affordances, the hypermedia controls.

http://amundsen.com/hypermedia/hfactor/

Software That Spans Lifetimes
Quality physical architecture spans lifetimes. Buildings that were constructed hundreds of years
ago can be just as lively, just as useful, just as vibrant and comforting today as they were when
people first stepped inside—even when these building are converted from their original uses,
such as when churches are transformed into museums or meeting halls into apartment buildings.
Why? Because these timeless buildings rely on universal architectural patterns that cross space
and time. An entryway is an entryway; a window a window. How these elements are implemented
is dependent on the available materials. How they are represented is different in each local case,
but they can still be identified year over year.

In software development, the concept is the same. Sometimes software architects and developers want to
build applications that can last a long time. REST, with its set of universal constraints (like architectural
patterns), is one way of accomplishing this.

But Fielding didn’t say this is the only way to be successful. When he was writing his dissertation, he didn’t
include all the possibilities, all the answers. In fact, there were many parts left unfinished. What Fielding did
do, however, was document his approach to creating an architectural style for networked software which
was based on a identifying a series of constraints to meet his goal of minimizing latency and maximizing
scalability. In fact, he used constraints in the same way that Charles Eames used constraints—because they
helped achieve his goal.

We can take advantage of Fielding’s experience in order to help us see things a
little differently. We can use the tools he provided to experiment with constraints
and express our own style—and, in the process, build remarkable software
applications that can, if we wish, stand the test of time.

11

“The value of a well-designed object is when it has such a rich set of
affordances that the people who use it can do things with it that the
designer never imagined.” 7

—Donald Norman, 1994

7 https://www.youtube.com/watch?v=NK1Zb_5VxuM

http://youtu.be/NK1Zb_5VxuM
https://www.youtube.com/watch?v=NK1Zb_5VxuM

CA Technologies (NASDAQ: CA) creates software that fuels transformation for companies and enables them to
seize the opportunities of the application economy. Software is at the heart of every business, in every industry.
From planning to development to management and security, CA is working with companies worldwide to
change the way we live, transact, and communicate – across mobile, private, and public cloud, distributed and
mainframe environments. Learn more at ca.com.

© Copyright CA 2015. All rights reserved. This document is for your informational purposes only and does not form any type of warranty.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

CS200-110010

Learn more about CA API Management
Visit ca.com/API

http://www.ca.com/API

