s

Simplifying Touch Event Handling
with Gesture Recognizers

Let us do it for you

Brad Moore and Josh Shaffer

iPhone Frameworks Engineers

Touch Interfaces
Easy to use

Easy to Use

* Direct manipulation

Easy to Use

* Direct manipulation
* Common gestures and behaviors

Easy to Use

* Direct manipulation
* Common gestures and behaviors
- Tap

Easy to Use

* Direct manipulation

* Common gestures and behaviors
- Tap
= Pinch

Easy to Use

* Direct manipulation

* Common gestures and behaviors
- Tap
= Pinch
= Swipe

Easy to Use

* Direct manipulation
* Common gestures and behaviors
- Tap
= Pinch
= Swipe
- Pan

Easy to Use

* Direct manipulation

* Common gestures and behaviors
- Tap
= Pinch
= Swipe
- Pan
- Press-and-hold

Touch Interfaces

* Easy to use

» Direct manipulation

- Common gestures and behaviors

Touch Interfaces

* Easy to use
» Direct manipulation
» Common gestures and behaviors

* Hard to write

Hard to Write

* Limited precision

Hard to Write

* Limited precision
* Many simultaneous inputs

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity

= Tap

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity

- Tap

- Double-tap

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity

- Tap

- Double-tap

= Pinch

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity

- Tap

- Double-tap

= Pinch

= Pan

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity

- Tap

- Double-tap

- Pinch

= Pan

- Long-press

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity

= Tap

- Double-tap

- Pinch

= Pan

- Long-press

- Tap-and-a-half

Hard to Write

* Limited precision

* Many simultaneous inputs
* Inherent ambiguity

* Tempting non-solutions

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity
* Tempting non-solutions
- Wait

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity
* Tempting non-solutions
- Wait
- Guess

Hard to Write

* Limited precision
* Many simultaneous inputs
* Inherent ambiguity
* Tempting non-solutions
- Wait
- Guess
= Give up

Touch Interfaces

* Easy to use

» Direct manipulation
- Common gestures and behaviors

* Hard to write
- Limited precision
- Many simultaneous inputs
* Inherent ambiguity

UlGestureRecognizer

Making it easy for developers

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Touch Handling

* One UlTouch per finger
* UlView hit testing
* Responder delivery

Touch Handling

@interface MyView : UIView {
UITouch *xtrackedTouch;
CGPoint startPoint;

¥

— (void)touchesBegan: (NSSet *x)touches withEvent: (UIEvent x)event

{

if (trackedTouch == nil) {
trackedTouch = [touches anyObject];
startPoint = [trackedTouch locationInView:self];

Touch Handling

— (void)touchesMoved: (NSSet x)touches withEvent: (UIEvent x)event
{
CGPoint currentPoint = [trackedTouch locationInView:self];
if (currentPoint.x - startPoint.x > MIN_SWIPE_X_THRESHOLD &&
ABS(currentPoint.y - startPoint.y) < MAX_SWIPE_Y_THRESHOLD)) A{
NSLog(@"Seems like a swipe.”)

(void)touchesEnded: (NSSet x)touches withEvent: (UIEvent x)event

if (trackedTouch && [touches containsObject:trackedTouch])
trackedTouch = nil;

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Gesture Handling

* Instantiate and configure a predefined UlGestureRecognizer
* Designate one or more handlers

* Add recognizer to a view

Gesture Handling

— (id)initWithFrame: (CGRect) frame
{
if ((self = [super initWithFrame:frame]) == nil)
return nil;

UISwipeGestureRecognizer xswipe = [[UISwipeGestureRecognizer alloc]
initWithTarget:self action:@selector(swipeRecognized:)];

[self addGestureRecognizer:swipel;

[swipe releasel;

return self;

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

How It Works

UlView

How It Works

UlView

How It Works

Multicast touch delivery

O

Swipe Recognizer UlView

How It Works

Success

O

Swipe Recognizer UlView

v

Handlers

How It Works

Failure

O Ol | O O

Swipe Recognizer UlView

How It Works

Independent analysis

O O O

Tap Recognizer Swipe Recognizer UlView

How It Works

Independent analysis

O @) O

Tap Recognize) Swipe Recogniz_) UlView ()

How It Works

Independent analysis

O @) O

Tap Recognizer Swipe Recognizer UlView

How It Works

Contextual analysis

Subview 1

Container View

Subview 2

How It Works

Contextual analysis

Container View

Subview 1 Subview 2

How It Works

Contextual analysis

Container View

Subview 1 Subview 2

How It Works

Contextual analysis

Container View

How It Works

Contextual analysis

Container View

Tap Gesture Subview 1 Swipe Gesture Subview 2

How It Works

Beyond one view

Container View

How It Works

Beyond one view

O

Pinch Gesture Container View

@)

O

O

Tap Gesture Subview 1

How It Works

* Multicast touch delivery
* Independent analysis

* Contextual processing

* Across multiple views

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Using the API

UlGestureRecognizer

* Abstract base class

* Many concrete subclasses
- UITapGestureRecognizer o
- UIPinchGestureRecognizer O
- UISwipeGestureRecognizer O
- UIPanGestureRecognizer
- UlLongPressGestureRecognizer
- UIRotationGestureRecognizer)

* Custom subclasses encouraged

Establishing Handlers

UlGestureRecognizer

* Notifies of recognition via target/action pairs

— (id)initWithTarget:(id)target action:(SEL)action;
— (void)addTarget: (id)target action:(SEL)action;
— (void) removeTarget: (id)target action:(SEL)action;

Establishing Handlers

UlGestureRecognizer

* Notifies of recognition via target/action pairs

— (id)initWithTarget:(id)target action:(SEL)action;
— (void)addTarget: (id)target action:(SEL)action;
— (void) removeTarget: (id)target action:(SEL)action;

» Actions take recognizer as argument

— (void)gestureRecognized: (UIGestureRecognizer x)recognizer

{
// Do something

}

Establishing Handlers

UlGestureRecognizer

* Notifies of recognition via target/action pairs

— (id)initWithTarget:(id)target action:(SEL)action;
— (void)addTarget: (id)target action:(SEL)action;
— (void) removeTarget: (id)target action:(SEL)action;

» Actions take recognizer as argument

— (void)gestureRecognized: (UIGestureRecognizer x)recognizer

{
// Do something

}

Handling Gestures
Location

* On-screen location

— (CGPoint) locationInView: (UIViewx)view;

O

| °o°® .

Swipe .
Start point Pinch
Centroid

Handling Gestures
Location

* On-screen location

— (CGPoint) locationInView: (UIViewx)view;

* Detailed touch information
— (NSUInteger)numberOfTouches;

— (CGPoint)locationOfTouch: (NSUInteger)touchIndex inView: (UIViewx)view;

Handling Gestures
State

@property(nonatomic, readonly) UIGestureRecognizerState state;

» Just for bookkeeping

- UIGestureRecognizerStatePossible

- UIGestureRecognizerStateFailed

Handling Gestures
State

@property(nonatomic, readonly) UIGestureRecognizerState state;

» Just for bookkeeping

- UIGestureRecognizerStatePossible
- UIGestureRecognizerStateFailed

* Discrete recognizers

- UIGestureRecognizerStateRecognized

Handling Gestures
State

@property(nonatomic, readonly) UIGestureRecognizerState state;

» Just for bookkeeping
- UIGestureRecognizerStatePossible
- UIGestureRecognizerStateFailed

* Discrete recognizers

- UIGestureRecognizerStateRecognized

 Continuous recognizers

- UIGestureRecognizerStateBegan

- UIGestureRecognizerStateChanged

- UIGestureRecognizerStateEnded

- UIGestureRecognizerStateCancelled

Handling Gestures
Continuous state

Save initial state and
begin updating user
interface

° Continue updating Ul

Tear down transient
Ul, finalize changes

Handling Gestures
Continuous state

Changed

Tear down transient Ul,
Ca nce| |ed caqcel unconfirmed
¢ actions, restore to
original state

Handling Gestures
Continuous state

— (void)handleLongPress: (UIGestureRecognizer x)recognizer

{
UIView xview = recognizer.view;
CGPoint currentLocation = [recognizer locationInView:view.superview];

switch (recognizer.state) {
case UIGestureRecognizerStateBegan:
startLocation = view.center;
centerOffset = PointDifference(currentLocation, startLocation);
[self beginJiggling:view];
JELS

case UIGestureRecognizerStateChanged:
view.center = PointSum(currentLocation, centerOffset);

break;

— (void)handleLongPress: (UIGestureRecognizer *)recognizer {

case UIGestureRecognizerStateEnded:
view.center = PointSum(currentLocation, centerOffset);
[self endJiggling:view];
break;
case UIGestureRecognizerStateCancelled:
view.center = startLocation;

[self endJiggling:view];

break;

Handling Gestures
Specialized state

* Subclasses usually have additional state
- Appropriate to the gesture

—[UIPinchGestureRecognizer scalel
—[UIPanGestureRecognizer translationInView:]

Configuring Gestures
Delegate

@property (nonatomic,assign) id <UIGestureRecognizerDelegate> delegate;

@protocol UIGestureRecognizerDelegate

— (BOOL)gestureRecognizerShouldBegin: (UIGestureRecognizer x)gestureRecognizer;

— (BOOL)gestureRecognizer: (UIGestureRecognizer x)gestureRecognizer
shouldReceiveTouch: (UITouch *)touch;

@end

Configuring Gestures
Delegate

O

Swipe Recognizer UlView

Should
begin?

Deleg—

NO

Configuring Gestures

Delegate

UlView
E

Configuring Gestures
Subclasses

e Built-in set highly configurable

@interface UITapGestureRecognizer

@property (nonatomic) NSUInteger numberOfTapsRequired;
@property (nonatomic) NSUInteger numberOfTouchesRequired;

@end

Configuring Gestures
Subclasses

e Built-in set highly configurable

@interface UIPanGestureRecognizer

@property (nonatomic) NSUInteger minimumNumberOfTouches;
@property (nonatomic) NSUInteger maximumNumberOfTouches;

@end

Configuring Gestures
Subclasses

e Built-in set highly configurable

@interface UILongPressGestureRecognizer

@property (nonatomic) NSInteger numberOfTapsRequired;
@property (nonatomic) NSInteger numberOfTouchesRequired;
@property (nonatomic) CFTimelInterval minimumPressDuration;
@property (nonatomic) CGFloat allowableMovement;

@end

Configuring Gestures
Subclasses

e Built-in set highly configurable
- To a fault?
* Please exercise restraint!

- Consistency
- Discoverability

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Demo

Adding Gesture Recognizers

Josh Shaffer

As seenon TV

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Conflict Resolution
Gestures in conflict

* A superposition of possibilities
- But there can only be one

- First-to-recognize wins

Conflict Resolution
Gestures in conflict

@) O

Pan Recognizer Swipe Recognizer UlView

Conflict Resolution
Gestures in conflict

* A superposition of possibilities
 But there can only be one
= First-to-recognize wins

* Tie breakers

- Deepest view
- Most recently added

Conflict Resolution
Precedence

Container View

Subview

Conflict Resolution
Precedence

Container View

Subview

Conflict Resolution

Precedence
Swipe Recognizer Container View
Swipe Recognizer Subview

Conflict Resolution

Precedence

O

Swipe Recognizer Container View

FSwipe Recognizer Swipe Recognizer Subview

Conflict Resolution
Exceptions to exclusivity

* Dependent gestures

- e.g., tap, double-tap

Conflict Resolution
Dependent gestures

* Reasonable default behavior

Double Tap Single Tap UlView
Handlers Handlers

Conflict Resolution
Dependent gestures

* Fires once for each gesture
» Great for stackable actions

Pros: Fluffy. iSo cute!
Cons: ?

Conflict Resolution
Dependent gestures

* Fires once for each gesture
» Great for stackable actions
* Poor for nonstackable actions

Conflict Resolution
Dependent gestures

* For nonstackable actions

@interface UIGestureRecognizer

— (void)requireGestureRecognizerToFail: (UIGestureRecognizer x)recognizer;

@end

* Dependee waits for dependent to fail

[singleTap requireGestureRecognizerToFail:doubleTapl;

Conflict Resolution
Dependent gestures

@, O

Double Tap Single Tap UlView

v

Handlers

Conflict Resolution
Dependent gestures

* Introduces latency!

O O O

Double Tap Single Tap UlView

Handlers

Conflict Resolution
Exceptions to exclusivity

* Dependent gestures
» e.g., tap, double-tap

» Compatible gestures
- e.g., rotate, pinch

Conflict Resolution
Compatible gestures

* Built-ins never assume compatibility
- But delegate can override

@protocol UIGestureRecognizerDelegate

— (BOOL)gestureRecognizer: (UIGestureRecognizer *)gestureRecognizer
shouldRecognizeSimultaneouslyWithGestureRecognizer: (UIGestureRecognizer)
recognizer;

@end

Conflict Resolution
Gestures in conflict

O O |
Pan Recognizer Pinch Recognizer UlView
O O O

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Topics

* Touch handling

* Gesture handling

* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Hybrid Event Handling

* Designed for mix-and-match

- Easily add gestures to existing apps
- Be ready for cancelled touches

* Not a replacement for raw events

- Builds upon, exposes raw touches
- There's no piano gesture

» Stay for the next session

Topics

* Touch handling

* Gesture handling
* How it works

* Using the API

* Conflict resolution

* Hybrid event handling

Demo

Non-exclusive gestures

Josh Shaffer
UIKit God

Gesture Recognizers

* Why
- Less code to writel!
- Work to handle gestures, not to detect them

« Achieve consistency

* How
- Instantiate concrete recognizer

= Set target/action pairs
- Configure with properties and delegate

= Attach to a view

More Information

Bill Dudney

Application Frameworks Evangelist
dudney@apple.com

Documentation

Gesture Recognition
http://developer.apple.com/iphone/library/documentation/General/Conceptual/

iPadProgrammingGuide/GestureSupport/GestureSupport.html

Apple Developer Forums
http://devforums.apple.com

Related Sessions

“re Pacific Heigh
Advanced Gesture Recognition Wednesday 430PM

Labs

Application Frameworks Lab A

Gesture Recognition Lab Thursday 2:00PM

& WWDCI0

The last slide
after the logo is
intentionally

left blank for
all

