¢

Building a
Server-Driven User Experience

Remote-controlled native Uls for fun and profit

Gregor Purdy

Engineer-at-Large

Fun and Profit

That’s some nice content you've got there...

“Hey, | know! Let’s build a mobile app...”

Translation key:

- “Iterate the design” » Changing requirements

- “Dedicated team” » Small team

- “Window of opportunity” » Tight deadlines

- “Lean” » You are paying for your own soda

..it's going to be GREAT!”

Dream
Expand profit from existing content in a new context

* Repurpose web content

Content Delivery Network

External

'App Customers

Web Customers

Internal

A

4

Load
Balancer

.

—1

Content
Web Service

N

J

v

External
Service

Ancillary
Service

Internal
Services

Reality

* Reduce cost and
time-to-market by leveraging
existing infrastructure

= Services based architecture

Requirements

* Fresh content = Repeat use
- Immediate content updates
- Direct revenue
- Ad revenue
* Agility
- New content types
- Don't rev the app
- Better for everyone

Agenda

* Service oriented content delivery
- Service orchestration
* Designing a flexible client

- General enough to represent a variety of data types
- “Remote controlled” native Ul
* Core frameworks for data

- Efficient server-client protocols
- Remote data

* L essons learned

Agenda

* Service oriented content delivery
- Service orchestration
* Designing a flexible client

 General enough to represent a variety of data types
« “Remote controlled” native Ul

* Core frameworks for data

- Efficient server-client protocols
» Remote data

| essons learned

Engineering
Content Delivery Network a SOI Utio N

Design considerations

App Customers

* Aspects of content
* Architectural options

* Responding to context

* Anticipating change

Load
Balancer

External Internet
Private v

Content

Web Service
I 4

External Ancillary Internal
Service Service Services

Design Considerations
Aspects of content

* User generated
* Curated
* Web service access
- Just internal, or external too
* Variability by context
- Translations
* Functions beyond read-only

- Customer account management
= Purchases

Design Considerations
Architectural options

* UIWebView—Fast time-to-market
- Fancy shell around existing web content
- Amazing HTML, JavaScript and CSS
* Native app—Better user experience
- User expectations on navigation and “feel”
- Stateful interactions
* Leverage native app capabilities
- Coordinate calls to multiple web services
- Custom rendering and animations
- In-app purchases, camera, ...

Design Considerations
Responding to context

* Selecting content
- Device country and language
- Core Location
- Device type
= App version
* One baked-in “config” URL
* Language fallback
» Add new translations
- Try not to rev the app
- Little “baked-in” content

Design Considerations
Anticipating change

* Freshness of content from service
* Caching app-side

- HTTP headers

= Custom
* Content Delivery Network (CDN)

= Time to live in the cache
= Standard HTTP cache control

* Emergency content updates
* Maintenance

Agenda

* Service oriented content delivery
- Service orchestration
* Designing a flexible client

 General enough to represent a variety of data types
« “Remote controlled” native Ul

* Core frameworks for data

- Efficient server-client protocols
» Remote data

| essons learned

Agenda

* Service oriented content delivery
= Service orchestration
* Designing a flexible client

- General enough to represent a variety of data types
- “Remote controlled” native Ul
* Core frameworks for data

- Efficient server-client protocols
» Remote data

| essons learned

Designing a Flexible Client

Scott Lopatin
Apple Store Engineering

Challenges

* Web is easy, universal updates to all

* Client is hard, can't update everyone’s app

* Change data over time, don't require updates
* We want our native Ul

Solutions

* Property list control of Ul
* Data that describes itself
* Handling dynamic data

* URL path generation

* Flexible categories

* Further optimizations

Solutions
for Flexibility

Property list control

* Easy to generate from objects
* Works with many data types

* Platform independent

*One line to decode

Solutions
for Flexibility

Property list control

title = "Terms & Conditions";
action = viewcontroller;
value = "WebViewController";
path = “http://.../tsandcs.html
type = link;

fontStyle = bold;

fontSize = 12;

fontColor = "75:94:132:1.0";
align = center;

line =

height = 10;

Solutions
for Flexibility

Property list control

theflowerpot.com

device = "iphone";

title = "Call Us";

type = button;

action = url;

value = "tel:18005551212";
fontStyle = bold;

line = 1;

height = 45;

Solutions for Flexibility
Data that describes itself

* Server side control of return paths
* Client routes to appropriate view controller

* Great for error handling

Solutions for Flexibility
Handling dynamic data

{
"value";
"value";
"value";
"value";

content = { content
key = "value"; key
key = "value"; key
key = "value"; key
key = "value"; key
I ¥

datatype = “product”; datatype = “searchresults”;

Solutions for Flexibility
Handling dynamic data

* Support datatypes with changing keys
* Write less code by iterating over results
« Still provide @dynamic ways to your data

Solutions for Flexibility
Handling dynamic data

D 100% b=t

Edit Billing Address

Mr. Mr.

First Name Joshton

Last Name Woodpond
Address 2779 Mission St
Address

City San Francisco
State CA

Zip

To

Solutions for Flexibility
Handling dynamic data

Object

Attribute Attribute

color Key firstName
red Value Scott

Attribute

Key
Value

isNew
YES

Solutions for Flexibility
Handling dynamic data

* In methodSignatureForSelector
class_addMethod([self class], aSelector, (IMP)myGetImp, "@@:@");

* New method call

static id myGetImp(id self, SEL _cmd) {
return [self valueForString:NSStringFromSelector(_cmd)];

by

* New method implementation

(id)valueForString: (NSString x)string {
for (Attribute *attribute in attributes) {
if ([attribute.key isEqualToString:stringl) {
return attribute.value;

For

return nil;

by

Solutions for Flexibility
URL path generation

* One URL to start a path
* Follow URL from response
» Add or remove steps from the server

Solutions for Flexibility
URL path generation

California

Brea

California
Brea
Burlingame

Canoga Park

New York
Albany
Buffalo

Garden City

Solutions for Flexibility
URL path generation

content = {
key = "value";
key = "value";
key = "value";
};
continueURL = “http://www.apple.com/nextAction”;
cancelURL = “http://www.apple.com/cancelAction”;

Solutions
for Flexibility

Flexible UIKit categories

UIView-Extensions.h

—(void) layoutViews: (NSArray *)views
inRect: (CGRect)rect verticalPadding:
(CGFloat)padding shrinkToFit: (BOOL)
shrinkToFit;

Bright Red,
Loves |OTS OF water,
Likes small pots

Further Optimizations
Beyond remote controlled Ul

* Optimized data types
* Server controlled expiration
* Persistence + HTTP cookies

Further Optimizations
Optimized data types

LightProduct HeavyProduct
{ {

name = “County Charm Basket”; name = “County Charm Basket”;
price = “$39.99";

price = “$39.99",
}, rating = “5 Stars”;
description = “This warm fall
arrangement is sure to add color to
any room!”;
itemNo = “0101-2010-0611";

Further Optimizations
Server controlled expiration

{

name = “County Charm Basket”;
price = “$39.99";

I3

_expire = “1274678220",

Further Optimizations

Persistence + HTTP cookies

* Every request contains it
* No code to write

* Session vs. Persisted
 Automatically sandboxed

And Even After All That...

Sometimes you will need a binary update

Agenda

* Service oriented content delivery
= Service orchestration
* Designing a flexible client

- General enough to represent a variety of data types
- “Remote controlled” native Ul
* Core frameworks for data

- Efficient server-client protocols
» Remote data

| essons learned

Agenda

* Service oriented content delivery
= Service orchestration
* Designing a flexible client

 General enough to represent a variety of data types
 “‘Remote controlled” native Ul

» Core frameworks for data

- Efficient server-client protocols
- Remote data

| essons learned

Core Frameworks for Data

David den Boer
Engineering Manager, Retail Engineering

Core Frameworks for Data
Loading and utilizing remote data

* Remote data types

* Parsing data

* Client-side storage

* Benefits of Core Data

* Client/Server Data Store

Remote Data Types

Data size

JSON

XML

Property List
ASCII Plist

Property List
Binary Plist

Remote Data Types

Parsing speed

JSON

Open source parser

XML ’
NSXMLParser 3

Property List
ASCII Plist -““’”‘s

Property List
Binary Plist

’ 19ms

Remote Data Types
Property lists

* Small data size
* Very fast parsing
* Easiest to create

- With WebOQObjects, it is one line of code
- CoreFoundation is open source

* Easiest to parse

+ (id)propertyListFromData:(NSData *)data
mutabilityOption: (NSPropertylListMutabilityOptions)opt
format:(NSPropertylListFormat *)format
errorDescription:(NSString **)errorString;

Client-side Storage

Available options

NSDictionary Data Objects

Simple
Extensible

No persistence

Unmanageable No persistence

SQL
Persistence

Complex

CoreData

Simple
Powerful
Extensible
Persistence

Not a database

Benefits of Core Data
Why use core data

* Persistence
- Used for data that rarely changes
» Efficient fetching and saving
* Change tracking and Undo
* Object validation and relationship maintenance
* Supports KVC/KVO
* Performance

Core Data Architecture

NSManagedObjectModel

NSManagedObjectContext

] oy o

~nn Ny o

L*'L;'

NSManagedObject

NSManagedObject

|

NSPersistentStoreCoordinator

NSPersistentStore

I

NSFetchRequest

Client/Server Data Store
Using Core Data for remote data storage

* Why?
- Some data changes rarely
- Ease of development
* What can it do?
- Automatic fetching from server
- Automatically propagates deletes to server
- Automatically saves to server

NSManagedObject

NSEntityDescription q

NSFetchRequest

NSManagedObjectContext

Client/Server
Data Store

How to...

» Start with a great foundation
* Subclass
» Add categories

* Update your model

Client/Server Data Store
Entities

* Entities can have server-side counterparts

* Entities can support up to four server-side operations
- Fetch
= Insert
- Update
- Delete

Client/Server Data Store
Entities

* Client/Server entities need helpers

= operations
“route

* NSEntityDescription category with methods for

“ route

- shouldProcessInsert

- shouldProcessUpdate
- shouldProcessDelete

Client/Server Data Store
Managed objects

* NSManagedObjectContext subclass with override of:

= save
- executeFetchRequest:error:

* Category to create instance of object in different store:
- locallnstanceOfObject:
* NSManagedObject category which adds:

- toDictionary
* locallnstancelnContext:

Client/Server Data Store
NSManagedObjectContext Category

— (NSManagedObject *)localInstanceOfObject: (NSManagedObject x)iObject {
NSManagedObject *aReturnVal = nil;
if (iObject && [iObject isKindOfClass:[NSManagedObject classl]) {
if ([self objectRegisteredForID: [iObject objectID]]) {
aReturnVal = iObject;
} else {

aReturnVal = [[NSManagedObject alloc] initWithEntity:[iObject entity]
insertIntoManagedObjectContext:self];

for (NSString xaKey in [[[iObject entity] attributesByName] allKeys]) {
id anObject = [iObject valueForKey:aKeyl;
if (anObject) {

[aReturnVal setValue:anObject forKey:aKey];
}

by

return [aReturnVal autorelease];

Client/Server Data Store
Fetching

* All fetches by default are client side

* Add endpoint binding to NSFetchRequest

latitude == $LATITUDE AND longitude == $LONGITUDE AND endpoint == "nearbyStores"
* endpoint specifies method on this entity to execute

* Serialized NSFetchRequest properties include

= expressions
- sort orderings
- fetch limits

Client/Server Data Store
Example fetch request

<dict>
<key>predicate</key>
<dict>
<key>expression</key>
<array>
<dict>
<key>key</key>
<string>flowerID</string>
<key>qualifier</key>
<string>EQUALS</string>
<key>value</key>
<number>1231</number>
</dict>
</array>
</dict>

Client/Server

Core Data

Persistent stores
NSManagedObjectModel

* Persistent or transient data?
NSPersistentStoreCoordinator ° Multiple perSIStent Stores

NSPersistentStore " SQ |_|te perS|Stence

I - In-memory persistence

* Only one MOM required
- Use locallnstanceOfObject:

Agenda

* Service oriented content delivery
= Service orchestration
* Designing a flexible client

 General enough to represent a variety of data types
 “‘Remote controlled” native Ul

» Core frameworks for data

- Efficient server-client protocols
- Remote data

| essons learned

Agenda

* Service oriented content delivery
= Service orchestration
* Designing a flexible client

 General enough to represent a variety of data types
« “Remote controlled” native Ul

* Core frameworks for data

- Efficient server-client protocols
» Remote data

* L essons learned

Lessons Learned

Gregor Purdy

Still Engineer-at-Large

Lessons Learned
Scaling beyond caching: Four “M’s”

* Measure
* Model

* Monitor
* Message

@)

Measure

‘ ||1\1\\\\\\\\\\\\\\\\\\}}_\

ja)AS

o8l

First duty for performance

* Capture stats

* Allow introspection by
internal caller

Model

First duty for scale

s * What is expected traffic, steady
B <o <[Tiscits qpnm o in foud | state and peak?

Phen = mg.;-‘k &'ly= ¢./,> %m F‘ 'y('{%n&.}r 4(35-‘;:.) o Ny

o friel e o] el B o \What does that mean for different

SOlde = Conl J.I'l\?('f[ﬁ_) = (LI:,..g,) Llag-1), to14.. >k

Ll = e e r'm[‘h’z-. 4):] fa-Po o ; w.r;);(—'an{“n-] ‘ j i ?
B B = H'&,w.-.h.ax lf..,m,v- L (Fle- q) Was®) Ca”S and thelr SLAS *
1) B Eug =2 %—(Zh-l) LTS Hw..,m %‘;{IE)
i B2 o e - 1‘;1‘;‘&0! ﬁ.,,..('f—*c)‘w.w e

% 4 ¢([kr}g f._:;'r Vi ® -‘—"‘{K)t 14

% [fa ﬁsnvm Hban 2 &0t = 5%,
bl Vcr) Fmezr [x-x, o> mat = ;.t‘_.'r"i” iz-:.' L‘E‘L
f [56'1- lF 3'9‘ f’H

. T ' 7 5 2 11
| ; A dets [uﬂ:){q—fk) q,hCR (= (ﬁf "’;)("Pw ‘6 ct’:z.‘;":fa-)g)‘m.))
A8 = atfl thxf iabfR +h° 4 R‘F *'u £ bat - 't, o 2 €X=kD f:{ h’)("h‘ﬂ A E
g “(nﬁrnbn Y(ag- b5)bt @ P bt x 35 i

i1 Yol U
£E| Oy CF(RP-HBFJ (27 f‘(ﬁf-ibl)zhf‘o;‘a (I)“'? (',(' ?Jl’)—xlrg(*

1 r (Y N f);Sg A—owA }-.i
o L(‘av‘o’.,?c é?% ju; (0 o) 51 (:i r_/*g Idx‘&c-)(w) *.l') dz’(f“)‘ﬁ -‘

Monitor
First duty for operations

* Get stats and logs off the host into
a monitoring system

* Capture history and show context
in charts

Message
First duty for troubleshooting

* The logs should contain session
and other identifiers and actual
values participating in the
situation being logged

Agenda

* Service oriented content delivery
= Service orchestration
* Designing a flexible client

 General enough to represent a variety of data types
« “Remote controlled” native Ul

* Core frameworks for data

- Efficient server-client protocols
» Remote data

* L essons learned

More Information

Mark Malone

Integration Technologies Evangelist
mgm@apple.com

iPhone Documentation
http://developer.apple.com/iphone

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Mastering Core Data

Russian Hill
Wednesday 2:00PM

Network Apps for iPhone OS, Part 1

Pacific Heights
Wednesday 2:00PM

Network Apps for iPhone OS, Part 2

Pacific Heights
Wednesday 3:15PM

Crafting Custom Cocoa Views

Russian Hill
Friday 10:15AM

Labs

Server-Driven User Experience Lab

Application Frameworks Lab A
Wednesday 12:45 -1:45PM

Multitasking Lab

Application Frameworks Lab D
Tuesday, 4:30PM - 6:30PM

Enterprise and In-House Development Lab

Application Frameworks Lab D
Thursday, 11:30AM - 1:45PM

& WWDCI0

