
David Myszewski, David Goodwin
iPhone Performance

Part 1

Adopting Multitasking on iPhone OS

2

• Multitasking is a major feature
of iOS 4

• Improves user experience
• Enhances existing apps
• Enables new app classes
• Every app should adopt multitasking

Introduction

3

What You’ll Learn

• Overview of iOS 4 multitasking
• How to enable multitasking in your app

■ APIs
■ Responsibilities
■ Best practices

• Using development tools to implement multitasking

4

iPhone OS 3 vs. iOS 4
Demo

5

iOS 4 Multitasking Philosophy

• General purpose concurrency is not the solution for mobile devices

Benefit from
background execution

Switch quickly,
preserve state

Push notifications

Finish task, audio,
location, VoIP

Don’t benefit from
background execution

Finish task, audio,
location, VoIP

6

Fast App Switching
Multitasking benefits for all iOS 4 apps

• App resumes immediately
• App state is preserved
• Tight integration with multitasking UI
• Demonstrates supported, up-to-date app

7

Understanding the Services

• Fast app switching
 Resume quickly, preserve state

• Push notifications
 Respond to a notification sent from a remote server

• Local notifications
 Push-style notification delivered at a predetermined time

8

Understanding the Services

• Background audio
 Play audible content to the user while in the background

• Task completion
 Extra time to complete a task

• Location—Navigation
 Keep users continuously informed of their location

• Location—Significant location change, region monitoring
 Respond to location changes while in the background

• Voice over IP
 Make and receive phone calls using an Internet connection

9

Multitasking Services
Details

Adopting Multitasking on iPhone OS, Part 2 Mission
Tuesday, 3:15PM-4:15PM

10

How to Enable Multitasking

• Build with iPhone SDK 4
• Fast app switching enabled by default
• Background audio, location, and VoIP require explicit declaration
in app’s Info.plist

11

App Life Cycle

12

App Life Cycle
iPhone OS 3 review

Active

Inactive

Not Running

13

Background

Foreground

Inactive

App Life Cycle
iOS 4

Active

Not Running

Suspended

Running

14

Foreground

Background

Inactive

UIApplicationDelegate Callbacks
Launch and active/inactive

Active

Not Running

Suspended

Running

application:
didFinishLaunchingWithOptions:

applicationDidBecomeActive:

applicationWillResignActive:

15

Not Running

Background

Foreground

Inactive

Active

Suspended

Running

UIApplicationDelegate Callbacks
Switching from an app

applicationWillResignActive:

applicationDidEnterBackground:

X
16

Not Running

Foreground

Background

Inactive

Active

Suspended

Running

UIApplicationDelegate Callbacks
Switching to an app

applicationDidBecomeActive:

applicationWillEnterForeground:

X
17

Foreground

Inactive

Active

Background

Not Running

Suspended

Running

UIApplicationDelegate Callbacks
Termination

X
applicationWillTerminate:

18

Life Cycle Notifications

UIApplicationDelegate Callback

application:didFinishLaunchingWithOptions:

applicationWillTerminate:

applicationDidBecomeActive:

applicationWillResignActive:

applicationDidEnterBackground:

applicationWillEnterForeground:

Notification

UIApplicationDidFinishLaunchingNotification

UIApplicationWillTerminateNotification

UIApplicationDidBecomeActiveNotification

UIApplicationWillResignActiveNotification

UIApplicationDidEnterBackgroundNotification

UIApplicationWillEnterForegroundNotification

19

Responsibilities and Best Practices

20

System Resource Management

• Goals
■ Preserve foreground app usability
■ Preserve battery life

• System resources shared by all apps
• Multitasking apps should minimize
system footprint in the background

21

Responsibilities and Best Practices
Outline

• Entering the background
■ Save app state
■ Reduce memory usage
■ Prepare UI
■ Stop Bonjour and network listening
■ Stop GPU usage
■ Stop shared system data access

• Resuming from suspend
■ Restore app state
■ Handle system changes
■ Restore networking

22

Saving App State

• Save app state when entering
the background

• Save state incrementally
■ Only have a few seconds in
applicationDidEnterBackground:

Foreground

Background

Inactive

Suspended

Running

Not Running

Active

applicationDidEnterBackground:

23

Responsibilities and Best Practices
Outline

• Entering the background
■ Save app state
■ Reduce memory usage
■ Prepare UI
■ Stop Bonjour and network listening
■ Stop GPU usage
■ Stop shared system data access

• Resuming from suspend
■ Restore app state
■ Handle system changes
■ Restore networking

24

System Memory

• Memory is a limited resource
• System terminates apps when
memory exhausted

• Priority
■ Suspended (high memory usage)
■ Background running (high memory usage)
■ Suspended (low memory usage)
■ Background running (low memory usage)

• Termination due to low memory is a
normal condition

Foreground

Background

Inactive

Active

Suspended

Running

Not Running

25

Reducing Memory Usage

• Using less memory allows more apps to remain alive
• Low memory usage increases chance that your app stays alive
• Reduce memory use in applicationDidEnterBackground:

26

App Memory Usage

• App state
• App files and databases
• Views and layers
• Backing stores
• View controllers

Backing Graphic Store

Journal

Image … SQLite, CoreData,
NSCache, “flat” file, …Entries

UIViewController

UIView CALayer

27

Backing Graphic Store

Journal

Image … SQLite, CoreData,
NSCache, “flat” file, …Entries

UIViewController

UIView CALayer

• Free backing graphic store
• Release non-visible
UIViewController views

• Flush [UIImage ImageNamed]
cache

• Reclaim SQLite page cache,
CoreData, NSCache

Reducing Memory Usage
Reductions performed by system

28

Backing Graphic Store

Journal

Image … SQLite, CoreData,
NSCache, “flat” file, …Entries

UIViewController

UIView CALayer

• Release images

• Flush caches of data that can
be regenerated

• For read-only or sparsely
written files use mmap()
■ System only uses memory
as needed

■ Read-only memory can be
reclaimed without
terminating app

Reducing Memory Usage
Reductions performed by your app

[myImage release];

29

Backing Graphic Store

Journal

Image … SQLite, CoreData,
NSCache, “flat” file, …Entries

UIViewController

UIView CALayer

• Typically don’t release
view controllers

• Other state—Must tradeoff
memory savings vs. time to
recreate on resume

Reducing Memory Usage
Tradeoffs

30

Responsibilities and Best Practices
Outline

• Entering the background
■ Save app state
■ Reduce memory usage
■ Prepare UI
■ Stop Bonjour and network listening
■ Stop GPU usage
■ Stop shared system data access

• Resuming from suspend
■ Restore app state
■ Handle system changes
■ Restore networking

31

Prepare UI for Background

• Pause app if appropriate
■ Update UI to show pause
■ Typically performed in applicationDidResignActive:

• Remove alerts and actionsheets if appropriate

• Prepare for screenshot
■ Hide sensitive information
■ Stop animations

- (void)dismissWithClickedButtonIndex:(NSInteger)buttonIndex
 animated:(BOOL)animated

32

Responsibilities and Best Practices
Outline

• Entering the background
■ Save app state
■ Reduce memory usage
■ Prepare UI
■ Stop Bonjour and network listening
■ Stop GPU usage
■ Stop shared system data access

• Resuming from suspend
■ Restore app state
■ Handle system changes
■ Restore networking

33

Network
Listening Sockets

• Suspended app cannot respond to
connection attempts

• Close listening sockets
before suspend

• Reopen listening sockets
on resume

Foreground

Background

Inactive

Suspended

Running

Not Running

Active

applicationWillEnterForeground:

applicationDidEnterBackground:

34

Bonjour

• Suspended app cannot accept incoming connection attempts
■ Should not advertise service
■ Should not browse for service

• Bonjour operations may be cancelled while app suspended
• When app resumes

■ Be prepared for errors
■ Restart Bonjour services if necessary
■ Update UI

35

Background

GPU

• GPU off limits in background—
creating EAGLContext or issuing
OpenGL commands results
in termination

• Enforced in background running state
• Stop GPU usage before returning from
applicationDidEnterBackground:

Foreground

Inactive

Suspended

Running

Not Running

Active

applicationDidEnterBackground:

36

Background

Shared System Data

• Holding exclusive access to shared
data while suspended not allowed—
results in termination

• Shared data accessed by API
■ Calendar
■ Address book
■ Music and Media libraries

• Enforced upon entry to
suspended state

• Stop API usage before returning from
applicationDidEnterBackground:

Foreground

Inactive

Suspended

Running

Not Running

Active

37

Responsibilities and Best Practices
Outline

• Entering the background
■ Save app state
■ Reduce memory usage
■ Prepare UI
■ Stop Bonjour and network listening
■ Stop GPU usage
■ Stop shared system data access

• Resuming from suspend
■ Restore app state
■ Handle system changes
■ Restore networking

38

Backing Graphic Store

Journal

Image … SQLite, CoreData,
NSCache, “flat” file, …Entries

UIViewController

UIView CALayer

Restore App State

• Backing graphic store
• ImageNamed cache will
repopulate lazily as images
are requested

• SQLite, CoreData, NSCache
restored as needed

• Memory mapped files will
reload as needed

Restores performed by system

39

Restore App State

• No one right way to restore app state on resume
• Tradeoff—Memory size reduction vs. time and effort to restore state

• Consider lazy restore for your app data
■ Release objects as entering background
■ Restore objects on demand—As they are needed

Best practices

40

Restore App State
Lazy state restore

- (MyData *) dataAtIndex:(unsigned)index {
! if (_data[index] == nil) {
! ! _data[index] = [DataController loadDataAtIndex:index];
! ! [_data[index] retain];
! }
! return _data[index];
}

- (void) applicationDidEnterBackground:(UIApplication *)app {
! ...
! for (i = 0; i < _dataCount; i++) {
! ! [_data[i] release];
! ! _data[i] = nil;
! }
}

41

Responsibilities and Best Practices
Outline

• Entering the background
■ Save app state
■ Reduce memory usage
■ Prepare UI
■ Stop Bonjour and network listening
■ Stop GPU usage
■ Stop shared system data access

• Resuming from suspend
■ Restore app state
■ Handle system changes
■ Restore networking

42

System Changes While Suspended

• System change notifications not delivered to suspended app
• System coalesces and queues notifications
• Delivered when app resumes

• App must be prepared to handle burst of notifications
■ Avoid delaying app responsiveness
■ Avoid rapid UI updates

43

Settings and Locale Changes

• Preferences and locale may be changed in Settings app

Event

Preference changed in Settings

Language or locale change

Notification

NSUserDefaultsDidChangeNotification

NSCurrentLocaleDidChangeNotification

44

Notifications Delivered on Resume

Event

Accessory connected

Accessory disconnected

Device orientation change

Time changes significantly

Battery level change

Battery state change

Proximity state change

Protected file status change

External display connected

External display disconnected

Screen display mode change

Preference changed in Settings

Language or locale change

Notification

EAAccessoryDidConnectNotification

EAAccessoryDidDisconnectNotification

UIDeviceOrientationDidChangeNotification

UIApplicationSignificantTimeChangeNotification

UIDeviceBatteryLevelDidChangeNotification

UIDeviceBatteryStateDidChangeNotification

UIDeviceProximityStateDidChangeNotification

UIApplicationProtectedDataWillBecomeUnavailable

UIApplicationProtectedDataDidBecomeUnavailable

UIScreenDidConnectNotification

UIScreenDidDisconnectNotification

UIScreenModeDidChangeNotification

NSUserDefaultsDidChangeNotification

NSCurrentLocaleDidChangeNotification

45

Responsibilities and Best Practices
Outline

• Entering the background
■ Save app state
■ Reduce memory usage
■ Prepare UI
■ Stop Bonjour and network listening
■ Stop GPU usage
■ Stop shared system data access

• Resuming from suspend
■ Restore app state
■ Handle system changes
■ Restore networking

46

Network
Established Connections

• Network connections can be lost for many reasons
■ Network conditions
■ Device location

• When suspended app resumes, app must be prepared for lost
network connections
■ Handle errors
■ Reestablish connections

47

Example applicationDidEnterBackground:

- (void) applicationDidEnterBackground:(UIApplication *)application {
// save app state
[self saveState];

// reduce memory usage
[self releaseImages];
[self flushCaches];

// prepare UI
[self cancelAlert];
[self pauseUI];

// close listening sockets
[self closeServiceSocket];

}

48

Example applicationWillEnterForeground:

- (void) applicationWillEnterForeground:(UIApplication *)application {
// restoring state lazily so no explicit restore

// open listening sockets
[self openServiceSocket];

}

49

Multitasking and Development Tools

50

Instruments

• App life cycle events are flagged

51

Simulator

• Simulator is not a replacement for device
• Supported

■ Fast app switching
■ Task completion
■ Local notifications
■ Multitasking UI

• Not supported
■ Background audio, location, and VoIP
■ Significant location change, region monitoring
■ Push notifications

52

Debugger

• Debugging app changes some behavior,
so must also test outside of the debugger

• No time limit in UIApplicationDelegate callbacks
• No time limit in task completion handler

53

Summary

• iOS 4 provides multitasking benefits
while preserving device usability and battery life

• All apps can benefit from fast app switching
■ Resume quickly
■ Preserve state
■ Fully integrate with multitasking UI

• Additional multitasking services enable app improvements
and new classes of apps

54

Adopting Multitasking on iPhone OS, Part 2 Mission
Tuesday 3:15PM

Mastering Xcode for iPhone OS Development, Part 1 Mission
Tuesday 2:00PM

Related Sessions

What’s New In Instruments Presidio
Wednesday 11:30AM

Introducing Blocks and Grand Central Dispatch on iPhone Russian Hill
Wednesday 11:30AM

Simplifying Networking Using Bonjour Nob Hill
Wednesday 10:15AM

Core OS Networking Pacific Heights
Tuesday 9:00AM

55

Multitasking Lab 1 Application Frameworks Lab D
Tuesday 4:30PM

Multitasking Lab 2 Application Frameworks Lab A
Wednesday 2:00PM

Labs

Multitasking Lab 3 Application Frameworks Lab A
Friday 11:30AM

56

Michael Jurewitz
Developer Tools and Peformance
jurewitz@apple.com

Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Documentation
iPhone Application Programming Guide
http://developer.apple.com/iphone

Apple Developer Forums
http://devforums.apple.com

More Information

57

58

59

