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Introduction

• Performance is important!
• Key aspect of App Store reviews
• You have the tools and skills to improve performance
• Today: Cover common cases and strategies
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What You’ll Learn

• How to test and measure performance scenarios
• How to improve key scenarios

■ Speedy launches
■ Smooth scrolling
■ Slim memory footprint

• How to prioritize performance issues
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Measuring Performance
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• Automated testing

Measuring Performance
Techniques

• Measure first
• Manual testing

6



Measuring Performance
Techniques

• What numbers should you measure?
• Everything affects performance
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Measuring Performance
Techniques

• Guessing is overrated
• Focus on scenarios

■ Measure things in turn
■ Change
■ Re-test

• It has to feel right
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Measuring Performance
Tools

• Logging
■ NSLog(@”That took %g seconds\n”, timeWeWaited);
■ Log to file

• Instruments
• Simulator?
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Simulator or Device?

• Simulator is fast and easy
■ Uses Mac hardware
■ Unrealistic “iOS” performance profile

• Exception: memory footprint
■ Simulator is a good model
■ More speed and features in Instruments 

• Device is the final arbiter
■ Use for all speed-related testing
■ Verify memory fixes perform as expected
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Measuring Performance
Tips

• Measure early, measure often
• Record “good” results as a baseline
• Turn off or remove logging for submitted app!
• Test every device you will support
• At minimum test the oldest device (today: iPhone 3G)
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Key Scenarios
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Speedy Launches
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Speedy Launches
Importance

• First thing a user experiences or demos
• Very common scenario

■ Non-multitasking “launch”
■ Multitasking “resume”

• Slow performance will cause OS to abort your app
■ Maintain system responsiveness
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Speedy Launches
Watchdog

• The OS is watching you
• “Wall clock” time to gate
• Values subject to change

Maximum Time

Launch 20 sec

Resume 10 sec

Suspend 10 sec

Quit 6 sec

Complete operation (iOS 4) 10 min
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Speedy Launches
Measuring launch

• Test with realistic data sets
• Use Time Profiler Instrument
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Speedy Launches
Time Profiler

• Collects backtraces at regular intervals

• Useful to see where execution 
time goes

• Look for work to defer, do on demand

• Necessary work
■ sort by time
■ speed the slowest parts
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Time Profiler Instrument
Demo—Speedy Launches
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Speedy Launches
Tips

• System watchdog will terminate slow apps
• Collect trace with the Time Profiler Instrument
• Do less work

■ Defer work out of startup

• Do not block on slow operations
■ Never do networking on your main thread

• Optimize time-consuming activities
■ Launch-time data set needs to have a size limit

• Collect new traces to quantify results
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Smooth Scrolling

20



Smooth Scrolling
Importance

• Table Views are popular
• Direct Manipulation UI demands responsiveness
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Smooth Scrolling
Measuring scrolling

• Frames Per Second (FPS—“fips”)
• 60 FPS == smooth
• Core Animation Instrument
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Smooth Scrolling
Core Animation

• Measures FPS in realtime
■ Sub-second requires you to do math
■ Example: 18 frames in 0.3 s == 60 FPS

• Visual hints give insight into important 
rendering details
■ Color Blended Layers
■ Many others
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Testing and measurement
Demo—Smooth Scrolling
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Smooth Scrolling—Cell Reuse
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Smooth Scrolling—Cell Reuse
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Efficient drawing
Demo—Smooth Scrolling
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Smooth Scrolling
Tips

• Test scrolling scenarios
■ Easy to see via manual testing
■ Automated testing now supported

• Measure FPS with Core Animation Instrument
■ 60 FPS == good

• Reuse cells
■ -[UITableViewCell initWithStyle:reuseIdentifier:]
■ -[UITableView dequeueReusableCellWithIdentifier:]

• Stay opaque/green
■ Even for UILabel! OS will handle “blue background” for you
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Slim Memory Footprint 
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Slim Memory
Importance

• iOS has no swap
• Under memory pressure, OS will terminate apps

■ Maintain system stability
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Slim Memory
Jetsam

• Watches memory pressure
• Instant lightweight termination of applications
• More critical with multitasking

■ Apps with small footprint preserved longer

• Stay safe, stay low
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Slim Memory
Areas to focus on

• Avoidable spikes 
• Leaks
• Abandoned memory
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Slim Memory
Avoidable spikes

• Definition: individual brief allocations all present simultaneously
• Processing large quantities of data

■ Break into independent batches

• Autoreleased objects
■ Reduce object lifetimes
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Slim Memory
Autorelease

• “Used to avoid worrying about retain/release”
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Slim Memory
Autorelease

• “Used to avoid worrying about retain/release”
• Used to return objects without retaining them

■ Caller will retain if needed

• Objects added to an NSAutoreleasePool
• Pool calls release at the next turn of the runloop
• Deallocation may happen then, if retain count goes to zero
• In the meantime, memory can spike
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Allocations Instrument
Demo—Slim Memory
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Slim Memory
Autorelease

• A little more expensive than retain/release
• In designing your code

■ Only use at framework boundaries
■ Explicit retain/release when lifetime is managed by one entity

• When using API
■ Use Instruments to watch memory allocation pattern
■ Wrap intensive autorelease API uses in nested autorelease pool
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Slim Memory
Leaks

• Definition: allocated memory that is inaccessible
• Leaks Instrument examines the heap for leaked memory
• Most useful when app launched from the Instrument
• Identify moment of allocation

■ Not often the problem, but gives useful context

• Common mistakes
■ Unbalanced retain/release
■ Forget to release property’s original value
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Slim Memory
Abandoned memory

• Definition: leftover; accessible, but will never be used again
• Allocations Instrument offers Heapshot feature
• Two snapshots in time
• Look at (unexpected) differences
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Allocations Instrument
Demo—Slim Memory
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Slim Memory
Tips

• Jetsam will kill your app
• Leaks, abandonments, spikes
• Leaks Instrument
• Allocations Instrument with Heapshot
• Target autorelease use
• Nested autorelease pools
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Prioritizing Performance Issues
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Prioritization
Where performance fits

• There can be “show stopping” performance issues
• Establishing clear goals early can help consensus
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Prioritization
Judging priority

• Frequency
■ Common scenario?
■ Consistently reproducible? 

• Severity
■ Unresponsive for multiple seconds? 
■ Single-digit FPS?
■ Cause a watchdog or Jetsam?
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Prioritization
Judging priority

• Watchdog and Jetsam terminations look like a crash
• Top “crash” may not be a crash!
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iTunes Connect
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iTunes Connect
Weighting issues
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iTunes Connect
Watchdog reports
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iTunes Connect
Jetsam reports
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Wrapping Up
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Review

• Performance is critical
• Measure with Instruments
• Performance testing is best done on an older device
• Key Areas

■ Launch
■ Scrolling
■ Memory

• Develop clear performance goals
• Visit iTunes Connect for performance-related reports
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Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Michael Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
iPhone OS Performance Overview
http://developer.apple.com/iphone/library/documentation/Performance/Conceptual/
PerformanceOverview/

Apple Developer Forums
http://devforums.apple.com/

More Information
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Advanced Performance Optimization on iPhone OS, Part 1 Mission
Thursday 3:15PM

Advanced Performance Optimization on iPhone OS, Part 2 Mission
Friday 11:30AM

Related Sessions

Optimizing Core Data Performance on iPhone OS Presidio
Thursday 4:30PM

Advanced Memory Analysis with Instruments On Video

Advanced Performance Analysis with Instruments On Video

Building Animation Driven Interfaces On Video
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Animation Lab Application Frameworks Lab C
Thursday, 4:30PM

Labs

OpenGL ES Lab Graphics and Media Lab A
Thursday, 9:00AM

iPhone OS Performance Lab Developer Tools Lab A
Friday, 9:00AM

iPhone OS Performance Lab Developer Tools Lab A
Thursday, 4:30PM
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