
Remote-controlled native UIs for fun and profit

Gregor Purdy
Engineer-at-Large

2

That’s some nice content you’ve got there…

“Hey, I know! Let’s build a mobile app…”

Translation key:

■ “Iterate the design” Changing requirements
■ “Dedicated team” Small team
■ “Window of opportunity” Tight deadlines
■ “Lean” You are paying for your own soda

“…it’s going to be GREAT!”

3

Expand profit from existing content in a new context

• Repurpose web content

4

• Reduce cost and
time-to-market by leveraging
existing infrastructure
■ Services based architecture

Text

External

Web Customers

Internal

Content Delivery Network

App Customers

5

• Fresh content = Repeat use
■ Immediate content updates
■ Direct revenue
■ Ad revenue

• Agility
■ New content types
■ Don’t rev the app
■ Better for everyone

6

• Service oriented content delivery
■ Service orchestration

• Designing a flexible client
■ General enough to represent a variety of data types
■ “Remote controlled” native UI

• Core frameworks for data
■ Efficient server-client protocols
■ Remote data

• Lessons learned

7

• Service oriented content delivery
■ Service orchestration

■

■

■

■

8

Design considerations

• Aspects of content
• Architectural options
• Responding to context
• Anticipating change

External Internet
Private

Content Delivery Network

App Customers

9

Aspects of content

• User generated
• Curated
• Web service access

■ Just internal, or external too

• Variability by context
■ Translations

• Functions beyond read-only
■ Customer account management
■ Purchases

10

Architectural options

• UIWebView—Fast time-to-market
■ Fancy shell around existing web content
■ Amazing HTML, JavaScript and CSS

• Native app—Better user experience
■ User expectations on navigation and “feel”
■ Stateful interactions

• Leverage native app capabilities
■ Coordinate calls to multiple web services
■ Custom rendering and animations
■ In-app purchases, camera, …

11

Responding to context

• Selecting content
■ Device country and language
■ Core Location
■ Device type
■ App version

• One baked-in “config” URL
• Language fallback
• Add new translations

■ Try not to rev the app
■ Little “baked-in” content

12

Anticipating change

• Freshness of content from service
• Caching app-side

■ HTTP headers
■ Custom

• Content Delivery Network (CDN)
■ Time to live in the cache
■ Standard HTTP cache control

• Emergency content updates
• Maintenance

13

• Service oriented content delivery
■ Service orchestration

■

■

■

■

14

■

• Designing a flexible client
■ General enough to represent a variety of data types
■ “Remote controlled” native UI

■

■

15

Scott Lopatin
Apple Store Engineering

16

• Web is easy, universal updates to all
• Client is hard, can’t update everyone’s app
• Change data over time, don’t require updates
• We want our native UI

17

• Property list control of UI
• Data that describes itself
• Handling dynamic data
• URL path generation
• Flexible categories
• Further optimizations

18

Property list control

• Easy to generate from objects
• Works with many data types
• Platform independent
• One line to decode

19

Property list control

...
{
title = "Terms & Conditions";
action = viewcontroller;
value = "WebViewController";
path = “http://.../tsandcs.html
type = link;
fontStyle = bold;
fontSize = 12;
fontColor = "75:94:132:1.0";
align = center;
line = 3;
height = 10;

}
...

20

Property list control

...
{

device = "iphone";
title = "Call Us";
type = button;
action = url;
value = "tel:18005551212";

 fontStyle = bold;
line = 1;
height = 45;

},
...

21

Data that describes itself

• Server side control of return paths
• Client routes to appropriate view controller
• Great for error handling

22

...
content = {

key = "value";
key = "value";
key = "value";
key = "value";

};
datatype = “searchresults”;

...

Handling dynamic data

...
content = {

key = "value";
key = "value";
key = "value";
key = "value";

};
datatype = “product”;

...

23

Handling dynamic data

• Support datatypes with changing keys
• Write less code by iterating over results
• Still provide @dynamic ways to your data

24

Handling dynamic data

Mr.

Joshton

Woodpond

2779 Mission St

San Francisco

94110

CA

25

Solutions for flexibility

Handling dynamic dataHandling dynamic data

Key
Value

Key
Value

Key
Value

color
red

firstName
Scott

isNew
YES

26

Solutions for flexibility

Handling dynamic data

• In methodSignatureForSelector
class_addMethod([self class], aSelector, (IMP)myGetImp, "@@:@");

• New method call
static id myGetImp(id self, SEL _cmd) {
 return [self valueForString:NSStringFromSelector(_cmd)];
}

• New method implementation
(id)valueForString:(NSString *)string {
for (Attribute *attribute in attributes) {
if ([attribute.key isEqualToString:string]) {
return attribute.value;

} }
return nil;
}

27

Solutions for flexibility

URL path generation

• One URL to start a path
• Follow URL from response
• Add or remove steps from the server

28

Solutions for flexibility

URL path generation

29

...
 content = {
 key = "value";
 key = "value";
 key = "value";
 };

continueURL = “http://www.apple.com/nextAction”;
cancelURL = “http://www.apple.com/cancelAction”;

...

Solutions for flexibility

URL Path Generation

URL path generation

...

content = {

key = "value";

key = "value";

key = "value";

};

continueURL = “http://www.apple.com/nextAction”;
cancelURL = “http://www.apple.com/cancelAction”;

...

30

Flexible UIKit categories

UIView-Extensions.h

-(void)layoutViews:(NSArray *)views
inRect:(CGRect)rect verticalPadding:
(CGFloat)padding shrinkToFit:(BOOL)
shrinkToFit;

31

Beyond remote controlled UI

• Optimized data types
• Server controlled expiration
• Persistence + HTTP cookies

32

Optimized data types

LightProduct
{

name = “County Charm Basket”;
price = “$39.99”;
},

HeavyProduct
{

name = “County Charm Basket”;
price = “$39.99”;
rating = “5 Stars”;
description = “This warm fall
arrangement is sure to add color to
any room!”;
itemNo = “0101-2010-0611”;
},

Further optimizations

33

Server controlled expiration

{
name = “County Charm Basket”;
price = “$39.99”;

}
_expire = “1274678220”;

34

Persistence + HTTP cookies

• Every request contains it
• No code to write
• Session vs. Persisted
• Automatically sandboxed

Further optimizations

35

Sometimes you will need a binary update

36

■

• Designing a flexible client
■ General enough to represent a variety of data types
■ “Remote controlled” native UI

■

■

37

■

■

■

• Core frameworks for data
■ Efficient server-client protocols
■ Remote data

38

David den Boer
Engineering Manager, Retail Engineering

39

Loading and utilizing remote data

• Remote data types
• Parsing data
• Client-side storage
• Benefits of Core Data
• Client/Server Data Store

40

Data size

XML

Property List
ASCII Plist

JSON

Property List
Binary Plist

41

Parsing speed

XML
NSXMLParser

Property List
ASCII Plist

JSON
Open source parser

Property List
Binary Plist 19ms

42

Property lists

• Small data size
• Very fast parsing
• Easiest to create

■ With WebObjects, it is one line of code
■ CoreFoundation is open source

• Easiest to parse

+ (id)propertyListFromData:(NSData *)data
 mutabilityOption:(NSPropertyListMutabilityOptions)opt
 format:(NSPropertyListFormat *)format
 errorDescription:(NSString **)errorString;

43

Available options

Simple Simple
Extensible

SQL
Persistence

Simple
Powerful
Extensible
Persistence

No persistence
Unmanageable No persistence Complex Not a database

44

Why use core data

• Persistence
■ Used for data that rarely changes

• Efficient fetching and saving
• Change tracking and Undo
• Object validation and relationship maintenance
• Supports KVC/KVO
• Performance

45

NSManagedObjectModel

46

Using Core Data for remote data storage

• Why?
■ Some data changes rarely
■ Ease of development

• What can it do?
■ Automatic fetching from server
■ Automatically propagates deletes to server
■ Automatically saves to server

47

How to…

• Start with a great foundation
• Subclass
• Add categories
• Update your model

48

Entities

• Entities can have server-side counterparts
• Entities can support up to four server-side operations

■ Fetch
■ Insert
■Update
■Delete

49

Entities

• Client/Server entities need helpers
■ operations
■ route

• NSEntityDescription category with methods for
■ route
■ shouldProcessInsert
■ shouldProcessUpdate
■ shouldProcessDelete

50

Managed objects

• NSManagedObjectContext subclass with override of:
■ save
■ executeFetchRequest:error:

• Category to create instance of object in different store:
■ localInstanceOfObject:

• NSManagedObject category which adds:
■ toDictionary
■ localInstanceInContext:

51

NSManagedObjectContext Category
- (NSManagedObject *)localInstanceOfObject:(NSManagedObject *)iObject {

NSManagedObject *aReturnVal = nil;
if (iObject && [iObject isKindOfClass:[NSManagedObject class]]) {

if ([self objectRegisteredForID:[iObject objectID]]) {
aReturnVal = iObject;

} else {
aReturnVal = [[NSManagedObject alloc] initWithEntity:[iObject entity]

insertIntoManagedObjectContext:self];
for (NSString *aKey in [[[iObject entity] attributesByName] allKeys]) {

id anObject = [iObject valueForKey:aKey];
if (anObject) {

[aReturnVal setValue:anObject forKey:aKey];
}

}
}

}
return [aReturnVal autorelease];

}

52

Fetching

• All fetches by default are client side
• Add endpoint binding to NSFetchRequest

• endpoint specifies method on this entity to execute
• Serialized NSFetchRequest properties include

■ expressions
■ sort orderings
■ fetch limits

latitude == $LATITUDE AND longitude == $LONGITUDE AND endpoint == "nearbyStores"

53

<dict>
<key>predicate</key>
<dict>

<key>expression</key>
<array>

<dict>
<key>key</key>
<string>flowerID</string>
<key>qualifier</key>
<string>EQUALS</string>
<key>value</key>

 <number>1231</number>
</dict>

</array>
</dict>

Example fetch request

54

Persistent stores

• Persistent or transient data?
• Multiple persistent stores

■ SQLite persistence
■ In-memory persistence

• Only one MOM required
■ Use localInstanceOfObject:

NSManagedObjectModel

55

■

■

■

• Core frameworks for data
■ Efficient server-client protocols
■ Remote data

56

■

■

■

■

■

• Lessons learned

57

Gregor Purdy
Still Engineer-at-Large

58

Scaling beyond caching: Four “M’s”

• Measure
•Model
• Monitor
• Message

59

First duty for performance

• Capture stats
• Allow introspection by
internal caller

60

First duty for scale

• What is expected traffic, steady
state and peak?

• What does that mean for different
calls and their SLAs?

Model

61

First duty for operations

• Get stats and logs off the host into
a monitoring system

• Capture history and show context
in charts

62

First duty for troubleshooting

• The logs should contain session
and other identifiers and actual
values participating in the
situation being logged

63

■

■

■

■

■

• Lessons learned

64

Mark Malone
Integration Technologies Evangelist
mgm@apple.com

iPhone Documentation
http://developer.apple.com/iphone

Apple Developer Forums
http://devforums.apple.com

65

Mastering Core Data Russian Hill
Wednesday 2:00PM

Network Apps for iPhone OS, Part 1 Pacific Heights
Wednesday 2:00PM

Network Apps for iPhone OS, Part 2 Pacific Heights
Wednesday 3:15PM

Crafting Custom Cocoa Views Russian Hill
Friday 10:15AM

66

Enterprise and In-House Development Lab Application Frameworks Lab D
Thursday, 11:30AM – 1:45PM

Multitasking Lab Application Frameworks Lab D
Tuesday, 4:30PM – 6:30PM

Server-Driven User Experience Lab Application Frameworks Lab A
Wednesday 12:45 -1:45PM

67

68

69

70

71

