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That’s some nice content you’ve got there…

“Hey, I know! Let’s build a mobile app…”

Translation key:

■ “Iterate the design”   Changing requirements
■ “Dedicated team”   Small team
■ “Window of opportunity” Tight deadlines
■ “Lean”    You are paying for your own soda

“…it’s going to be GREAT!”
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Expand profit from existing content in a new context

• Repurpose web content

4



• Reduce cost and 
time-to-market by leveraging 
existing infrastructure
■ Services based architecture

Text

External

Web Customers

Internal

Content Delivery Network

App Customers
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• Fresh content = Repeat use
■ Immediate content updates
■ Direct revenue
■ Ad revenue

• Agility
■ New content types
■ Don’t rev the app
■ Better for everyone

6



• Service oriented content delivery
■ Service orchestration 

• Designing a flexible client
■ General enough to represent a variety of data types
■ “Remote controlled” native UI

• Core frameworks for data
■ Efficient server-client protocols
■ Remote data

• Lessons learned
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• Service oriented content delivery
■ Service orchestration 

■

■

■

■
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Design considerations

• Aspects of content
• Architectural options
• Responding to context
• Anticipating change

External Internet 
Private

Content Delivery Network

App Customers
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Aspects of content

• User generated
• Curated
• Web service access

■ Just internal, or external too

• Variability by context
■ Translations

• Functions beyond read-only
■ Customer account management
■ Purchases
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Architectural options

• UIWebView—Fast time-to-market
■ Fancy shell around existing web content
■ Amazing HTML, JavaScript and CSS

• Native app—Better user experience
■ User expectations on navigation and “feel”
■ Stateful interactions

• Leverage native app capabilities
■ Coordinate calls to multiple web services
■ Custom rendering and animations
■ In-app purchases, camera, …
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Responding to context

• Selecting content
■ Device country and language
■ Core Location
■ Device type
■ App version

• One baked-in “config” URL
• Language fallback
• Add new translations

■ Try not to rev the app
■ Little “baked-in” content
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Anticipating change

• Freshness of content from service
• Caching app-side

■ HTTP headers
■ Custom

• Content Delivery Network (CDN)
■ Time to live in the cache
■ Standard HTTP cache control

• Emergency content updates
• Maintenance
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• Service oriented content delivery
■ Service orchestration 

■

■

■

■
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■

• Designing a flexible client
■ General enough to represent a variety of data types
■ “Remote controlled” native UI

■

■
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Scott Lopatin
Apple Store Engineering
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• Web is easy, universal updates to all
• Client is hard, can’t update everyone’s app
• Change data over time, don’t require updates
• We want our native UI
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• Property list control of UI
• Data that describes itself
• Handling dynamic data
• URL path generation
• Flexible categories
• Further optimizations
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Property list control

• Easy to generate from objects
• Works with many data types
• Platform independent
• One line to decode
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Property list control

...
{
title = "Terms & Conditions";
action = viewcontroller;
value = "WebViewController";
path = “http://.../tsandcs.html
type = link;
fontStyle = bold;
fontSize = 12;
fontColor = "75:94:132:1.0";
align = center;
line = 3;
height = 10;

}
...
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Property list control

...
{

device = "iphone";
title = "Call Us";
type = button;
action = url;
value = "tel:18005551212";

 fontStyle = bold;
line = 1;
height = 45;

},
...
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Data that describes itself

• Server side control of return paths
• Client routes to appropriate view controller
• Great for error handling
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...
content = {

key = "value";
key = "value";
key = "value";
key = "value";

};
datatype = “searchresults”;

...

Handling dynamic data

...
content = {

key = "value";
key = "value";
key = "value";
key = "value";

};
datatype = “product”;

...
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Handling dynamic data

• Support datatypes with changing keys
• Write less code by iterating over results
• Still provide @dynamic ways to your data

24



Handling dynamic data

Mr.

Joshton

Woodpond

2779 Mission St

San Francisco

94110

CA
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Solutions for flexibility

Handling dynamic dataHandling dynamic data

Key
Value

Key
Value

Key
Value

color
red

firstName
Scott

isNew
YES
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Solutions for flexibility

Handling dynamic data

• In methodSignatureForSelector
class_addMethod([self class], aSelector, (IMP)myGetImp, "@@:@");

• New method call
static id myGetImp(id self, SEL _cmd) {
     return [self valueForString:NSStringFromSelector(_cmd)];
}

• New method implementation
(id)valueForString:(NSString *)string {
for (Attribute *attribute in attributes) {
if ([attribute.key isEqualToString:string]) {
return attribute.value;

} }
return nil;
}
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Solutions for flexibility

URL path generation

• One URL to start a path
• Follow URL from response
• Add or remove steps from the server
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Solutions for flexibility

URL path generation

29



...
  content = {
   key = "value";
   key = "value";
   key = "value";
  };

continueURL = “http://www.apple.com/nextAction”;
cancelURL = “http://www.apple.com/cancelAction”;

...

Solutions for flexibility

URL Path Generation

URL path generation

...

content = {

key = "value";

key = "value";

key = "value";

};

continueURL = “http://www.apple.com/nextAction”;
cancelURL = “http://www.apple.com/cancelAction”;

...
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Flexible UIKit categories 

UIView-Extensions.h

-(void)layoutViews:(NSArray *)views 
inRect:(CGRect)rect verticalPadding:
(CGFloat)padding shrinkToFit:(BOOL)
shrinkToFit;
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Beyond remote controlled UI

• Optimized data types
• Server controlled expiration
• Persistence  + HTTP cookies
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Optimized data types

LightProduct
{

name = “County Charm Basket”;
price = “$39.99”;
},

HeavyProduct
{

name = “County Charm Basket”; 
price = “$39.99”;
rating = “5 Stars”;
description = “This warm fall 
arrangement is sure to add color to 
any room!”;
itemNo = “0101-2010-0611”;
},

Further optimizations
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Server controlled expiration

{
name = “County Charm Basket”;
price = “$39.99”;

}
_expire = “1274678220”;
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Persistence + HTTP cookies

• Every request contains it
• No code to write
• Session vs. Persisted
• Automatically sandboxed

Further optimizations
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Sometimes you will need a binary update
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■

• Designing a flexible client
■ General enough to represent a variety of data types
■ “Remote controlled” native UI

■

■
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■

■

■

• Core frameworks for data
■ Efficient server-client protocols
■ Remote data
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David den Boer
Engineering Manager, Retail Engineering
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Loading and utilizing remote data

• Remote data types
• Parsing data
• Client-side storage
• Benefits of Core Data
• Client/Server Data Store
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Data size

XML

Property List
ASCII Plist

JSON

Property List
Binary Plist
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Parsing speed

XML
NSXMLParser

Property List
ASCII Plist

JSON
Open source parser

Property List
Binary Plist 19ms
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Property lists

• Small data size
• Very fast parsing
• Easiest to create

■ With WebObjects, it is one line of code
■ CoreFoundation is open source

• Easiest to parse

+ (id)propertyListFromData:(NSData *)data 
          mutabilityOption:(NSPropertyListMutabilityOptions)opt 
                    format:(NSPropertyListFormat *)format 
          errorDescription:(NSString **)errorString;
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Available options

Simple Simple
Extensible

SQL
Persistence

Simple
Powerful
Extensible
Persistence

No persistence
Unmanageable No persistence Complex Not a database
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Why use core data

• Persistence
■ Used for data that rarely changes

• Efficient fetching and saving
• Change tracking and Undo
• Object validation and relationship maintenance
• Supports KVC/KVO
• Performance
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NSManagedObjectModel
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Using Core Data for remote data storage

• Why?
■ Some data changes rarely
■ Ease of development

• What can it do?
■ Automatic fetching from server
■ Automatically propagates deletes to server
■ Automatically saves to server
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How to…

• Start with a great foundation
• Subclass
• Add categories
• Update your model
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Entities

• Entities can have server-side counterparts
• Entities can support up to four server-side operations

■ Fetch
■ Insert
■Update
■Delete
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Entities

• Client/Server entities need helpers
■ operations
■ route

• NSEntityDescription category with methods for
■ route
■ shouldProcessInsert
■ shouldProcessUpdate
■ shouldProcessDelete
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Managed objects

• NSManagedObjectContext subclass with override of:
■ save
■ executeFetchRequest:error:

• Category to create instance of object in different store:
■ localInstanceOfObject:

• NSManagedObject category which adds:
■ toDictionary
■ localInstanceInContext:
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NSManagedObjectContext Category
- (NSManagedObject *)localInstanceOfObject:(NSManagedObject *)iObject {

NSManagedObject *aReturnVal = nil;
if (iObject && [iObject isKindOfClass:[NSManagedObject class]]) {

if ([self objectRegisteredForID:[iObject objectID]]) {
aReturnVal = iObject;

} else {
aReturnVal = [[NSManagedObject alloc] initWithEntity:[iObject entity] 

insertIntoManagedObjectContext:self];
for (NSString *aKey in [[[iObject entity] attributesByName] allKeys]) {

id anObject = [iObject valueForKey:aKey];
if (anObject) {

[aReturnVal setValue:anObject forKey:aKey];
}

}
}

}
return [aReturnVal autorelease];

}
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Fetching

• All fetches by default are client side
• Add endpoint binding to NSFetchRequest

• endpoint specifies method on this entity to execute
• Serialized NSFetchRequest properties include

■ expressions
■ sort orderings
■ fetch limits

latitude == $LATITUDE AND longitude == $LONGITUDE AND endpoint == "nearbyStores"
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<dict>
<key>predicate</key>
<dict>

<key>expression</key>
<array>

<dict>
<key>key</key>
<string>flowerID</string>
<key>qualifier</key>
<string>EQUALS</string>
<key>value</key>

               <number>1231</number>
</dict>

</array>
</dict>

Example fetch request
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Persistent stores

• Persistent or transient data?
• Multiple persistent stores

■ SQLite persistence
■ In-memory persistence

• Only one MOM required
■ Use localInstanceOfObject:

NSManagedObjectModel
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■

■

■

• Core frameworks for data
■ Efficient server-client protocols
■ Remote data
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■

■

■

■

■

• Lessons learned
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Gregor Purdy
Still Engineer-at-Large
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Scaling beyond caching: Four “M’s”

• Measure
•Model
• Monitor
• Message

59



First duty for performance

• Capture stats
• Allow introspection by 
internal caller
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First duty for scale

• What is expected traffic, steady 
state and peak?

• What does that mean for different 
calls and their SLAs?

Model
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First duty for operations

• Get stats and logs off the host into 
a monitoring system

• Capture history and show context 
in charts
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First duty for troubleshooting

• The logs should contain session 
and other identifiers and actual 
values participating in the 
situation being logged
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■

■

■

■

■

• Lessons learned
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Mark Malone
Integration Technologies Evangelist
mgm@apple.com

iPhone Documentation
http://developer.apple.com/iphone

Apple Developer Forums
http://devforums.apple.com
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Mastering Core Data  Russian Hill
Wednesday 2:00PM

Network Apps for iPhone OS, Part 1 Pacific Heights
Wednesday 2:00PM

Network Apps for iPhone OS, Part 2 Pacific Heights
Wednesday 3:15PM

Crafting Custom Cocoa Views Russian Hill
Friday 10:15AM
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Enterprise and In-House Development Lab Application Frameworks Lab D 
Thursday, 11:30AM – 1:45PM

Multitasking Lab Application Frameworks Lab D
Tuesday, 4:30PM – 6:30PM

Server-Driven User Experience Lab Application Frameworks Lab A
Wednesday 12:45 -1:45PM
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