
CS193P - Lecture 3

iPhone Application Development

Custom Classes
Object Lifecycle
Autorelease
Properties

Announcements

• Assignments 1A and 1B due Thursday 4/9 at 11:59 PM
! Enrolled Stanford students can email cs193p@cs.stanford.edu

with any questions

! Submit early! Instructions on the website...

! Delete the “build” directory manually, Xcode won’t do it

mailto:cs193p@cs.stanford.edu
mailto:cs193p@cs.stanford.edu

Announcements

• Assignments 2A and 2B due Tuesday 4/14 at 11:59 PM
! 2A: Continuation of Foundation tool

! Add custom class

! Basic memory management

! 2B: Beginning of first iPhone application

! Topics to be covered on Monday 4/13

! Assignment contains extensive walkthrough

Announcements

• Troy’s office hours: Mondays 12-2, Gates B26A

• Paul’s office hours: Tuesdays 12-2, Gates 463

• This week’s optional Friday session (4/10)
! 200-205, 3:15 - 4:05 PM

! Debugging crash course, not to be missed!

• Class newsgroup (Stanford-only) at su.class.cs193p
! No gopher site yet...

Today’s Topics

• Questions from Assignment 1A or 1B?

• Creating Custom Classes

• Object Lifecycle

• Autorelease

• Objective-C Properties

Custom Classes

Design Phase

• Create a class
! Person

• Determine the superclass
! NSObject (in this case)

• What properties should it have?
! Name, age, whether they can vote

• What actions can it perform?
! Cast a ballot

Review: Methods, Selectors, Messages

• Method
! Behavior associated with an object

- (NSString *)name

{

// Implementation

}

- (void)setName:(NSString *)name

{

// Implementation

}

Review: Methods, Selectors, Messages

• Selector
! Name for referring to a method

! Includes colons to indicate arguments

! Doesn’t actually include arguments or indicate types

SEL mySelector = @selector(name);

SEL anotherSelector = @selector(setName:);

SEL lastSelector = @selector(doStuff:withThing:andThing:);

Review: Methods, Selectors, Messages

• Message
! The act of performing a selector on an object

! With arguments, if necessary

NSString *name = [myPerson name];

[myPerson setName:@“New Name”];

Defining a class
A public header and a private implementation

Header File Implementation File

Defining a class
A public header and a private implementation

Header File Implementation File

// instance variables

NSString *name;

int age;

Class interface declared in header file
#import <Foundation/Foundation.h>

@interface Person

@end

{

}

// method declarations

- (NSString *)name;

- (void)setName:(NSString *)value;

- (int)age;

- (void)setAge:(int)age;

- (BOOL)canLegallyVote;

- (void)castBallot;

: NSObject

Defining a class
A public header and a private implementation

Header File Implementation File

Implementing custom class

• Implement setter/getter methods

• Implement action methods

Class Implementation

@implementation Person

@end

- (int)age {

return age;

}

- (void)setAge:(int)value {

age = value;

}

//... and other methods

#import "Person.h"

Calling your own methods

@implementation Person

@end

- (BOOL)canLegallyVote {

}

- (void)castBallot {

}

#import "Person.h"

if ([self canLegallyVote]) {

! ! // do voting stuff

} else {

! ! NSLog (@“I’m not allowed to vote!”);

}

return ([self age] >= 18);

Superclass methods

• As we just saw, objects have an implicit variable named “self”
! Like “this” in Java and C++

• Can also invoke superclass methods using “super”

- (void)doSomething {

// Call superclass implementation first

[super doSomething];

// Then do our custom behavior

int foo = bar;

// ...

}

Object Lifecycle

Object Lifecycle

• Creating objects

• Memory management

• Destroying objects

Object Creation

• Two step process
! allocate memory to store the object

! initialize object state

+ alloc

! Class method that knows how much memory is needed

- init

! Instance method to set initial values, perform other setup

Create = Allocate + Initialize

Person *person = nil;

person = [[Person alloc] init];

 // allow superclass to initialize its state first

if (self = [super init]) {

}

return self;

Implementing your own -init method

@implementation Person

@end

- (id)init {

}

#import "Person.h"

age = 0;

name = @“Bob”;

// do other initialization...

• Less specific ones typically call more specific with default values

- (id)init {

 return [self initWithName:@“No Name”];

}

- (id)initWithName:(NSString *)name {

 return [self initWithName:name age:0];

}

Multiple init methods

• Classes may define multiple init methods

- (id)init;

- (id)initWithName:(NSString *)name;

- (id)initWithName:(NSString *)name age:(int)age;

Finishing Up With an Object

Person *person = nil;

person = [[Person alloc] init];

[person setName:@“Alan Cannistraro”];

[person setAge:29];

[person setWishfulThinking:YES];

[person castBallot];

// What do we do with person when we’re done?

Memory Management

Allocation Destruction

C

Objective-C

malloc free

alloc dealloc

• Calls must be balanced
! Otherwise your program may leak or crash

• However, you’ll never call -dealloc directly
! One exception, we’ll see in a bit...

Reference Counting

• Every object has a retain count
! Defined on NSObject

! As long as retain count is > 0, object is alive and valid

• +alloc and -copy create objects with retain count == 1

• -retain increments retain count

• -release decrements retain count

• When retain count reaches 0, object is destroyed

• -dealloc method invoked automatically

! One-way street, once you’re in -dealloc there’s no turning back

Balanced Calls

Person *person = nil;

person = [[Person alloc] init];

[person setName:@“Alan Cannistraro”];

[person setAge:29];

[person setWishfulThinking:YES];

[person castBallot];

// When we’re done with person, release it

[person release]; // person will be destroyed here

Reference counting in action

Person *person = [[Person alloc] init];

 Retain count begins at 1 with +alloc

[person retain];

 Retain count increases to 2 with -retain

[person release];

 Retain count decreases to 1 with -release

[person release];

 Retain count decreases to 0, -dealloc automatically called

Messaging deallocated objects
Person *person = [[Person alloc] init];

// ...

[person release]; // Object is deallocated

[person doSomething]; // Crash!

Messaging deallocated objects
Person *person = [[Person alloc] init];

// ...

[person release]; // Object is deallocated

person = nil;

[person doSomething]; // No effect

Implementing a -dealloc method

@implementation Person

@end

- (void)dealloc {

}

#import "Person.h"

// Do any cleanup that’s necessary

// ...

// when we’re done, call super to clean us up

[super dealloc];

Object Lifecycle Recap

• Objects begin with a retain count of 1

• Increase and decrease with -retain and -release

• When retain count reaches 0, object deallocated automatically

• You never call dealloc explicitly in your code
! Exception is calling -[super dealloc]

! You only deal with alloc, copy, retain, release

// instance variables

NSString *name; // Person class “owns” the name

int age;

Object Ownership

#import <Foundation/Foundation.h>

@interface Person

@end

{

}

// method declarations

- (NSString *)name;

- (void)setName:(NSString *)value;

- (int)age;

- (void)setAge:(int)age;

- (BOOL)canLegallyVote;

- (void)castBallot;

: NSObject

Object Ownership

@implementation Person

@end

- (NSString *)name {

return name;

}

- (void)setName:(NSString *)newName {

}

#import "Person.h"

if (name != newName) {

 [name release];

 name = [newName retain];

// name’s retain count has been bumped up by 1

}

Object Ownership

@implementation Person

@end

- (NSString *)name {

return name;

}

- (void)setName:(NSString *)newName {

}

#import "Person.h"

if (name != newName) {

 [name release];

 name = [newName copy];

// name has retain count of 1, we own it

}

Releasing Instance Variables

@implementation Person

@end

- (void)dealloc {

}

#import "Person.h"

 // Do any cleanup that’s necessary

[name release];

// when we’re done, call super to clean us up

[super dealloc];

Autorelease

Returning a newly created object

- (NSString *)fullName {

NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,

! ! ! ! ! ! ! ! ! ! firstName, lastName];

return result;

}

Wrong: result is leaked!

Returning a newly created object

- (NSString *)fullName {

NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,

! ! ! ! ! ! ! ! ! ! firstName, lastName];

return result;

}

[result release];

Wrong: result is released too early!
Method returns bogus value

Returning a newly created object

- (NSString *)fullName {

NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,

! ! ! ! ! ! ! ! ! ! firstName, lastName];

return result;

}

[result autorelease];

Just right: result is released, but not right away
Caller gets valid object and could retain if needed

Autoreleasing Objects

• Calling -autorelease flags an object to be sent release at some
point in the future

• Let’s you fulfill your retain/release obligations while allowing an
object some additional time to live

• Makes it much more convenient to manage memory

• Very useful in methods which return a newly created object

Method Names & Autorelease

• Methods whose names includes alloc or copy
return a retained object that the caller needs to release

• All other methods return autoreleased objects

• This is a convention- follow it in methods you define!

NSMutableString *string = [[NSMutableString alloc] init];

// We are responsible for calling -release or -autorelease

[string autorelease];

NSMutableString *string = [NSMutableString string];

// The method name doesn’t indicate that we need to release it

// So don’t- we’re cool!

How does -autorelease work?

Magic!
(Just kidding...)

How does -autorelease work?

• Object is added to current autorelease pool

• Autorelease pools track objects scheduled to be released
! When the pool itself is released, it sends -release to all its objects

• UIKit automatically wraps a pool around every event dispatch

 Pool

Autorelease Pools (in pictures)

Launch app

Load m
ain nib

Wait f
or e

vent

Handle event

Exit a
pp

App in
itia

lize
d

Pool created

 Pool

Autorelease Pools (in pictures)

Launch app

Load m
ain nib

Wait f
or e

vent

Handle event

Exit a
pp

App in
itia

lize
d

Pool created

Objects autoreleased
here go into pool

 Pool

Autorelease Pools (in pictures)

Launch app

Load m
ain nib

Wait f
or e

vent

Handle event

Exit a
pp

App in
itia

lize
d

Pool created

Objects autoreleased
here go into pool

[object

autorelease];

 Pool

Autorelease Pools (in pictures)

Launch app

Load m
ain nib

Wait f
or e

vent

Handle event

Exit a
pp

App in
itia

lize
d

Pool created

Objects autoreleased
here go into pool

 Pool

Autorelease Pools (in pictures)

Launch app

Load m
ain nib

Wait f
or e

vent

Handle event

Exit a
pp

App in
itia

lize
d

Pool created

Objects autoreleased
here go into pool

 Pool

Autorelease Pools (in pictures)

Launch app

Load m
ain nib

Wait f
or e

vent

Handle event

Exit a
pp

App in
itia

lize
d

Pool released

Pool created

Objects autoreleased
here go into pool

 Pool
[object release];

Autorelease Pools (in pictures)

Launch app

Load m
ain nib

Wait f
or e

vent

Handle event

Exit a
pp

App in
itia

lize
d

Pool released

Pool created

Objects autoreleased
here go into pool

[object release];

[object release];

 Pool

Autorelease Pools (in pictures)

Launch app

Load m
ain nib

Wait f
or e

vent

Handle event

Exit a
pp

App in
itia

lize
d

Pool released

Pool created

Objects autoreleased
here go into pool

Hanging Onto an Autoreleased Object

• Many methods return autoreleased objects
! Remember the naming conventions...

! They’re hanging out in the pool and will get released later

• If you need to hold onto those objects you need to retain them
! Bumps up the retain count before the release happens

name = [NSMutableString string];

// We want to name to remain valid!

[name retain];

// ...

// Eventually, we’ll release it (maybe in our -dealloc?)

[name release];

Side Note: Garbage Collection

• Autorelease is not garbage collection

• Objective-C on iPhone OS does not have garbage collection

Objective-C Properties

Properties

• Provide access to object attributes

• Shortcut to implementing getter/setter methods

• Also allow you to specify:
! read-only versus read-write access

! memory management policy

#import <Foundation/Foundation.h>

@interface Person : NSObject

{

// instance variables

NSString *name;

int age;

}

- (void)castBallot;

@end

// method declarations

- (NSString *) ;

- (void)setName:(NSString *)value;

- (int) ;

- (void)setAge:(int)age;

- (BOOL) ;

Defining Properties

name

age

canLegallyVote

#import <Foundation/Foundation.h>

@interface Person : NSObject

{

// instance variables

NSString *name;

int age;

}

- (void)castBallot;

@end

// method declarations

- (NSString *) ;

- (void)setName:(NSString *)value;

- (int) ;

- (void)setAge:(int)age;

- (BOOL) ;

Defining Properties

name

age

canLegallyVote

#import <Foundation/Foundation.h>

@interface Person : NSObject

{

// instance variables

NSString *name;

int age;

}

- (void)castBallot;

@end

// method declarations

- (NSString *) ;

- (void)setName:(NSString *)value;

- (int) ;

- (void)setAge:(int)age;

- (BOOL) ;

Defining Properties

name

age

canLegallyVote

#import <Foundation/Foundation.h>

@interface Person : NSObject

{

// instance variables

NSString *name;

int age;

}

- (void)castBallot;

@end

// property declarations

@property int ;

@property (copy) NSString * ;

@property (readonly) BOOL ;

Defining Properties

name

age

canLegallyVote

#import <Foundation/Foundation.h>

@interface Person : NSObject

{

// instance variables

NSString *name;

int age;

}

- (void)castBallot;

@end

// property declarations

@property int age;

@property (copy) NSString *name;

@property (readonly) BOOL canLegallyVote;

Defining Properties

@implementation Person

- (void)canLegallyVote { ...

Synthesizing Properties

- (int)age {

return age;

}

- (void)setAge:(int)value {

age = value;

}

- (NSString *)name {

 return name;

}

- (void)setName:(NSString *)value {

 if (value != name) {

 [value release];

 name = [value copy];

 }

}

@implementation Person

- (void)canLegallyVote { ...

Synthesizing Properties

- (int)age {

return age;

}

- (void)setAge:(int)value {

age = value;

}

- (NSString *)name {

 return name;

}

- (void)setName:(NSString *)value {

 if (value != name) {

 [value release];

 name = [value copy];

 }

}

@implementation Person

- (void)canLegallyVote { ...

Synthesizing Properties

- (int)age {

return age;

}

- (void)setAge:(int)value {

age = value;

}

- (NSString *)name {

 return name;

}

- (void)setName:(NSString *)value {

 if (value != name) {

 [value release];

 name = [value copy];

 }

}

age

name

@implementation Person

Synthesizing Properties

- (BOOL)canLegallyVote {

return (age > 17);

}

@end

@synthesize age;

@synthesize name;

Property Attributes

• Read-only versus read-write

! @property int age; // read-write by default

! @property (readonly) BOOL canLegallyVote;

• Memory management policies (only for object properties)

 @property (assign) NSString *name; // pointer assignment

! @property (retain) NSString *name; // retain called

! @property (copy) NSString *name; // copy called

Property Names vs. Instance Variables

• Property name can be different than instance variable

 @interface Person : NSObject {

! ! ! int numberOfYearsOld;

! }

! @property int age;

! @end

! @implementation Person

! @synthesize age = numberOfYearsOld;

! @end

Properties

• Mix and match synthesized and implemented properties

• Setter method explicitly implemented

• Getter method still synthesized

@implementation Person

@synthesize age;

@synthesize name;

- (void)setAge:(int)value {

 age = value;

 // now do something with the new age value...

}

@end

Properties In Practice

• Newer APIs use @property

• Older APIs use getter/setter methods

• Properties used heavily throughout UIKit APIs
! Not so much with Foundation APIs

• You can use either approach
! Properties mean writing less code, but “magic” can sometimes

be non-obvious

Dot Syntax and self

• When used in custom methods, be careful with dot syntax for
properties defined in your class

• References to properties and ivars behave very differently

@interface Person : NSObject

{

NSString *name;

}

@property (copy) NSString *name;

@end

@implementation Person

- (void)doSomething {

! ! name = @“Fred”; // accesses ivar directly!

! ! self.name = @“Fred”; // calls accessor method

}

Common Pitfall with Dot Syntax

@implementation Person

- (void)setAge:(int)newAge {

! ! self.age = newAge;

}

@end

@implementation Person

- (void)setAge:(int)newAge {

! ! [self setAge:newAge]; // Infinite loop!

}

@end

This is equivalent to:

What will happen when this code executes?

Further Reading

• Objective-C 2.0 Programming Language
! “Defining a Class”

! “Declared Properties”

• Memory Management Programming Guide for Cocoa

Questions?

