CS193P - Lecture 5

iIPhone Application Development

Views
Drawing
Animation

Announcements

* Assignment 3 due Tuesday, 4/21

* Friday session is a special, super-mega office hour
- featuring Troy and Paul

* To sign up for ¢s193p-auditors@lists.stanford.edu:
- https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors

» AT&T Big Mobile On Campus Challenge
- $10,000 scholarship for best applications

- http://att.com/higherEDcontest

mailto:cs193p-auditors@lists.stanford.edu
mailto:cs193p-auditors@lists.stanford.edu
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors
https:/mailman.stanford.edu/mailman/listinfo/cs193p-auditors

Questions from Monday?

* Model, View, Controller
 Interface Builder & Nibs

* Delegate
- Allows one object to act on behalf of another object

* Target-Action

Today’s Topics

* Views

* Drawing

* Text & Images
* Animation

View Fundamentals

 Rectangular area on screen

* Draws content

* Handles events

* Subclass of UIResponder (event handling class)

» Views arranged hierarchically
= every view has one superview

= every view has zero or more subviews

View Hierarchy - UIWindow

* Views live inside of a window

* UIWindow is actually just a view
- adds some additional functionality specific to top level view

* One UIWindow for an iPhone app
- Contains the entire view hierarchy

- Set up by default in Xcode template project

View Hierarchy - Manipulation

» Add/remove views in IB or using UlView methods
- (void)addSubview:(UIView *)view;
- (void)removeFromSuperview;

* Manipulate the view hierarchy manually:
- (void)insertSubview: (UIView *)view atIndex:(int)index;
- (void)insertSubview:(UIView *)view belowSubview:(UIView *)view;

- (void)insertSubview: (UIView *)view aboveSubview:(UIView *)view;

- (void)exchangeSubviewAtIndex:(1int)index
withSubviewAtIndex:(int)otherIndex;

View Hierarchy - Ownership

 Superviews retain their subviews

* Not uncommon for views to only be retained by superview
- Be careful when removing!

- Retain subview before removing if you want to reuse it

* Views can be temporarily hidden
theView.hidden = YES;

View-related Structures

* CGPoint
- location in space: {x,Vy}

* CGSize
- dimensions: { width , height }

* CGRect
- location and dimension: { origin , size }

Rects, Points and Sizes

CGRect

origin CGPoint

, 80
size

54

CGSize

width 144

height 72

View-related Structure

Creation Function Example

CGPoint point
CGPointMake (x, y) point.x = 300.

= CGPointMake (100.0, 200.0);
0,

point.y = 30.0;

CGS1ze size =
CGS1zeMake (width, height) size.width =1
size.height =

CGRect rect =
CGRectMake (x, vy,

width, height) rect.origin.x
rect.size.widt

CGSizeMake (42.0, 11.0);
00.0;
72.0;

CGRectMake (100.0, 200.0,

42.0, 11.0);
0.0
-5

h 0.0;

UlView Coordinate System

» Origin in upper left corner
* y axis grows downwards

Location and Size

* View’s location and size expressed in two ways

0,0

400

- Frame is in superview'’s coordinate system
» Bounds is in local coordinate system

200, 100

550

View A frame:
origin: 0,0
size: 550 x 400

View A bounds:
origin: 0,0
size: 550 x 400

View B frame:
origin: 200, 100
size: 200 x 250

View B bounds:
origin: 0,0
size: 200 x 250

Frame and Bounds

» Which to use?
- Usually depends on the context

* If you are using a view, typically you use frame

* If you are implementing a view, typically you use bounds

* Matter of perspective
- From outside it’s usually the frame

» From inside it’s usually the bounds

* Examples:
- Creating a view, positioning a view in superview - use frame

- Handling events, drawing a view - use bounds

Creating Views

Where do views come from?

» Commonly Interface Builder
 Drag out any of the existing view objects (buttons, labels, etc)
* Or drag generic UlView and set custom class

Libramy
[Clbj'l':ftﬂ Media

Number of sides: 5

) Inputs & Values

Decrease Increase

or all drawing in that region, as well as
eceiving events that occur in the region.

Manual Creation

* Views are initialized using -initWithFrame:
CGRect frame = CGRectMake(0, 0, 200, 150);

UIView *myView = [[UIView alloc] initWithFrame:frame];

e Example:

CGRect frame =
UILabel *1label

CGRectMake(20, 45, 140, 21);
= [[UILabel alloc] initWithFrame:frame];

‘window addSubview:label];
label setText:@”Number of sides:”];
label release]; // label now retained by window

Window

Number of sides: } 5

Decrease Increase

Defining Custom Views

* Subclass UlView

* For custom drawing, you override:
- (void)drawRect:(CGRect)rect;

* For event handling, you override:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event;
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event;

Drawing Views

- (void)drawRect:(CGRect)rect

» -[UIView drawRect:] does nothing by default
- If not overridden, then backgroundColor is used to fill

* Override - drawRect: to draw a custom view
* rect argument is area to draw

* When is it OK to call drawRect:?

Be Lazy

 drawRect: is invoked automatically
- Don't call it directly!

* Being lazy is good for performance

 When a view needs to be redrawn, use:
- (void)setNeedsDisplay;

* For example, in your controller:

- (void)setNumberOfSides:(int)sides {
numberOfSides = sides;
[polygonView setNeedsDisplay];

CoreGraphics and Quartz 2D

» UIKit offers very basic drawing functionality

UIRectF111(CGRect rect);
UIRectFrame(CGRect rect);

* CoreGraphics: Drawing APlIs
* CGis a C-based API, not Objective-C

» CG and Quartz 2D drawing engine define simple but powerful
graphics primitives
- Graphics context

- Transformations

- Paths

- Colors

= Fonts

- Painting operations

Graphics Contexts

» All drawing is done into an opaque graphics context
 Draws to screen, bitmap buffer, printer, PDF, etc.

» Graphics context setup automatically before invoking drawRect:
- Defines current path, line width, transform, etc.

= Access the graphics context within drawRect: by calling
(CGContextRef)UIGraphicsGetCurrentContext(void);

- Use CG calls to change settings

 Context only valid for current call to drawRect:
» Do not cache a CGContext!

CG Wrappers

» Some CG functionality wrapped by UIKit

e UlColor
« Convenience for common colors

- Easily set the fill and/or stroke colors when drawing

UIColor *redColor = [UIColor redColor];
[redColor set];

// drawing will be done 1n red

* UlFont
- Access system font

- Get font by name

UIFont *font = [UIFont systemFontOfSize:14.0];
[myLabel setFont:font];

Simple drawRect: example

* Draw a solid color and shape

- (void)drawRect: (CGRect)rect {
CGRect bounds = [self bounds];

[[UIColor grayColor] set];
UIRectFill (bounds);

CGRect square = CGRectMake (10, 10, 50, 100);
[[UIColor redColor] set];
UIRectF1ll (square); aill Carrier = 10:51 AM

[[UIColor blackColor] set];
UIRectFrame (square);

Drawing More Complex Shapes

« Common steps for drawRect: are
- Get current graphics context

- Define a path

- Set a color

- Stroke or fill path

- Repeat, if necessary

Paths

» CoreGraphics paths define shapes
* Made up of lines, arcs, curves and rectangles

* Creation and drawing of paths are two distinct operations
- Define path first, then draw it

“l-- l....
o* IS
* 4
* 4
V'S &
¢ L
S .
S L
N)
. ‘
n a
- (]
N
~ ~
Py L
Py 2 4
e o' 4
N * by
llllllllllllllllll » o _gu%e, . * : “
< L 2 “‘ Ny, gan?® L/ DY
|] a S .
n
| | 8 .
[] ab |]
[‘l“- ...'l"
| | * *
n * *
*
||] * ”
u | * S
| |] “ ’
[] - |
| | n " a
| | n n a
|| n n L
m = n +*% n
L] | [| ¢‘ '0
* 14 no* *%w:"
4 EEEEEEEEEEEEEEEER » . 'y
p* &

CGPath

» Two parallel sets of functions for using paths
- CGContext “convenience” throwaway functions

- CGPath functions for creating reusable paths

CGContext

CGContextMoveToPoint
CGContextLineToPoint

CGContextAddArcToPoint

CGContextClosePath

And soon andsoon...

CG
CG

CG

Pat

Pat

Pat

CGPath

nMoveToPoint

NAC

NAC

C

C

LineToPoint

ArcToPoint

CGPathCloseSubPath

Simple Path Example

- (void)drawRect:(CGRect)rect {
CGContextRef context = UIGraphicsGetCurrentContext();

[[UIColor grayColor] set];
UIRectFill ([self bounds]);

-all Carrier = 11:07 AM

CGContextBeginPath (context);
CGContextMoveToPoint (context, 75, 10);
CGContextAddLineToPoint (context, 10, 150);
CGContextAddLineToPoint (context, 1600, 150);
CGContextClosePath (context);

[[UIColor redColor] setFill];
[[UIColor blackColor] setStroke];
CGContextDrawPath (context, kCGPathFillStroke);

More Drawing Information

e UIView Class Reference
* CGContext Reference

7

* “Quartz 2D Programming Guide

e Lots of samples in the iPhone Dev Center

Images & Text

Ullmage

» UIKit class representing an image

* Creating Ullmages:
- Fetching image in application bundle

- Use +[UlImage imageNamed:(NSString *)name]

* Include file extension in file name, e.g. @"mylmage.jpg”
- Read from file on disk

 Use -[Ullmage initWithContentsOfFile:(NSString *)path]
- From data in memory

= Use -[Ullmage initWithData:(NSData *)datal]

Creating Images from a Context

* Need to dynamically generate a bitmap image
* Same as drawing a view

* General steps
- Create a special CGGraphicsContext with a size

* Draw
- Capture the context as a bitmap
 Clean up

Bitmap Image Example

- (UIImage *)polygonImageOfSize:(CGSize)size {
UIImage *result = nil;

UIGraphicsBeginImageContext (size);

// call your drawing code...

result = UIGraphicsGetImageFromCurrentContext();
UIGraphicsEndImageContext();

return result;

Getting Image Data

* Given Ullmage, want PNG or JPG representation

NSData *UIImagePNGRepresentation (UIImage * image);
NSData *UIImagelPGRepresentation (UIImage * image);

» Ullmage also has a CGImage property which will give you a
CGlmageRef to use with CG calls

Drawing Text & Images

* You can draw Ullmages in -drawRect:

- [UIImage drawAtPoint:(CGPoint)point]
- [UIImage drawInRect:(CGRect)rect]
- [UIImage drawAsPatternInRect:(CGRect)rect]

* You can draw NSString in -drawRect:

- [NSString drawAtPoint:(CGPoint)point withFont:(UIFont *)font]

But there is a better way!

Text, Images, and UIKit views

Constructing Views

* How do | implement this?

e Goal

- PolygonView that displays shape
as well as name

* Initial thought
- Have PolygonView draw the text

- Inefficient when animating

* Instead use UlLabel!
= Tastes great

- Less filling

il Carrier =

NMumber of sides: 8

Decrease

Increase

UlLabel

e UlView subclass that knows how to draw text

* Properties include:
- font

= textColor
= shadow (offset & color)
- textAlignment

UllmageView

 UlView that draws Ullmages

* Properties include:
* Image
= animatedimages
= animatedDuration

- animatedRepeatCount

» contentMode property to align and scale image wrt bounds

UlControl

» UlView with Target-Action event handling

* Properties include:
- enabled

= selected
- highlighted

 UIButton: font, title, titleColor, image, backgroundimage

 UlTextField: font, text, placeholder, textColor

» See UIKit headers for plenty more

View Properties & Animation

Animating Views

» What if you want to change layout dynamically?
* For example, a switch to disclose additional views...

-ill Carrier = 12:11 PM

Number of sides: 5

Decrease Increase

Advanced Options:

UIView Animations

* UlView supports a number of animatable properties
- frame, bounds, center, alpha, transform

* Create "blocks” around changes to animatable properties

» Animations run asynchronously and automatically

Other Animation Options

 Additional animation options
- delay before starting

- start at specific time

- curve (ease in/out, ease in, ease out, linear)

* repeat count

- autoreverses (e.g. ping pong back and forth)

View Animation Example

- (void)showAdvancedOptions {
// assume polygonView and optionsView

[UIView beginAnimations:@”advancedAnimations” context:nil];
[UIView setAnimationDuration:0.3];

// make optionsView visible (alpha is currently 0.0)
optionsView.alpha = 1.0;

// move the polygonView down

CGRect polygonFrame = polygonView.frame;
polygonFrame.origin.y += 200;
polygonView. frame = polygonFrame;

[UIView commitAnimations];

Knowing When Animations Finish

 UlView animations allow for a delegate
[UIView setAnimationDelegate:myController];

» myController will have callbacks invoked before and after

- (void)animationWillStart:(NSString *)animationID
context:(void *)context;

- (void)animationD1idStop:(NSString *)animationID
finished: (NSNumber *)finished
context:(void *)context;

 Can provide custom selectors if desired, for example
[UIView setAnimationWillStartSelector:
@selector(animationWillStart)];
[UIView setAnimationDidStopSelector:
@selector(animationDidStop)];

How Does It Work?

* |s drawRect: invoked repeatedly?

* Do | have to run some kind of timer in order to drive the
animation?

* Is it magic?

Core Animation

» Hardware accelerated rendering engine
 UlViews are backed by “layers”

e -drawRect: results are cached
» Cached results used to render view

- -drawRect: called only when contents change

- Layers maintained in separate hierarchy managed by separate
process

* Property animations done automatically by manipulating layers

View Transforms

* Every view has a transform property
- used to apply scaling, rotation and translation to a view

» Default “Identity transform”
» CGAffineTransform structure used to represent transform
 Use CG functions to create, modify transforms

CGAffineTransform Functions (just a small example set)

CGAffineTransformScale (transform, xScale, yScale)

CGAffineTransformRotate (transform, angle)

CGAffineTransformTranslate (transform, xDelta, yDelta)

More Animation Information

* iPhone OS Programming Guide
- “Modifying Views at Runtime” section

* Core Animation Programming Guide

Assignment 3 Hints

Saving State Across App Launches
* NSUserDefaults to read and write prefs & state

* Singleton object:
+ (NSUserDefaults *)standardUserDefaults;

* Methods for storing & fetching common types:

- (1nt)integerForKey:(NSString *)key;
- (void)setInteger:(int)value forKey:(NSString *)key;

- (1nt)objectForKey:(NSString *)key;
- (void)setObject:(int)value forKey:(NSString *)key;

* Find an appropriate time to store and restore your state

Questions?

