CS193P - Lecture 3

iIPhone Application Development

Custom Classes
Object Lifecycle
Autorelease
Properties

Announcements

* Assignments 1A and 1B due Thursday 4/9 at 11:59 PM

- Enrolled Stanford students can email ¢s193p@cs.stanford.edu
with any questions

- Submit early! Instructions on the website...
 Delete the “build” directory manually, Xcode won’t do it

mailto:cs193p@cs.stanford.edu
mailto:cs193p@cs.stanford.edu

Announcements

* Assignments 2A and 2B due Tuesday 4/14 at 11:59 PM
= 2A: Continuation of Foundation tool

- Add custom class
- Basic memory management
- 2B: Beginning of first iPhone application
- Topics to be covered on Monday 4/13
- Assignment contains extensive walkthrough

Announcements

* Troy’s office hours: Mondays 12-2, Gates B26A
* Paul’s office hours: Tuesdays 12-2, Gates 463

* This week’s optional Friday session (4/10)
= 200-205, 3:15 - 4:05 PM

- Debugging crash course, not to be missed!

» Class newsgroup (Stanford-only) at su.class.cs193p
» No gopher site yet...

Today’s Topics

* Questions from Assignment 1A or 1B?
* Creating Custom Classes

* Object Lifecycle

* Autorelease

 Objective-C Properties

Custom Classes

Design Phase

* Create a class
» Person

* Determine the superclass
- NSObject (in this case)

» What properties should it have?
- Name, age, whether they can vote

* What actions can it perform?
- Cast a ballot

Review: Methods, Selectors, Messages

* Method
- Behavior associated with an object

- (NSString *)name

{
// Implementation

h

- (void)setName:(NSString *)name

{
// Implementation

¥

Review: Methods, Selectors, Messages

* Selector
- Name for referring to a method

* Includes colons to indicate arguments
- Doesn't actually include arguments or indicate types

SEL mySelector = @selector(name);
SEL anotherSelector = @selector(setName:);

SEL lastSelector = @selector(doStuff:withThing:andThing:);

Review: Methods, Selectors, Messages

* Message
- The act of performing a selector on an object

- With arguments, if necessary

NSString *name = [myPerson name];

[myPerson setName:@“New Name”];

Defining a class
A public header and a private implementation

Header File Implementation File

Defining a class
A public header and a private implementation

Header File Implementation File

Class interface declared in header file

#1import <Foundation/Foundation.h>

@interface Person : NSObject
{

// 1instance variables
NSString *name;
1nt age;

h

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (1nt)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castBallot;

@end

Defining a class
A public header and a private implementation

Header File Implementation File
- J

Implementing custom class

* Implement setter/getter methods

* Implement action methods

Class Implementation

#import "Person.h"

@implementation Person

- (1nt)age {
return age;

- (void)setAge:(int)value {
age = value;

h

// ... and other methods

@end

Calling your own methods

#1import "Person.h"

@implementation Person

- (BOOL)canlLegallyVote {
return ([self age] >= 18);
ks

- (void)castBallot {

if ([self canlLegallyVote]) {
// do voting stuff
} else {
NSLog (@“I’m not allowed to vote!”);

¥
¥

@end

Superclass methods

* As we just saw, objects have an implicit variable named “self”
= Like “this” in Java and C++

» Can also invoke superclass methods using “super”

- (void)doSomething {
// Call superclass implementation first
[super doSomething];

// Then do our custom behavior
int foo = bar;
// ...

Iy

Object Lifecycle

Object Lifecycle

* Creating objects
* Memory management
* Destroying objects

Object Creation

* Two step process
- allocate memory to store the object

- initialize object state

+ alloc

= Class method that knows how much memory is needed
- 1n1it

- Instance method to set initial values, perform other setup

Create = Allocate + Initialize

Person *person = nil;

person = [[Person alloc] 1init];

Implementing your own -init method

#1import "Person.h"

@implementation Person

- (1d)init {
// allow superclass to initialize 1ts state first
1f (self = [super 1init]) {
age = 0;
name = @“Bob”;

// do other initialization...

¥

return self;

}
@end

Multiple init methods

* Classes may define multiple init methods
- (1d)1intit;
- (1d)initWithName: (NSString *)name;
- (1d)initWithName: (NSString *)name age:(int)age;

* Less specific ones typically call more specific with default values

- (1d)init {
return [self initWithName:@“No Name”];

- (1d)initWithName: (NSString *)name {
return [self initWithName:name age:0];

Finishing Up With an Object
Person *person = nil;

person = [[Person alloc] 1init];

‘person setName:@“Alan Cannistraro”];
person setAge:29];
person setWishfulThinking:YES];

[person castBallot];

// What do we do with person when we’re done?

Memory Management

Allocation Destruction

C malloc free

Objective-C alloc dealloc

» Calls must be balanced
« Otherwise your program may leak or crash

* However, you'll never call -dealloc directly
- One exception, we'll see in a bit...

Reference Counting

* Every object has a retain count
- Defined on NSObject

= As long as retain count is > 0, object is alive and valid
- +alloc and -copy create objects with retain count ==

« -retain increments retain count

- -release decrements retain count

* When retain count reaches 0, object is destroyed
* -dealloc method invoked automatically

- One-way street, once you're in -dealloc there’s no turning back

Balanced Calls

Person *person = nil;
person = [[Person alloc] 1init];

‘person setName:@“Alan Cannistraro”];
‘person setAge:29];
person setWishfulThinking:YES];

[person castBallot];

// When we’re done with person, release 1t
[person release]; // person will be destroyed here

Reference counting in action

Person *person = [[Person alloc] init];

[Retain count begins at 1 with +alloc]

[person retain];

[Retain count increases to 2 with -retain]

[person release];
Retain count decreases to 1 with -release
[person release];

Retain count decreases to 0, -dealloc automatically called

Messaging deallocated objects

Person *person = [[Person alloc] 1init];
/] ...
[person release]; // Object 1s deallocated

[person doSomething]; // Crash!

Messaging deallocated objects

Person *person = [[Person alloc] 1init];
/] ...
[person release]; // Object 1s deallocated

person = nil;

[person doSomething]; // No effect

Implementing a -dealloc method

#1import "Person.h"
@implementation Person
- (void)dealloc {
// Do any cleanup that’s necessary

/...

// when we’re done, call super to clean us up
[super dealloc];

@end

Object Lifecycle Recap

* Objects begin with a retain count of 1
* Increase and decrease with -retain and -release
* When retain count reaches 0, object deallocated automatically

* You never call dealloc explicitly in your code
- Exception is calling -[super dealloc]

 You only deal with alloc, copy, retain, release

Object Ownership

#1import <Foundation/Foundation.h>

@interface Person : NSObject

{
// 1instance variables
NSString *name; // Person class “owns” the name
int age;

3

// method declarations
- (NSString *)name;
- (void)setName:(NSString *)value;

- (1nt)age;
- (void)setAge:(int)age;

- (BOOL)canLegallyVote;
- (void)castBallot;

@end

Object Ownership

#1import "Person.h"
@implementation Person

- (NSString *)name {
return name;

3
- (void)setName:(NSString *)newName {
1f (nhame != newName) {
[name release];
name = [newName retain];
// name’s retain count has been bumped up by 1
3
3

@end

Object Ownership

#1import "Person.h"
@implementation Person

- (NSString *)name {
return name;

3
- (void)setName:(NSString *)newName {
1f (nhame != newName) {
[name release];
name = [newName copy];
// name has retain count of 1, we own 1t
3
3

@end

Releasing Instance Variables

#1import "Person.h"
@implementation Person
- (void)dealloc {
// Do any cleanup that’s necessary

[name release];

// when we’re done, call super to clean us up
[super dealloc];

@end

Autorelease

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,

firstName, lastName];

return result;

Wrong: result is leaked!

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result release];

return result;

Wrong: result is released too early!
Method returns bogus value

Returning a newly created object

- (NSString *)fullName {
NSString *result;

result = [[NSString alloc] initWithFormat:@“%@ %@”,
firstName, lastName];
[result autorelease];

return result;

Just right: result is released, but not right away
Caller gets valid object and could retain if needed

Autoreleasing Objects

» Calling -autorelease flags an object to be sent release at some
point in the future

* Let’s you fulfill your retain/release obligations while allowing an
object some additional time to live

* Makes it much more convenient to manage memory
* Very useful in methods which return a newly created object

Method Names & Autorelease

* Methods whose names includes alloc or copy
return a retained object that the caller needs to release

NSMutableString *string = [[NSMutableString alloc] 1nit];
// We are responsible for calling -release or -autorelease
[string autorelease];

* All other methods return autoreleased objects

NSMutableString *string = [NSMutableString string];
// The method name doesn’t indicate that we need to release 1t
// So don’t- we’re cool!

* This is a convention- follow it in methods you define!

How does -autorelease work?

Magic!

(Just kidding...)

How does -autorelease work?

* Object is added to current autorelease pool

* Autorelease pools track objects scheduled to be released
- When the pool itself is released, it sends -release to all its objects

» UIKit automatically wraps a pool around every event dispatch

Autorelease Pools (in pictures)

(

Pool

~

Pool created |

Autorelease Pools (in pictures)

e p
POOI Objects autoreleased
here go into pool
at® LN N
*> 0
- Y, ‘0 ¢ .
\g
N)
- -
B L
||
||
Pool created
O o . X <
C\S\%Q O ' <\<\® e e* .’@QQ
OO N & € e© <P
\0 QQ\(\ 6(0 \\"\O QN
I\

Autorelease Pools (in pictures)

4 Y
Pool
_ 4
2 1<
\/’O&\C\S\ QQ'\(.\\’&)\\/L
W

Objects autoreleased

here go into pool
> &
@, &

\G
y \g

 /

N \g
- \
B =

s Lobject
autorelease];

Pool created

Autorelease Pools (in pictures)

s R
b
POOI Objects autoreleased
here go into pool
at® LN N
'S 3
- Y ‘0 ¢ .
Q \g
N e
- -
B L
||
L]
Pool created
Q o) : 3
(\S\ %Q . \\1’e . (\® QQS\ Q@(\\' . 'bQQ
QO '\'\’0 fo\o e S \
pO¥ NS Qe o

Autorelease Pools (in pictures)

. a
b
POOI Objects autoreleased
e here go into pool
b b 'y o
) &
< Y, ‘0 .
\g
N \a
- -
- u
||
||
Pool created
O o .
(\(\S\ . \,\’0\\1/ \0(\ 6“6 Qﬁe \\"bQ
\:00 Q \(\\ 6 (0’0 \\"\O‘ (\d\e Qj‘
i NS NG NG

Autorelease Pools (in pictures)

(

~N

Pool °

Objects autoreleased

P here go into pool
b 3 9 X >
5y \¢
- 4 ° ®
I \g o
- -
B L
Pool released -
N
Pool created
Q d : X
(‘/(\?)Q N R\ RN Qeﬂ\& X
N -X\O ,o\\\ S e ‘l*\&
2 \\ N O 3e %
w° NS Q2 o

Autorelease Pools (in pictures)

(

~N

[object release];
o<
Pool

Objects autoreleased
[object release]; here go into pool
Do ‘4/ “,“""../
Y) 0‘
7 ; :
&

e

[object release]; . :

Pool released - -

N

Pool created

Autorelease Pools (in pictures)

(

N
POOI Objects autoreleased
here go into pool
e uE Ny N
*3 g
g Y ‘0 ¢ .
4 “
. .
B L
Pool released -
N
Pool created
% o) - 3
(\S@Q A€ -0<‘® &8 Qeﬂ\& o Q°
O RS N 2 e ‘l*\&
2 \\ N O 3e %
pO¥ NS NG o

Hanging Onto an Autoreleased Object

* Many methods return autoreleased objects
- Remember the naming conventions...

- They're hanging out in the pool and will get released later

* |If you need to hold onto those objects you need to retain them
- Bumps up the retain count before the release happens

name = [NSMutableString string];

// We want to name to remain valid!
[name retain];

// ...
// Eventually, we’ll release 1t (maybe in our -dealloc?)

[name release];

Side Note: Garbage Collection

* Autorelease is not garbage collection
* Objective-C on iPhone OS does not have garbage collection

Objective-C Properties

Properties

* Provide access to object attributes
* Shortcut to implementing getter/setter methods

* Also allow you to specify:
» read-only versus read-write access

* memory management policy

Defining Properties

#1import <Foundation/Foundation.h>

@interface Person : NSObject
{
// 1instance variables
NSString *name;
int age;

h

// method declarations

- (NSString *)name;

- (void)setName:(NSString *)value;
- (1nt)age;

- (void)setAge:(int)age;

- (BOOL)canLegallyVote;

- (void)castBallot;
@end

Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{
// 1nstance variables
NSString *name;
int age;

- (void)castBallot;
@end

Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{
// 1nstance variables
NSString *name;
int age;

- (void)castBallot;
@end

Defining Properties

#import <Foundation/Foundation.h>

@interface Person : NSObject
{
// 1nstance variables
NSString *name;
int age;

- (void)castBallot;
@end

Defining Properties

#1import <Foundation/Foundation.h>

@interface Person : NSObject

{
// 1instance variables
NSString *name;
int age;

ks

// property declarations

@property int age;

@property (copy) NSString *name;
@property (readonly) BOOL canlLegallyVote;

- (void)castBallot;
@end

Synthesizing Properties

@implementation Person

- (int)age {
return age;

- (void)setAge:(int)value {
age = value;

- (NSString *)name {
return name;

- (void)setName:(NSString *)value {
1f (value != name) {
[value release];
name = [value copy];

- (void)canLegallyVote { ...

Synthesizing Properties

@implementation Person

- (void)canLegallyVote { ...

Synthesizing Properties

@implementation Person

- (void)canLegallyVote { ...

Synthesizing Properties

@implementation Person

@synthesize age;
@synthesize name;

- (BOOL)canlLegallyVote {
return (age > 17);

¥

@end

Property Attributes
* Read-only versus read-write

@property int age; // read-write by default
@property (readonly) BOOL canLegallyVote;

* Memory management policies (only for object properties)

@property (assign) NSString *name; // pointer assignment
@property (retain) NSString *name; // retain called
@property (copy) NSString *name; // copy called

Property Names vs. Instance Variables

* Property name can be different than instance variable

@interface Person : NSObject {
int numberOfYearsOld;

h

@property int age;
@end

@implementation Person
@synthesize age = numberOfYearsOld;

@end

Properties

* Mix and match synthesized and implemented properties
@implementation Person

@synthesize age;
@synthesize name;

- (void)setAge:(int)value {
age = value;

// now do something with the new age value...

¥

@end

» Setter method explicitly implemented
* Getter method still synthesized

Properties In Practice

* Newer APIs use @property
* Older APIs use getter/setter methods

* Properties used heavily throughout UIKit APIs
- Not so much with Foundation APIs

* You can use either approach

» Properties mean writing less code, but “magic” can sometimes
be non-obvious

Dot Syntax and self

» When used in custom methods, be careful with dot syntax for
properties defined in your class

* References to properties and ivars behave very differently

@interface Person : NSObject
{

3
@property (copy) NSString *name;

@end

NSString *name;

@implementation Person

- (void)doSomething {
name = @“Fred”; // accesses 1ivar directly!

self.name = @“Fred”; // calls accessor method

Common Pitfall with Dot Syntax

What will happen when this code executes?

@implementation Person
- (void)setAge:(1nt)newAge {
self.age = newAge;

}
@end

This is equivalent to:

@implementation Person
- (void)setAge:(1nt)newAge {
[self setAge:newAge]; // Infinite loop!

}
@end

Further Reading

* Objective-C 2.0 Programming Language
- “Defining a Class”

- “Declared Properties”
* Memory Management Programming Guide for Cocoa

Questions?

