
Essential Design Pattern for Flexible Software

Ken Kocienda
Principal Engineer, iPhone Software

2

Design Patterns

Delegate

Observer

Iterator

Builder

Command

State

Flyweight

Object/Relational Mapping

Factory Method Object-Oriented

Strategy

Interpreter

Visitor
Prototype

Mediator

Memento

Decorator

Facade

Model-View-Controller (MVC)

Composite

Adapter

3

Design Patterns

Delegate

Observer

Iterator

Builder

Command

State

Flyweight

Object/Relational Mapping

Factory Method Object-Oriented

Strategy

Interpreter

Visitor
Prototype

Mediator

Memento

Decorator

Facade

Model-View-Controller (MVC)

Composite

Adapter

4

Model-View-Controller (MVC)

5

Why Should You Care?

6

Great Apps

7

Small screen = simpler app organization

8

Bigger screen = more complex app organization

9

Serving two masters at the same time

10

MVC Can Help

11

There will be a test on Friday

Changes

Changes Update

Update

Model Data

Controller Coordination

View Display

12

The “Real World”

13

14

The 10 Best MVC Tips Ever

15

Flexible and Easy to Change

16

Great Apps

17

#1. Learn MVC for iPhone OS

18

Common conventions

Built up from other design patterns

#1. Learn MVC for iPhone OS

19

Connections Between Objects

20

Connections between objects

Changes

Changes Update

Update

Model Data

Controller Coordination

View Display

21

Connections between objects

Changes

Changes Update

Update

Model Data

Controller Coordination

View Display

22

Target-Action

Notification

Delegation

Built on lower-level design patterns

23

Reusing controls without subclassing

“When you’re tapped,
call this method on me”

-setTarget:(id)target action:(SEL)action...

24

Broadcast channels for important news

“I’m going to appear.”

NSNotificationCenter

25

Delegation

26

“Should I end editing?”

“Yes.”

Reuse without subclassing

User taps return key

UITextFieldDelegate

27

UITextField

UIApplication

UIScrollView

UITableView

UIWebView

Many classes have a delegate

28

will/did/should

Many classes have a delegate

29

“I’m about to resign active.”

- (void)applicationWillResignActive:

UIApplicationDelegate

30

“I zoomed.”

- (void)scrollViewDidZoom:

UIScrollViewDelegate

31

“Should I clear my contents?”

- (BOOL)textFieldShouldClear:

UITextFieldDelegate

32

Flexible and Easy to Change

33

Connections between objects

Changes

Changes Update

Update

Model Data

Controller Coordination

View Display

34

Connections between objects

Changes

Changes Update

Update

Model Data

Controller Coordination

View Display

35

Common conventions

Built up from other design patterns

#1. Learn MVC for iPhone OS

36

#2. Use MVC to Divide Work

37

Implement a big idea

Make manageable pieces

#2. Use MVC to Divide Work

38

How Does MVC Help?

39

Useful Buckets

40

Dividing work into objects

Changes

Changes Update

Update

Model Data

Controller Coordination

View Display

41

Dividing work into objects

42

Model

Data/Algorithms/Networking

43

View

Display/Event Capture/Visual Appeal

44

Controller

Coordination/Delegation/Odd Jobs

45

Model

• Ciphertext
• Plaintext
• Cryptography

The focus of app-specific work

46

View

• List view
• Message view
• Add/Delete buttons

UIKit is a huge time-saver

47

Controller

• Startup/Shutdown
• Navigation/Transitions
• Mediating between model and view

Match controllers to the right job

48

Dividing work into objects

49

Dividing work into objects

Changes

Changes Update

Update

Controller Coordination

Model Data View Display

50

Implement a big idea

Make manageable pieces

#2. Use MVC to Divide Work

51

#3. Don’t Fight the Framework

52

Color inside the lines

Make the framework work for you

#3. Don’t Fight the Framework

53

Don’t remove views from UIViewControllers

Don’t misuse framework classes

If you need a split view, use UISplitViewController

Don’t re-implement framework classes

Use delegates and notifications

Don’t make trivial UIKit subclasses

Three examples

54

Make the Framework Work for You

55

Model

• Ciphertext
• Plaintext

• Cryptography

NSString

Security Framework

56

View

• List view

• Message view

• Add/Delete buttons

UITableView

UIViewController

UIControl/UIButton

57

Controller

• Startup/Shutdown

• Navigation/Transitions

• Mediating between model and view

AppController

UINavigationController

Custom controller
UIKit delegate

58

Color inside the lines

Make the framework work for you

#3. Don’t Fight the Framework

59

#4. Don’t Abuse Views

60

Views don’t own data

Data display and event capture

#4. Don’t Abuse Views

61

If You Remember One Thing…

62

Views Don’t Own Data

63

Views Display Data, No?

64

First a little data, then data-change methods...

Slippery slope

Change to a different view? Copy data?

Locks you into a view implementation

Where do model and controllers fit in?

Tight coupling between data and display

The case against

65

Inspectors

Model Data

Model Data
Model Data

66

UIGestureRecognizer

Read-only behavior Editing behavior

67

Simple, but effective

Subclass for address?
Subclass for name?

Is there an echo in here?
Subclass for password?

68

Views don’t own data

Data display and event capture

#4. Don’t Abuse Views

69

#5. Plan for iPhone and iPad

70

Divide code into modules

Higher-level design than MVC

#5. Plan for iPhone and iPad

71

Mail on iPhone

72

Shipped in 1.0

73

Other applications can send mail

Notes Photos

74

Other applications can send mail

Notes Photos

75

Factor Out Common Pieces

76

Message Framework

MessageUI Framework

Mail Application

Three-part arrangement

Application
Full set of mail
features

Non-UI Framework
Networking,
protocols, model
objects, etc.

UI Framework
Views and controllers
for mail reading and
editing

77

Message Framework

MessageUI Framework

Mail Application

Support additional applications

Notes Application Photos Application

78

79

Make great new versions of existing programs

80

Compose View is the same

81

Message Framework

MessageUI Framework

Mail Application

Make great new versions of existing programs

Notes Application Photos Application

82

Support both devices

Notes iPhone Mail iPhone Photos iPhone Notes iPad Mail iPad Photos iPad

iPadiPhone

MessageUI Framework
iPad Additions

Message Framework

83

Real World?

84

No Third-Party Frameworks!

85

Static Library

Simple Code Sharing

86

Divide code into modules

Higher-level design than MVC

#5. Plan for iPhone and iPad

87

#6. Strive for Loose Coupling

88

Goal is flexibility

Minimizing mutual dependencies

#6. Strive for Loose Coupling

89

In concept

90

In the real world

ViewView

91

Use controllers to coordinate messages

Don’t skip MVC layers when messaging

Avoid gathering too much work into one place

Don’t mix MVC roles in one object

Is there an echo in here?

Don’t declare model data in your view classes

Design for flexibility

92

View View

Design for flexibility

Avoid bidirectional messaging
Push/pull convention

93

View ViewSupport multiple updates
Key-Value Observing (KVO)

Design for flexibility

94

View ViewSupport multiple updates
Key-Value Observing (KVO)

Design for flexibility

95

Design for flexibility

View View

Lean on delegates and target-action
didChange/UIControlEventValueChanged

96

Design for flexibility

View View

Lean on delegates and target-action
didChange/UIControlEventValueChanged

97

View View

Design for flexibility

Limit the number of connections
Decompose controller work

98

In the real world

ViewView

99

In the real world

View View

100

Goal is flexibility

Minimizing mutual dependencies

#6. Strive for Loose Coupling

101

#7. Choose the Right Data Model

102

iPhone OS gives you many options

Finding the right fit

#7. Choose the Right Data Model

103

Date, C.J. (2006). The relational database dictionary: a comprehensive glossary of
relational terms and concepts, with illustrative examples. O'Reilly Series Pocket
references. O'Reilly Media, Inc.. p. 90. ISBN 9780596527983.

http://en.wikipedia.org/wiki/Sixth_normal_form

Academic Purity?

104

Sixth Normal Form?

105

Objects

Runtime Saved Runtime

106

Data Model Concerns

Scale

Speed

Memory Use

I/O Churn

Ease Of Use

Partial Graphs

Interdependencies

Transactions

Versioning

Undo

Modeling Tools

Faults

Legacy Data
Constraints

Object/Relational Mapping

SQL

Serialization

107

Model Options

108

Property Lists Server/Cloud

Archives SQLite

Custom Files CoreData

109

Wrong tool for the job

Settings Panel test

110

Simple to use

Strings, numbers, arrays, dictionaries, etc.

111

Simple to use

– initWithCoder: – encodeWithCoder:

112

Legacy Code and Data

Create NSObject-based graph

113

High-score list

NSURL loading classes. Server is up to you.

114

Familiar with SQL

Object/Relational Mapping

115

Wealth of features

Investment

116

Strongly Consider CoreData

117

Modeling tools

Simple saving/Restoring

Queries

Undo

Partial graphs

Wealth of features

118

Property Lists Server/Cloud

Archives SQLite

Custom Files CoreData

119

iPhone OS gives you many options

Finding the right fit

#7. Choose the Right Data Model

120

#8. Decompose Controller Work

121

The right number of controllers

Special iPhone OS controllers

#8. Decompose Controller Work

122

One UIViewController per screen

123

One UIViewController per screen?

Avoid making EverythingControllers

124

One UIViewController per screen?

- (void)scrollViewDidScroll:(UIScrollView *)scrollView
{

if ([scrollView isKindOfClass:[UITableView class]]) {
...

} else {
// “regular” scroll view

}

125

One UIViewController per screen?

- (void)scrollViewDidScroll:(UIScrollView *)scrollView
{

if ([scrollView isKindOfClass:[UITableView class]]) {
...

} else {
// “regular” scroll view

}

Class checks in delegate methods

126

Keep Controller work parceled out

127

Controllers Play Other Roles

128

BugsprayAppDelegate.h
BugsprayAppDelegate.m

129

• Saves model to storage
• Write fetches to retrieve objects
• Creating/deleting objects

NSManagedObjectContext

ActualKnowledgeOfNuclearFission

Attributes

Relationships

ControlRod

Attributes
age
length
material
Relationships

SteamPipe

Attributes
Relationships

Electricit
Attributes
Relationships

turbine

WaterCoolingSystem

Attributes
Relationships

ThoriumFuel

Attributes
Relationships

UraniumFuel

Attributes
Relationships

Turbine

Attributes
Relationships

steamPipes

NuclearFuel

Attributes

Relationships

halflife

controlRods

CoolingSystem
Attributes
Relationships

steamPipes

130

The right number of controllers

Special iPhone OS controllers

#8. Decompose Controller Work

131

#9. Take Charge of Your Object Graph

132

Ownership

Lifecycle

#9. Take Charge of Your Object Graph

133

Rules

134

Object Creates Another?

Responsible for Releasing It

135

Children Don’t Outlive Their Parents

136

Factory Objects Transfer Ownership

137

TMTOWTDI

There’s more than one way to do it

138

Create

Models create Controllers

139

Models create Controllers

Owns

140

Expanding out

View

View

Models never own views

Views never own models or controllers

141

Delegates Unretained?

Owner in Charge

142

Not a problem

“I’m your delegate”

143

Got Nibs?

Don’t fight the framework

144

Got Nibs?

UIViewControllers own their views

145

Got Nibs?

Split views own master/detail

146

Got Nibs?

Views own subviews

147

Got Nibs?

UITextViews do not own their text

148

Rules

149

Ownership

Lifecycle

#9. Take Charge of Your Object Graph

150

#10. Coordinate State Changes

151

Updating model after user actions

Updating views after model changes

#10. Coordinate State Changes

152

Handling updates

Changes

Changes Update

Update

Model Data

Controller Coordination

View Display

153

The wrong way

Update

154

Update

155

Why?

156

The right way

Reject
Delay

Validate

Changes

157

Network access

158

Multiple choice

159

Commit

160

The right way

Reject
Delay

Validate

Changes

161

The right way

ChangesUpdate

162

Updating multiple controllers

Changes Update

163

Updating multiple controllers

KVO

164

Key-Value Coding (KVC)

Key-Value Observing (KVO)

165

-getFoo: -valueForKey:@"foo"

-setFoo: -setValue:forKey:@"foo"

166

Updating multiple controllers

Changes Update

167

Inspectors on iPad

Model Data

Model Data
Model Data

168

Pages Style Inspector

Change

169

Pages Style Inspector

Change

Update

Update

170

Updating multiple controllers

Change Update

ChangeUpdate

OK

171

MVC Is the Way to Go

172

Updating model after user actions

Updating views after model changes

#10. Coordinate State Changes

173

The 10 Best MVC Tips Ever

174

#1. Learn MVC for iPhone OS

#2.

#3.

#4.

#5.

Use MVC to divide work

Don’t fight the framework

Don’t abuse views

Plan for iPhone and iPad

175

#6. Strive for loose coupling

#7.

#8.

#9.

#10.

Choose the right data model

Decompose controller work

Take charge of your object graph

Coordinate state changes

176

Flexible and Easy to Change

177

Great Apps

178

What’s New in Cocoa Touch Mission
Tuesday 9:00AM

iPad and iPhone User Interface Design Mission
Tuesday 10:15AM

Designing Apps With Interface Builder Mission
Wednesday 2:00PM

Mastering Core Data Russian Hill
Wednesday 2:00PM

Simplifying Touch Event Handling with Gesture Recognizers Pacific Heights
Wednesday 3:15PM

Advanced Gesture Recognition Pacific Heights
Wednesday 4:30PM

Understanding Foundation Russian Hill
Thursday 9:00AM

179

Mastering Table Views Pacific Heights
Thursday 11:30PMModel-View-Controller for iPhone OS (Repeat) Russian Hill
Thursday 2:00PM

Performance Optimization on iPhone OS Presidio
Thursday 2:00PM

API Design for Cocoa and Cocoa Touch Marina
Thursday 4:30PM

Optimizing Core Data Performance on iPhone OS Presidio
Thursday 4:30PM

iPad and iPhone User Interface Design (Repeat) Pacific Heights
Friday 10:15AM

What’s New in Cocoa Touch (Repeat) Marina
Friday 11:30AM

180

Model-View-Controller for iPhone OS (Repeat) Russian Hill
Thursday 2:00PM

181

182

183

