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Model-View-Controller (MVC)
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Why Should You Care?
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Great Apps
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Small screen = simpler app organization
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Bigger screen = more complex app organization
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Serving two masters at the same time
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MVC Can Help
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There will be a test on Friday

Changes
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Update
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View Display
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The “Real World”
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The 10 Best MVC Tips Ever
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Flexible and Easy to Change
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Great Apps
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#1. Learn MVC for iPhone OS
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Common conventions

Built up from other design patterns

#1. Learn MVC for iPhone OS
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Connections Between Objects
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Connections between objects

Changes

Changes Update

Update

Model Data

Controller Coordination

View Display

22



Target-Action

Notification

Delegation

Built on lower-level design patterns
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Reusing controls without subclassing

“When you’re tapped, 
call this method on me”

-setTarget:(id)target action:(SEL)action...
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Broadcast channels for important news

“I’m going to appear.”

NSNotificationCenter
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Delegation
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“Should I end editing?”

“Yes.”

Reuse without subclassing

User taps return key

UITextFieldDelegate

27



UITextField

UIApplication

UIScrollView

UITableView

UIWebView

Many classes have a delegate
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will/did/should

Many classes have a delegate
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“I’m about to resign active.”

- (void)applicationWillResignActive:

UIApplicationDelegate
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“I zoomed.”

- (void)scrollViewDidZoom:

UIScrollViewDelegate
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“Should I clear my contents?”

- (BOOL)textFieldShouldClear:

UITextFieldDelegate
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Flexible and Easy to Change
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Common conventions

Built up from other design patterns

#1. Learn MVC for iPhone OS
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#2. Use MVC to Divide Work
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Implement a big idea

Make manageable pieces

#2. Use MVC to Divide Work
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How Does MVC Help?
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Useful Buckets
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Dividing work into objects

Changes

Changes Update

Update

Model Data
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View Display
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Dividing work into objects
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Model

Data/Algorithms/Networking
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View

Display/Event Capture/Visual Appeal
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Controller

Coordination/Delegation/Odd Jobs
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Model

• Ciphertext
• Plaintext
• Cryptography

The focus of app-specific work
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View

• List view
• Message view
• Add/Delete buttons

UIKit is a huge time-saver
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Controller

• Startup/Shutdown
• Navigation/Transitions
• Mediating between model and view

Match controllers to the right job
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Dividing work into objects
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Dividing work into objects

Changes

Changes Update

Update

Controller Coordination

Model Data View Display
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Implement a big idea

Make manageable pieces

#2. Use MVC to Divide Work
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#3. Don’t Fight the Framework
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Color inside the lines

Make the framework work for you

#3. Don’t Fight the Framework
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Don’t remove views from UIViewControllers

Don’t misuse framework classes

If you need a split view, use UISplitViewController

Don’t re-implement framework classes

Use delegates and notifications

Don’t make trivial UIKit subclasses

Three examples
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Make the Framework Work for You
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Model

• Ciphertext
• Plaintext

• Cryptography

NSString

Security Framework
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View

• List view

• Message view

• Add/Delete buttons

UITableView

UIViewController

UIControl/UIButton
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Controller

• Startup/Shutdown

• Navigation/Transitions

• Mediating between model and view

AppController

UINavigationController

Custom controller
UIKit delegate 
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Color inside the lines

Make the framework work for you

#3. Don’t Fight the Framework
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#4. Don’t Abuse Views

60



Views don’t own data

Data display and event capture

#4. Don’t Abuse Views
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If You Remember One Thing…
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Views Don’t Own Data
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Views Display Data, No?
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First a little data, then data-change methods...

Slippery slope

Change to a different view? Copy data?

Locks you into a view implementation

Where do model and controllers fit in?

Tight coupling between data and display

The case against
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Inspectors

Model Data

Model Data
Model Data
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UIGestureRecognizer

Read-only behavior Editing behavior
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Simple, but effective

Subclass for address?
Subclass for name?

Is there an echo in here?
Subclass for password?
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Views don’t own data

Data display and event capture

#4. Don’t Abuse Views
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#5. Plan for iPhone and iPad
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Divide code into modules

Higher-level design than MVC

#5. Plan for iPhone and iPad
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Mail on iPhone
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Shipped in 1.0
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Other applications can send mail

Notes Photos
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Other applications can send mail

Notes Photos
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Factor Out Common Pieces
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Message Framework

MessageUI Framework

Mail Application

Three-part arrangement

Application
Full set of mail 
features

Non-UI Framework
Networking, 
protocols, model 
objects, etc.

UI Framework
Views and controllers
for mail reading and 
editing

77



Message Framework

MessageUI Framework

Mail Application

Support additional applications

Notes Application Photos Application
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Make great new versions of existing programs
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Compose View is the same
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Message Framework

MessageUI Framework

Mail Application

Make great new versions of existing programs

Notes Application Photos Application
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Support both devices

Notes iPhone Mail iPhone Photos iPhone Notes iPad Mail iPad Photos iPad

iPadiPhone

MessageUI Framework
iPad Additions

Message Framework
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Real World?
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No Third-Party Frameworks!
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Static Library

Simple Code Sharing
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Divide code into modules

Higher-level design than MVC

#5. Plan for iPhone and iPad
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#6. Strive for Loose Coupling
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Goal is flexibility

Minimizing mutual dependencies

#6. Strive for Loose Coupling
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In concept
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In the real world

ViewView
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Use controllers to coordinate messages

Don’t skip MVC layers when messaging

Avoid gathering too much work into one place

Don’t mix MVC roles in one object

Is there an echo in here?

Don’t declare model data in your view classes

Design for flexibility
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View View

Design for flexibility

Avoid bidirectional messaging
Push/pull convention
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View ViewSupport multiple updates
Key-Value Observing (KVO)

Design for flexibility
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View ViewSupport multiple updates
Key-Value Observing (KVO)

Design for flexibility
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Design for flexibility

View View

Lean on delegates and target-action
didChange/UIControlEventValueChanged
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Design for flexibility

View View

Lean on delegates and target-action
didChange/UIControlEventValueChanged
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View View

Design for flexibility

Limit the number of connections
Decompose controller work
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In the real world

ViewView

99



In the real world

View View
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Goal is flexibility

Minimizing mutual dependencies

#6. Strive for Loose Coupling
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#7. Choose the Right Data Model
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iPhone OS gives you many options

Finding the right fit

#7. Choose the Right Data Model
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Date, C.J. (2006). The relational database dictionary: a comprehensive glossary of 
relational terms and concepts, with illustrative examples. O'Reilly Series Pocket 
references. O'Reilly Media, Inc.. p. 90. ISBN 9780596527983.

http://en.wikipedia.org/wiki/Sixth_normal_form

Academic Purity?
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Sixth Normal Form?
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Objects

Runtime        Saved        Runtime
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Data Model Concerns

Scale

Speed

Memory Use

I/O Churn

Ease Of Use

Partial Graphs

Interdependencies

Transactions

Versioning

Undo

Modeling Tools

Faults

Legacy Data
Constraints

Object/Relational Mapping

SQL

Serialization
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Model Options
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Property Lists Server/Cloud

Archives SQLite

Custom Files CoreData
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Wrong tool for the job

Settings Panel test
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Simple to use

Strings, numbers, arrays, dictionaries, etc.
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Simple to use

– initWithCoder:  – encodeWithCoder:
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Legacy Code and Data

Create NSObject-based graph
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High-score list

NSURL loading classes.  Server is up to you.
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Familiar with SQL

Object/Relational Mapping
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Wealth of features

Investment
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Strongly Consider CoreData
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Modeling tools

Simple saving/Restoring

Queries

Undo

Partial graphs

Wealth of features
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Property Lists Server/Cloud

Archives SQLite

Custom Files CoreData

119



iPhone OS gives you many options

Finding the right fit

#7. Choose the Right Data Model
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#8. Decompose Controller Work
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The right number of controllers

Special iPhone OS controllers

#8. Decompose Controller Work
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One UIViewController per screen
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One UIViewController per screen?

Avoid making EverythingControllers
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One UIViewController per screen?

- (void)scrollViewDidScroll:(UIScrollView *)scrollView
{

if ([scrollView isKindOfClass:[UITableView class]]) {
...

} else {
// “regular” scroll view

}
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One UIViewController per screen?

- (void)scrollViewDidScroll:(UIScrollView *)scrollView
{

if ([scrollView isKindOfClass:[UITableView class]]) {
...

} else {
// “regular” scroll view

}

Class checks in delegate methods
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Keep Controller work parceled out
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Controllers Play Other Roles
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BugsprayAppDelegate.h
BugsprayAppDelegate.m
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• Saves model to storage
• Write fetches to retrieve objects
• Creating/deleting objects

NSManagedObjectContext

ActualKnowledgeOfNuclearFission

Attributes

Relationships

ControlRod

Attributes
age
length
material
Relationships

SteamPipe

Attributes
Relationships

Electricit
Attributes
Relationships

turbine

WaterCoolingSystem

Attributes
Relationships

ThoriumFuel

Attributes
Relationships

UraniumFuel

Attributes
Relationships

Turbine

Attributes
Relationships

steamPipes

NuclearFuel

Attributes

Relationships

halflife

controlRods

CoolingSystem
Attributes
Relationships

steamPipes
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The right number of controllers

Special iPhone OS controllers

#8. Decompose Controller Work
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#9. Take Charge of Your Object Graph
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Ownership

Lifecycle

#9. Take Charge of Your Object Graph
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Rules
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Object Creates Another? 

Responsible for Releasing It
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Children Don’t Outlive Their Parents
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Factory Objects Transfer Ownership
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TMTOWTDI

There’s more than one way to do it
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Create

Models create Controllers
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Models create Controllers

Owns
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Expanding out

View

View

Models never own views

Views never own models or controllers
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Delegates Unretained?

Owner in Charge
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Not a problem

“I’m your delegate”
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Got Nibs?

Don’t fight the framework
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Got Nibs?

UIViewControllers own their views
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Got Nibs?

Split views own master/detail
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Got Nibs?

Views own subviews
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Got Nibs?

UITextViews do not own their text
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Rules
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Ownership

Lifecycle

#9. Take Charge of Your Object Graph
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#10. Coordinate State Changes
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Updating model after user actions

Updating views after model changes

#10. Coordinate State Changes
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Handling updates

Changes

Changes Update

Update

Model Data

Controller Coordination

View Display
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The wrong way

Update
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Update
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Why?
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The right way

Reject
Delay

Validate

Changes
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Network access
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Multiple choice
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Commit
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The right way

Reject
Delay

Validate

Changes
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The right way

ChangesUpdate

162



Updating multiple controllers

Changes Update
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Updating multiple controllers

KVO
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Key-Value Coding (KVC)

Key-Value Observing (KVO)
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-getFoo:     -valueForKey:@"foo"

-setFoo:     -setValue:forKey:@"foo"
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Updating multiple controllers

Changes Update

167



Inspectors on iPad

Model Data

Model Data
Model Data
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Pages Style Inspector

Change
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Pages Style Inspector

Change

Update

Update
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Updating multiple controllers

Change Update

ChangeUpdate

OK
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MVC Is the Way to Go
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Updating model after user actions

Updating views after model changes

#10. Coordinate State Changes
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The 10 Best MVC Tips Ever
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#1. Learn MVC for iPhone OS

#2.

#3.

#4.

#5.

Use MVC to divide work

Don’t fight the framework

Don’t abuse views

Plan for iPhone and iPad
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#6. Strive for loose coupling

#7.

#8.

#9.

#10.

Choose the right data model

Decompose controller work

Take charge of your object graph

Coordinate state changes
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Flexible and Easy to Change
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Great Apps
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What’s New in Cocoa Touch Mission
Tuesday 9:00AM

iPad and iPhone User Interface Design Mission
Tuesday 10:15AM

Designing Apps With Interface Builder Mission
Wednesday 2:00PM

Mastering Core Data Russian Hill
Wednesday 2:00PM

Simplifying Touch Event Handling with Gesture Recognizers Pacific Heights
Wednesday 3:15PM

Advanced Gesture Recognition Pacific Heights
Wednesday 4:30PM

Understanding Foundation Russian Hill
Thursday 9:00AM
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Mastering Table Views Pacific Heights
Thursday 11:30PMModel-View-Controller for iPhone OS (Repeat) Russian Hill
Thursday 2:00PM

Performance Optimization on iPhone OS Presidio
Thursday 2:00PM

API Design for Cocoa and Cocoa Touch Marina 
Thursday 4:30PM

Optimizing Core Data Performance on iPhone OS Presidio 
Thursday 4:30PM

iPad and iPhone User Interface Design (Repeat) Pacific Heights
Friday 10:15AM

What’s New in Cocoa Touch (Repeat) Marina
Friday 11:30AM

180



Model-View-Controller for iPhone OS (Repeat) Russian Hill
Thursday 2:00PM
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