¢

Mastering Core Data

Miguel Sanchez and Adam Swift

Core Data Engineering

Introduction

* Core Data helps applications on all our platforms manage their data

* This session will help you become more proficient with Core Data

What You'll Learn

* Modeling tips and tricks

* Managed Object Lifecycle
* Multithreading

* Fetching

 Data migration

Modeling Tips and Tricks

Managed Object Model

Your key contract with us

* Let us help you

* Model building blocks
- Entities
- Attributes
- Relationships

* Design model around your access patterns

Going Beyond NSManagedObject Instances

Yes, you can subclass

* Move away from KVC idioms and use true accessors

[myObj setName:@"Miguel”];
instead of
[myObj setValue:@”"Miguel” forKey:@"name”];

- Improve code readability
- Faster execution

Accessor in Subclasses
We do most of the work for you

* Use @property to declare

@property(nonatomic, retain) NSStringx firstName;
@property(nonatomic, retain) Employeex manager;

@property(nonatomic, retain) NSSetx directReports;

* Use @dynamic and we'll dynamically resolve accessors for you

NSManagedObject Subclasses

Property code generation

* You can generate code for individual properties

Build Run gl SCM Window % Help

Class Model
" : ; Import...
®Oo Mapping Model Add Model Version

EIJ Hide Model Browser 3B

Groups & File Add Entity
TestCD Add Attribute ~38 A
Mod Add Fetched Property
N Add Relationship ~98R

Clas AAA Catehh D

T ————————
Othe

Reed Diagram

. Automatic Layout , Copy Method Implementations to Clipboard
1] " . .
. Copy Obj-C 2.0 Method Declarations to Clipboard
Products 2 . .

©) Targers Copy Obj-C 2.0 Method Implementations to Clipboard

r" [KE{:L‘(JE‘EE h-"y‘bbc-mm—v—"
-, Find Results Entity A Abs Property A Kind Type or Attribute
[1Y Bookmarks Address = address Relationship Undefin

» B scm Person O Attribute Attribute Undefi Rl Adtribute
W Project Symbols # oOptional [Tra

NSManagedObject Subclasses

Tips and tricks

* Avoid method names from NSManagedObject and NSObject
- description
- deleted
* This includes all KVC resolutions
- deleted
-isDeleted
- getDeleted
- setDeleted:

Transient Properties
Modeled, but not persisted

* Require accessor to compute
* Gain benefits of a modeled property
- Change tracking
* Flexibility from store schema
- Adding transients doesn't require migration

Transient Attribute Example
Basic computation and caching

 fullName = firstName + lastName
- (NSString x)fullName {

[self willAccessValueForKey:@”fullName”];
NSString xfullName = [self primitiveFullName];
[self didAccessValueForKey:@”fullName”];

if (fullName == nil) {
fullName = [NSString stringWithFormat:@"%@ %@",
self.firstName, self.lastNamel;
[self setPrimitiveFullName: fullName];

}

return fullName;

Transient Attribute Example #2

Reference to external resources

— (MyDocument *)documentObject {
// NOT FULL METHOD

MyDocument xresult;

NSString *documentPath = self.persistedDocumentPath;

result = [MyDocument documentFromPath: documentPath];

return result;

}

Transformable Attributes
Storing custom types

TestCD.xcdatamodel

<
N
Overview Build and Run T Decimal
TestCD.xcdatamodel # Car % Double
Float
String
Nami Boolean

o Date
o Binary data

A Abs Clas Property & Kind Type or Attribute
NSM color Attribute Transformable

Type]

Value Transformer Name:

Relationships

Using Transformable Attributes
Your types stored as NSData instances

* Default transformer is NSKeyedUnarchiveFromData
* Declare property to eliminate compiler warnings
-.h

- @property (nonatomic, retain) NSColor *color;
=.m

* @dynamic color;

Subclassing NSValueTransformer
Adapting to your needs

* Encrypt property data
* Improve performance vs. keyed archiving
* Don't forget to account for endianness

Subclassing NSValueTransformer

Direction of transformation photoLocae%ns example
Apple Deveﬁ.gper website

(id)transformedValue: (id)value {
// Your Type ——> NSData

// return NSData instance

(id) reverseTransformedValue: (id)value {
// NSData ——> Your Type

// return Your Type instance

Adapting to Access Patterns

Example: Searching on book title

* Book entity
* Match on title

title contains[dc] $searchValue

Adapting to Access Patterns

Precomputing normalized title O
Apple Developer website

* Remove diacritical marks

* Change predicate to type-along prefix matching

normalizedTitle >= $prefix and normalizedTitle < $nextPrefix

normalizedTitle >= ‘star’ and normalizedTitle < ‘stas’

Adapting to Access Patterns

Prefix matching on any word in title

* Put title words in a relationship
* Search on TitleWords and traverse relationship back to Book

- -

normalizedWord >= $prefix and normalizedWord < $nextPrefix

Managed Object Life Cycle

The Life of Managed Objects

From birth to death, and in between

* Creation Managed Object Context

- Insertion and fetching

« Active use .'\‘
- Updating, saving, undoing

* Cleanup

- Deletion, reverting to faults

Hooking into Managed Object Life Events

Method overrides vs. listening to notifications

* Overriding methods in NSManagedObject
* Per instance actions
* Processing Managed Object Context notifications
- Graph change actions
* Reacting to errors from Managed Object Context actions

Awake Methods

Good place for initialization logic

—(void)awakeFromInsert

—(void)awakeFromFetch

—(void)awakeFromSnapshotEvents: (NSSnapshotEventType) flag

Awaking from Insertion
- (void)awakeFromlInsert

* More complicated initialization Managed Object Context

* Set baseline values

* Avoid setting up relationships here .

— (void)awakeFromInsert {
[super awakeFromInsert];

self.employeelID = // next employee 1id;

Awaking from Fetching

- (void)awakeFromFetch

« Compute derived state vl O e oyt

- Transient properties
- Unmodeled state .
* Avoid setting up relationships here

— (void)awakeFromFetch{
[super awakeFromFetchl];

self.fullName = [NSString stringWithFormat:@"%@ %@",
self.firstName, self.lastNamel;

Awaking from Undo and Refresh

- (void)awakeFromSnapshotEvents:(NSSnapshotEventType)flag

* Event can be

- Undo from insert, delete update
- Refresh

e Clear out cached values

— (void)awakeFromSnapshotEvents: (NSSnapshotEventType)flag {
[super awakeFromSnapshotEvents:flagl;

self.fullName = nil;

Processing Changed Objects

Notification from the Managed Object Context

* NSManagedObjectContextObjectsDidChangeNotification
= Inserts
- Updates
* Deletes

« Communicates what will happen on next save

Processing Changed Objects

When is notification sent?

* MOC processPendingChanges
* MOC save
* End of event loop

* Before fetching

Context Notifications on Save
Gives you all objects involved

* NSManagedObjectContextWillSaveNotification
= Setting timestamps

* NSManagedObjectContextDidSaveNotification
- Telling others of the save

Communicating Changes to Other Contexts
Merging changes from a save

* Inserts, updates, and deletes are applied to destination MOC

- (void)mergeChangesFromContextDidSaveNotification: (NSNotification *)ncn

Saving the Managed Object Context
- (BOOL)save:(NSError **)error

e Check for validation errors

- See CoreDataErrors.h for codes
- NSDetailedErrorsKey in userInfo chains multiple errors

* Optimistic locking failures

Optimistic Locking

Multi-writer conflict detection

Managed Object Context

Snapshot

\ W A

Optimistic Locking

Set merge policy on managed object context

Managed Object Context NSErrorMergePolicy

NSMergeByPropertyStoreTrumpMergePolicy

NSMergeByPropertyObjectTrumpMergePolicy

Snapshot
NSOverwriteMergePolicy

\ W A

NSRollbackMergePolicy

Cleaning Up

Deletion

* Remember that deletion doesn’t actually happen until MOC saves

» Can't access relationships in deleted objects in MOC save notification
* Hook to cache external resources to delete

— (void)prepareForDeletion

Cleaning Up

Becoming a fault again

* Don't override dealloc
— (void)willTurnIntoFault

* Clearing out custom caches
* Clear out KVO dependencies

Turning Objects Back to Faults
Trimming the Object Graph

* Turning single objects back to faults
— (void) refreshObject: (NSManagedObject *) mergeChanges: (BOOL)flag

Do not call dirty objects with mergeChanges:NO

* Resetting all objects in a MOC

— (void) reset

Multithreading

Considering Multithreaded Core Data

Asynchronous execution

* Improve Ul responsiveness
* Background fetching
* Improved batched saving

Re-Considering Multithreaded Core Data

Potential issues

* Thread switching isn't free
* Resource contention

* Increased complexity

Thread Confinement
Core Data’s Golden Rule

* Each “thread” gets own Managed Object Context
- GCD: Each concurrent block gets own MOC
* Don’t pass managed objects between threads

- Pass objectIDs to get local copies

Passing Objects Between Threads
Object IDs are thread safe

Ul Thread Background Thread

Object ID MOC 2

— (NSManagedObject *)objectWithID: (NSManagedObjectID *x)moid

Row Cache

Communicating Unsaved Objects
Must save first

* Unsaved objects have temporary IDs

* Saving makes ID permanent
* Only pass saved object IDs to other contexts

Queue Setup with GCD

Each potentially concurrent unit gets own MOC

Serial Queue 1

Block 1

=)

Block 3
M

Block 5

1)

Queue Setup with GCD

Each potentially concurrent unit gets own MOC

Serial Queue 1 Serial Queue 2

Block 1 Block 2

MOC 1 Mo@

Block 3
MOC 1

Block 5
MOC 1

Blocks in serial queues can execute concurrently with blocks in other queues

Queue Setup with GCD

Each potentially concurrent unit gets own MOC

Serial Queue 1 Serial Queue 2 Concurrent Queue

Block 1 Block 2 Block 4

MOC 1 MOC 2 MO@

Block 3 Block 6

MOC 1 MO@

Block 5
MOC 1

Multi-Party Edits and Deletes

Carefully define the workflow of your app

* Refresh single object
— (void) refreshObject: (NSManagedObject *)mo mergeChanges: (BOOL)flag

* Merge saved changes

— (void)mergeChangesFromContextDidSaveNotification: (NSNotification *x)nfc

Fetching

Adam Swift

Core Data Engineering

Focus on Performance
User experience

* Be responsive
* Scale gracefully

Katie Abeles
Aaron Ackermann
Kevin Angel

John Appleseed

Jessica Barbieri

Dave Becker

Fetching Strategies for Performance
Memory and 1/0

* Only fetch what you need
* Ul defines your “working set”
* Amortize database I/O

Fetching Is I/0

Balance size vs. frequency

* Fetch objects and data in batches
* Avoid hangs and thrashing

Leverage Database Power
Keep the working set small

* Let the database do the heavy lifting
* Use predicate to filter results
* Sort descriptors to order them

Using Predicates
Working in the database

* Faster than fetching
* Use less memory

Predicates Can Replace Faulting
Evaluated using SQL

* Use @count to avoid fetching a to-many relationship

* Example
- Music playlists without any songs

songs.@count == 0

Predicates and To-Many Relationships
Use a SUBQUERY to access related data

* Test attributes related through a to-many

* Example
- Artists with songs longer than 10 minutes

SUBQUERY (songs, $s, $s.length > 600).@count > 0

Unique Attribute Values

Read-only results

* Fetch ONLY the distinct values
* Returns read-only dictionaries
* Example

- All unique album names

[request setReturnsDistinctResults: YES];

[request setResultType: NSDictionaryResultTypel;

[request setPropertiesToFetch: [NSArray arrayWithObject: @”name”]];
[request setEntity: albumEntityl];

Fetch Calculated, Aggregate Data

Evaluated in the database

* Fetch calculated results as dictionaries

* Example

- totalTime = sum length of all songs

= [NSExpression expressionForFunction: @”sum:” arguments: [NSArray
arrayWithObject: [NSExpression expressionForKeypath: @”length”]1];
sumED = [[NSExpressionDescription alloc] init];
[sumED setExpression: exl];
[sumED setExpressionResultType: NSDoubleAttributeTypel;
[sumED setName: @”totalTime”];
[request setEntity: songEntity];
[request setPropertiesToFetch: [NSArray arrayWithObject: sumED]];
[request setResultType: NSDictionaryResultTypel;

How Many?
Just fetch the count

e Use countForFetchRequest:

* Bonus points
= Sort and use a fetch limit to fetch first few

[request setSortDescriptors: playlistOrderKeysl];
[request setFetchLimit: 3];

Playlist # of Songs Titles

Driving M Song A1, Song A2,Song A3, ...
Exercise 5,000 Song B1, Song B2, Song B3, ...
Chill Out 1,056 Song C1, Song C2, Song C3, ...

Fetching Managed Objects

Use the attribute data now?

* ‘Faulted’ managed object
* All attributes
* Relationships are faults

[request setReturnsObjectsAsFaults: NOJ;

Fetching Faults

A managed object placeholder -"’“a

* Attributes fetched on demand
« Partial faults can prefetch subset of attributes

[request setPropertiesToFetch: [NSArray arrayWithObject: @"title”]];

Managed Object ID
Like a URL to Managed Objects /

* Small and threadsafe 16 bytes
* Perfect for predicates

[request setResultType: NSManagedObjectIDResultTypel;
[request setIncludesPropertyValues: NOIJ;

Relationship Faulting

Need the related data now -"“5

* Master table shows related data

* Prefetch to avoid faulting individually

* Example
- List playlist songs and album name

[request setRelationshipKeypathsForPrefetching:
[NSArray arrayWithObject: @”album”]];

Batching I/0

What if you can’t control access?

* Some APl wants full array
* Set the batch size
* Array subclass automatically batches

[request setFetchBatchSize: 100];

Performance Analysis
Focus your efforts

* Use Instruments
* Track faulting and fetching hot spots

* Take a look
- NSFetchRequest.h
» NSExpression.h
» Predicate Programming Guide

Migration

Why Is Migration Needed?

* Data model describes structure
* Changing model requires new structure
* Adapt old data to new structure

Custom Mapping

Hand-tuned, flexible logic

* Total control over changes
* Migrate objects in-memory

Lightweight Migration

Changes automatically inferred

 Automatic—for basic changes
* Migrate in-place via SQL

v1.0 v2.0

Inferable Changes
Supported by lightweight migration

* Add, remove, rename

* Attributes—numerical type conversion

* Relationships—promote to-one to to-many
* Entities—change entity inheritance

What You Have to Do

* You must keep the old model

 Need to read old data
» Xcode: Design » Data Model > Add model version

* Set options at store open

- Migrate persistent stores automatically = YES
- Infer mapping model automatically = YES

Cocoa error 134130: reason = “Can't find model for source store”

Renaming
How it works

* Set Renaming |dentifier

* Example
- Change song “name” to “title”

ano | | Music v2.xcdatamodel
Music v2.xcdatamodel & Song ¥
A Abs Cla Property A Kind Type or Attribute
NSI album Relatienship Album
NSI length Attribute String Versioning
(] NSI title Attribute String Ver. Hash Modifier:

Renaming ldentifier: | name
Other

] Index in Spotlight
[_] Store in External Record file

Tips

Core Data Model Versioning
and Data Migration
Programr&ing Guide

* Transient to persistent == add new
* New attributes must be optional or have default value
* New relationships must be optional

Migration Post-Processing
Add custom, flexible logic

* Open store (with migration options)
* Check metadata for custom key, e.g.”DonePostProcessing”
* Do post-processing...

- Populate derived attributes
- Insert or delete objects
- Set store metadata (“DonePostProcessing” = YES)

* Save changes and metadata

— (void) loadStoreWithMigration: (NSURL x)url {

store = [psc addPersistentStoreWithType: NSSQLiteStoreType
configuration: nil URL: url options: opts error: &err];

m = [store metadatal;
key = @”"DonePostProcessing”;
if (m && ([[m objectForKey: key] integerValue] < 2)) {
[self createNormalizedTitlesForBooksInContext: context];
m2 = [[m mutableCopy] autoreleasel];
[m2 setObject: [NSNumber numberWithInteger: 2]
forKey: keyl;
[store setMetadata: m2];

ok = [context save:&err];

Summary

* Core Data offers many paths to maturing your application
* Focus on a good initial model of your data
 Adapt to your evolving access patterns with incremental changes

http://bugreport.apple.com

More Information

Michael Jurewitz
Developer Tools Evangelist
jurewitz@apple.com

Core Data Documentation
Programming Guides, Examples, and Tutorials
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Presidio

Optimizing Core Data Performance on iPhone OS Thursday 4:30PM

Labs

Core Data Lab

Application Frameworks Lab A
Tuesday 4:30PM

Core Data Lab

Application Frameworks Lab B
Wednesday 4:30PM

Core Data Lab

Application Frameworks Lab A
Thursday 9:00AM

& WWDCI0

