
Erik Neuenschwander
Manager, iOS Performance

Ben Weintraub
iOS Performance Engineer

Performance 
Optimization on iPhone OS

2



Introduction

• Performance is important!
• Key aspect of App Store reviews
• You have the tools and skills to improve performance
• Today: Cover common cases and strategies

3



What You’ll Learn

• How to test and measure performance scenarios
• How to improve key scenarios

■ Speedy launches
■ Smooth scrolling
■ Slim memory footprint

• How to prioritize performance issues

4



Measuring Performance

5



• Automated testing

Measuring Performance
Techniques

• Measure first
• Manual testing

6



Measuring Performance
Techniques

• What numbers should you measure?
• Everything affects performance

7



Measuring Performance
Techniques

• Guessing is overrated
• Focus on scenarios

■ Measure things in turn
■ Change
■ Re-test

• It has to feel right

8



Measuring Performance
Tools

• Logging
■ NSLog(@”That took %g seconds\n”, timeWeWaited);
■ Log to file

• Instruments
• Simulator?

9



Simulator or Device?

• Simulator is fast and easy
■ Uses Mac hardware
■ Unrealistic “iOS” performance profile

• Exception: memory footprint
■ Simulator is a good model
■ More speed and features in Instruments 

• Device is the final arbiter
■ Use for all speed-related testing
■ Verify memory fixes perform as expected

10



Measuring Performance
Tips

• Measure early, measure often
• Record “good” results as a baseline
• Turn off or remove logging for submitted app!
• Test every device you will support
• At minimum test the oldest device (today: iPhone 3G)

11



Key Scenarios

12



Speedy Launches

13



Speedy Launches
Importance

• First thing a user experiences or demos
• Very common scenario

■ Non-multitasking “launch”
■ Multitasking “resume”

• Slow performance will cause OS to abort your app
■ Maintain system responsiveness

14



Speedy Launches
Watchdog

• The OS is watching you
• “Wall clock” time to gate
• Values subject to change

Maximum Time

Launch 20 sec

Resume 10 sec

Suspend 10 sec

Quit 6 sec

Complete operation (iOS 4) 10 min

15



Speedy Launches
Measuring launch

• Test with realistic data sets
• Use Time Profiler Instrument

16



Speedy Launches
Time Profiler

• Collects backtraces at regular intervals

• Useful to see where execution 
time goes

• Look for work to defer, do on demand

• Necessary work
■ sort by time
■ speed the slowest parts

17



Time Profiler Instrument
Demo—Speedy Launches

18



Speedy Launches
Tips

• System watchdog will terminate slow apps
• Collect trace with the Time Profiler Instrument
• Do less work

■ Defer work out of startup

• Do not block on slow operations
■ Never do networking on your main thread

• Optimize time-consuming activities
■ Launch-time data set needs to have a size limit

• Collect new traces to quantify results

19



Smooth Scrolling

20



Smooth Scrolling
Importance

• Table Views are popular
• Direct Manipulation UI demands responsiveness

21



Smooth Scrolling
Measuring scrolling

• Frames Per Second (FPS—“fips”)
• 60 FPS == smooth
• Core Animation Instrument

22



Smooth Scrolling
Core Animation

• Measures FPS in realtime
■ Sub-second requires you to do math
■ Example: 18 frames in 0.3 s == 60 FPS

• Visual hints give insight into important 
rendering details
■ Color Blended Layers
■ Many others

23



Testing and measurement
Demo—Smooth Scrolling

24



Smooth Scrolling—Cell Reuse

CELL

CELL

CELL

CELL

CELL

Before

CELL

CELL

25



Smooth Scrolling—Cell Reuse

CELL

CELL

CELL

CELL

CELL

After

CELL

CELL

CELL

CELL

CELL

CELL

CELL

26



Efficient drawing
Demo—Smooth Scrolling

27



Smooth Scrolling
Tips

• Test scrolling scenarios
■ Easy to see via manual testing
■ Automated testing now supported

• Measure FPS with Core Animation Instrument
■ 60 FPS == good

• Reuse cells
■ -[UITableViewCell initWithStyle:reuseIdentifier:]
■ -[UITableView dequeueReusableCellWithIdentifier:]

• Stay opaque/green
■ Even for UILabel! OS will handle “blue background” for you

28



Slim Memory Footprint 

29



Slim Memory
Importance

• iOS has no swap
• Under memory pressure, OS will terminate apps

■ Maintain system stability

30



Slim Memory
Jetsam

• Watches memory pressure
• Instant lightweight termination of applications
• More critical with multitasking

■ Apps with small footprint preserved longer

• Stay safe, stay low

31



Slim Memory
Areas to focus on

• Avoidable spikes 
• Leaks
• Abandoned memory

32



Slim Memory
Avoidable spikes

• Definition: individual brief allocations all present simultaneously
• Processing large quantities of data

■ Break into independent batches

• Autoreleased objects
■ Reduce object lifetimes

33



Slim Memory
Autorelease

• “Used to avoid worrying about retain/release”

34



Slim Memory
Autorelease

• “Used to avoid worrying about retain/release”
• Used to return objects without retaining them

■ Caller will retain if needed

• Objects added to an NSAutoreleasePool
• Pool calls release at the next turn of the runloop
• Deallocation may happen then, if retain count goes to zero
• In the meantime, memory can spike

35



Allocations Instrument
Demo—Slim Memory

36



Slim Memory
Autorelease

• A little more expensive than retain/release
• In designing your code

■ Only use at framework boundaries
■ Explicit retain/release when lifetime is managed by one entity

• When using API
■ Use Instruments to watch memory allocation pattern
■ Wrap intensive autorelease API uses in nested autorelease pool

37



Slim Memory
Leaks

• Definition: allocated memory that is inaccessible
• Leaks Instrument examines the heap for leaked memory
• Most useful when app launched from the Instrument
• Identify moment of allocation

■ Not often the problem, but gives useful context

• Common mistakes
■ Unbalanced retain/release
■ Forget to release property’s original value

38



Slim Memory
Abandoned memory

• Definition: leftover; accessible, but will never be used again
• Allocations Instrument offers Heapshot feature
• Two snapshots in time
• Look at (unexpected) differences

39



Allocations Instrument
Demo—Slim Memory

40



Slim Memory
Tips

• Jetsam will kill your app
• Leaks, abandonments, spikes
• Leaks Instrument
• Allocations Instrument with Heapshot
• Target autorelease use
• Nested autorelease pools

41



Prioritizing Performance Issues

42



Prioritization
Where performance fits

• There can be “show stopping” performance issues
• Establishing clear goals early can help consensus

43



Prioritization
Judging priority

• Frequency
■ Common scenario?
■ Consistently reproducible? 

• Severity
■ Unresponsive for multiple seconds? 
■ Single-digit FPS?
■ Cause a watchdog or Jetsam?

44



Prioritization
Judging priority

• Watchdog and Jetsam terminations look like a crash
• Top “crash” may not be a crash!

45



iTunes Connect

46



iTunes Connect
Weighting issues

47



iTunes Connect
Watchdog reports

48



iTunes Connect
Jetsam reports

49



Wrapping Up

50



Review

• Performance is critical
• Measure with Instruments
• Performance testing is best done on an older device
• Key Areas

■ Launch
■ Scrolling
■ Memory

• Develop clear performance goals
• Visit iTunes Connect for performance-related reports

51



Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Michael Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
iPhone OS Performance Overview
http://developer.apple.com/iphone/library/documentation/Performance/Conceptual/
PerformanceOverview/

Apple Developer Forums
http://devforums.apple.com/

More Information

52



Advanced Performance Optimization on iPhone OS, Part 1 Mission
Thursday 3:15PM

Advanced Performance Optimization on iPhone OS, Part 2 Mission
Friday 11:30AM

Related Sessions

Optimizing Core Data Performance on iPhone OS Presidio
Thursday 4:30PM

Advanced Memory Analysis with Instruments On Video

Advanced Performance Analysis with Instruments On Video

Building Animation Driven Interfaces On Video

53



Animation Lab Application Frameworks Lab C
Thursday, 4:30PM

Labs

OpenGL ES Lab Graphics and Media Lab A
Thursday, 9:00AM

iPhone OS Performance Lab Developer Tools Lab A
Friday, 9:00AM

iPhone OS Performance Lab Developer Tools Lab A
Thursday, 4:30PM

54



55



56



57




