¢

Advanced Performance
Optimization on iPhone OS

Part 1: Animations, responsiveness, and battery life

David Chan

iOS Performance

Peter Handel
iOS Power

“The iPad is a far slower machine than
a modern MacBook in terms of raw
hardware performance, but it feels

faster in many ways, because you
never have to wait for it.”

John Gruber, Daring Fireball

Introduction

* Great performance is all about creating an outstanding experience
* This session is for our most advanced developers

- Part 2 covers memory, data, and 1/0
* Solving your application’s performance challenges

- Learn about the system
- Think creatively
- Measure progress

What You'll Learn About

* Animation and scrolling
* Responsiveness
* Power and battery life

Animation and Scrolling

Animation and Scrolling

* Behind the scenes

* Responsive animations
* Smooth animations

* Smooth scrolling

* Device considerations

Behind the Scenes
Stages of an animation

[3. Render each frame
2. Prepare and commit animation (layoutSubviews, drawRect:)

1. Create animation and update view hierarchy

Creating an Animation

view = [[InsideView alloc] initWithFrame:framel;

view.transform = CGAffineTransformMakeScale (
1 / width, 1 / height);

[UIView beginAnimations:nil context:nill];
[UIView setAnimationDuration:0.5];

[self addSubview:view];

view.transform = CGAffineTransformIdentity;

[UIView commitAnimations];

Preparing the Animation

1. Create new views or change properties
in an animation block

2. The animation is prepared for
commit by calling layoutSubviews
and drawRect on each new view

Committing the Animation

Application Render server

Rendering the Animation

. Updates render
tree for current

time according
to animations

4. Presents rendered
update to display

S

"GPU
=

2. Calculates
screen regions
to be updated

3. Generates
commands to

render updated
region

Animations and Scrolling

* Behind the scenes

* Responsive animations
* Smooth animations

* Smooth scrolling

* Device considerations

Responsive Animations
Finding the delay

Animation duration

<
<

[3. Render each frame
2. Prepare and commit animation (layoutSubviews, drawRect:)

1. Create animation and update view hierarchy

Responsive Animations
Draw less while preparing

* Only invalidate views that need to be updated

- Only call setNeedsDisplay on visible views

- Only implement drawRect : when absolutely needed
* Invalidate smaller regions of large views

- Implement a smart drawRect:and use
setNeedsDisplayInRect: instead

- Decompose views into static and dynamic parts

Responsive Animations
Dealing with images

* Only use sizes and formats appropriate for the device

- Decompress and rescale big images sparingly
» iPhone-optimized PNGs, JPEGs, and TIFFs

* Avoid copying of custom CGImages by using UlGraphics functions

» Detect using “Color Copied Images” debug option

Smooth Animations

* Rendering each frame

* Reduce view blending

* Reduce offscreen rendering
* Dynamic flattening

Smooth Animations
Rendering each frame

 Server tries to render each frame of
your animation 60 times per second

* Fewer pixels to render means
smoother animations

- Fewer input pixels
- Fewer output pixels
- Fewer rendering passes

Smooth Animations
Measuring improvements

e Core Animation Instrument

* Always measure baseline
and changes

* Reported fps is a count, not a rate
- e.g., 18 frames/300 ms = 60 fps

* Lengthen animation over a few
seconds for a better measurement

@) [A Cards 339)
Target

1) (OIO]IO] {
Inspection Range |

~ 00:00:06 @
« Run 2 of 2 :

Smooth Animations
What's being rendered?

* Flash Updated Regions

* Parts of your application will flash
yellow when the renderer is
invoked to update that region

* Simplify structure of view hierarchy

* Remove unnecessary or
invisible views

Smooth Animations

* Rendering each frame

* Reduce view blending

* Reduce offscreen rendering
* Dynamic flattening

Smooth Animations
Reduce view blending

* Color Blended Layers
* Opaque regions shaded green
* Blended regions shaded red

- Deeper blending darkens red

Happy Father's Day!

Smooth Animations
Reduce view blending

* Graphics system can perform certain number of pixel operations per
frame to maintain smooth frame rate

- Blending requires more operations per on-screen pixel
» Graphics system supports efficient hidden surface removal
- Only avoids views that are completely occluded by opaque views

Smooth Animations
Reduce view blending

- . o . 3
Approximate pixel operations per frame at 60 fps

Smooth Animations

: :
Reduce view blending I R S—— " |
S ——

* Contents determine blending Color Model RGB

Depth 8

* Keep views opaque OPI Height 72

DPI Width 72

Pixel Height 48

* Use image assets without alpha Pixel Wioth a8

* Create opaque CGImages
using UlGraphics

Smooth Animations

* Rendering each frame

* Reduce view blending

* Reduce offscreen rendering
* Dynamic flattening

Smooth Animations
Reduce offscreen rendering

* Color Offscreen-Rendered Yellow

* Regions shaded yellow when
compositor used a temporary
offscreen region to render the
final result

* Switching between main and
. M~ Color Offscreen-R) , ' '
offscreen contexts stalls plp@ll e Happy Father's Day!

* Necessary to achieve some effects

* Avoiding requires creative
solutions

Smooth Animations
Reduce offscreen rendering

* Example: Fade opacity of image with
a background color

* To composite correctly, the image must
be composited over the color offscreen
and then blended

UIImageView xview = [[UIImageView alloc]
initwWithImage:image];

view.backgroundColor = [UIColor brownColor];
[UIView beginAnimations:nil context:nill];
view.alpha = 0;

[UIView commitAnimations];

Smooth Animations
Reduce offscreen rendering

* Workaround: Composite background
color and image together in drawRect:

— (void)drawRect: (CGRect)rect {
[[UIColor brownColor] setFilll;
UIRectFill(rect);

[image drawInRect:rect];

Smooth Animations
Reduce offscreen rendering

* Workaround: If fading over a static background,
try fading in background over view instead

UIView xview = [[UIView alloc]
initWithFrame:self.bounds];

view.backgroundColor = [UIColor blackColor];

view.alpha = 0;

[UIView beginAnimations:nil context:nill];
[UIView setAnimationDuration:0.2];
view.alpha = 1;

[UIView commitAnimations];

Smooth Animations
Reduce offscreen rendering

* Example: Animating view with
rounded corner mask

* Subviews must be composited
together before any complex masking

view. layer.cornerRadius = 10.0;
view. layer.masksToBounds = YES;

Happy Father's Day!

Smooth Animations
Reduce offscreen rendering

* Workaround: Mask background in drawRect:

— (void)drawRect: (CGRect)rect {

[[UIBezierPath bezierPathWithRoundedRect: rect
cornerRadius:10.0] addClip];

[image drawInRect:rect];

Smooth Animations
Reduce offscreen rendering

* Workaround: Decompose rounded
corners into separate views

— (void)drawRect: (CGRect)rect {
//
CGContextBeginPath(c);
CGContextAddArc(c, r, r, r, M_PI, 3%M PI 2, 0);
CGContextAddLineToPoint(c, 0, 0);
CGContextClosePath(c);
CGContextClip(c);
[[UIColor blackColor] setFilll;
UIRectFill(rect);

Smooth Animations

* Rendering each frame

* Reduce view blending

* Reduce offscreen rendering
* Dynamic flattening

Smooth Animations
Dynamic flattening

* Animating changes to a complex
view hierarchy can be choppy

* Renders hierarchy on every frame

* Animations smoother with a
flattened hierarchy...

* Now you can flatten without
changing the view hierarchy
using shouldRasterize

Smooth Animations
Dynamic flattening

* CALayer property shouldRasterize
* Turn on before animation
* Turn off after animation

view.transform = CGAffineTransformMakeScale(..);

view. layer.shouldRasterize = YES;

[self addSubview:viewl];

[UIView animateWithDuration:0.3
animations:”~{ view.transform = CGAffineTransformIdentity; }
completion:~(BOOL finished) { view.layer.shouldRasterize = NO; }

1;

Smooth Animations
Dynamic flattening

* Hint compositor to render view
hierarchy offscreen and cache

» Offscreen rendering for good
* Can hurt more than help!
* Limited cache size

* Cache thrown away if
anything in hierarchy changes

Smooth Animations

* Rendering each frame

* Reduce view blending

* Reduce offscreen rendering
* Dynamic flattening

Smooth Scrolling

* Each frame of scrolling is a
little animation

- Calculate new scroll position

- Prepare and commit animation

- Compositor renders new frame
* Animation advice applies

- Prepare cells quickly

- Render quickly

5'-_9;4 Get Well Soon
Lt
.*",fg; Happy Holidays
-2 & Wish You Were Here
" |

A ¥
_fq Happy Birthday

:;‘ Boo!

Smooth Scrolling

~16ms

[
|

‘3. Render frame

2. Prepare and commit animation (cell layout and drawing)

1. Calculate new scroll position

Smooth Scrolling
Prepare cells quickly

* Always reuse table cells
-dequeueReusableCelWithIdentifier:

!
0\

- Save time creating objects and backing stores / |
- Use unique identifiers for similar cells {1

- Save time laying out views
* Flatten view hierarchy...to a point

- Balance cell drawing time with rendering time

- Consider flattening rasterized elements
(text, paths, etc.), but let the renderer
composite images

- Measure and experiment

Smooth Scrolling
Render quickly

* Fewer pixels to render means smoother scrolling too
* Recall lessons from smooth animations

- Simplify structure of view hierarchy

- Remove unnecessary or invisible views

- Reduce view blending

- Reduce offscreen rendering

- Dynamic flattening

iPhone 3G
iPod touch (2008)

Device Considerations

iPhone 3GS
iPod touch (2009)

-

~

iPhone 4

Animations and Scrolling

* Behind the scenes

* Responsive animations
* Smooth animations

* Smooth scrolling

* Device considerations

Responsiveness

Responsiveness
Don’t make your users wait

* Measuring

* Launch delays

* Interaction delays
* CPU optimization

Responsiveness
Measuring

* Time Profiler Instrument
- New in iPhone SDK 4

* Great overview during scenario

= Measure first
* Find the problem

* Shows time spent on CPU

« “All Thread States” shows time

spent blocking

Instruments8

(A Cards &) ~ 00:05:21

<4 Time Profiler

Sample Perspective

Call Tree

() Separate by Thr
Invert Call Tree

J Hide Missing

O Hide System Libraries
Os C Only

) Flatten Recursion

Call Tree Constraints
Specific Data Mining
Active Thread

All Threads

“
Target Inspection Range = Run 1 of 1

Target
A\ Cards

Sample Rate

Track Display
Style: (CPU Usage
Type

__CFRunLoopRun
pDo]
__CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLE
CA::Transact observer_callback(_ CFRunLoopObserver®, i
CA:Transaction:.comm|
CA::Context::commit_transaction(CA:: Transaction®) G
CALayerLayoutifNeeded

ate) _layoutSublayersO
tSubviews] UIKiE
wPrivate) _updateVi
ewlnternal) _createP

9871.0ms IT: UlTableViewinternal) _createl

9432.0ms

7381

1490.0ms 7 +[Ullmage imageWithContentsOffiled]
260.0ms 1 [ur w dequeueReusableCellWithi
117.0ms 5 -[UllmageView setimage:] UIKit

€€ Aime +INGSrrinn ctrinnWirhFarmat-]l Eaundasis

Responsiveness
Measuring

* Measure problem scenarios
- Baseline and improvements

* Simply time start and end using
CFAbsoluteTimeGetCurrent

« Wall clock time

NSTimeInterval start = CFAbsoluteTimeGetCurrent();

// v

NSLog(@"It took %f seconds.'", CFAbsoluteTimeGetCurrent() -
start);

Responsiveness
Launch delays

Instrument:

B o, s * Tricky to measure total launch

Extended Detail

- Time between start of main and
applicationDidFinishLaunching:

o s ‘ e * Launch timing using Time Profiler

getUTF8String -[NSDateFormatter _regen Foundation
res_getTableitemB... -[NSDateFormatter _regen... Foundation

e canh be useful relative measurement

TextColor:] UlKit
CGlmageSourceCreateWithFile ImagelQ 2 .
GetlmageOrientationAndS UIKit e N . b . °
oG ‘A * Flgure out what your appllcatlon IS
~[UIButton(UIButtonConte! UlKit 2 o t

~[NSDateFormatter _regen... Foundation

ple List + / Samples

¢ ... Timestamp
+00:00.922
00:00.923
1 00:00.926
00:00.927
100:00.928
00:00.929
+00:00.930
£ 00.00.933
+ 00:00.934
+ 00:00.935
100:00.936
00:00.939
+ 00:00.940
00:00.941
+ 00:00.942
+00:00.944
+ 00,00.945
00:00.946
1 00:00.949
00:00.950
00:00.953
00:00.954
+ 00.00.955
00:00.956
+00:00.957
100:00.958
00:00.959

S T .. Foundation l ye .
[NSDateFormatter _regen... Foundation - wRend d O I n O n Ia u n C h
-[NsDate _regen... Foundation : s s E
-[NSDateFormatter _regen Foundation _ ~ g)
9 | -[NSCFString length] CFSt: Foundation
uenum_unextDefault T _regen Foundation
t ~-[NSDateFormarter _regen... Foundation
icu:DecimalFormat... -[NSDateFormatter stringF_.. Foundation
CFStringGetLength ~[NSString rangeOfString:o... Foundation
CreateWithFile ImagelO
__CFStringHash ertiesSetProperty CoreGraphics
objc_msgSendS$stu... -[UlView(Intern, ub... UIKit
-[NSObject(NSKeyValueOb... Foundation
~[NSDateFormatts Foundation
-[NSDateFormatter _regen... Foundation
-[NSDateFormatter _regen... Foundation

)

D
1}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Auwown

NN s

Responsiveness
Launch delays

troller.m - Cards

[Release | armv? »\ 0 @ ‘a

Page Overv Breakpoints Build and Run Tasks Restart

Thread-1-<com.apple.main-thread> = Variable

* Do only what'’s necessary on launch AP —

General | Arguments | Debugging

- (a n O d efe r? RootViewController.m:75 “tableView:cellForRowl Arguments to be passed on launch:
y u O = s . Argument

- Could you do it on demand?

* Reduce number of linked
HEI S | Chiin Gt nction siaeiee: e

calling initializer function ©x326105bd in /usr/Llil
calling initializer function ©x3261060d in /usr/lil
: calling initializer function 0x33f38b75 in /usr/lil Variables to be set in the environment
. . M : calling -init function @x0x30a3e055 in /System/Libt
[] e n u S I n I ra rl eS OO O ut O r. : calling initializer function 0x347b24bl in /System/ Name Value
7 . ¢ calling initializer function Ox347b2BO1l in /System/ © DYLD_PRINT_STATISTICS i o

time: 5.4 seconds (100.0%) @ DYLD_PRINT_INITIALIZERS
images loaded: 53 (52 from dyld shared cache)
segments mapped: B, into @ pages with @ pages pre-{
images loading time: 5.4 seconds (99.4%)

. . o e .
] dtrace DOF registration time: 1.19 milliseconds (8
rebase fixups: @

rebase fixups time: 1.89 milliseconds (8.0%)
binding fixups: 74
binding fixups time: 0.95 milliseconds (0.0%)

- DYLD PRINT STATI STI C S_ 1 weak binding fixups time: 8.04 milliseconds (0.0%)
= bindings lazily fixed up: 8 of
— — initializer time: 24.90 milliseconds (0.4%)
libSystem.B.dylib : 6.36 milliseconds (8.1%)
libstde++.6.dylib : 8.55 milliseconds (0.0%)
. DYLD PRINT INITIALI ZERS—l libobjc.A.dylib : 13.28 milliseconds (8.2%)
- CoreFoundation : 2.17 milliseconds (8.0%)
- - CoreTelephony : 1.10 milliseconds (0.8%)
total symbol trie searches: 31
total symbol table binary searches:]

- Weak ex ports (WEAK_DEFINES) i e

CDB: Running.

- otool -hv (your binary)

Responsiveness
Interaction delays

* Do not block the main thread

* Long-running tasks should be spun off into background

* Factor into executable units of work so you can show progress
* Remember to make Ul updates on the main thread

* Now even easier with NSOperationQueue and blocks...

Responsiveness
Background tasks

NSOperationQueue xgq = [[NSOperationQueue alloc] init];
[q addOperationWithBlock:”{
UIGraphicsBeginImageContextWithOptions(rect.size, YES, 0.0);

UIImage *ximage = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

[[NSOperationQueue mainQueue] addOperationWithBlock:”~{
UIImageView ximageView = [[UIImageView alloc]
initWithImage:image];

[window addSubview:imageView];
[imageView release];
H;
H;

[q releasel;

Responsiveness
Make URL requests asynchronously

d = [NSURLConnection sendSynchronousRequest: [NSURLRequest
requestWithURL:url] returningResponse:&response error:&error];

/ A

d = [NSMutableData datal;
c = [NSURLConnection connectionWithRequest: [NSURLRequest
requestWithURL:url] delegate:self]];

— (void)connection: (NSURLConnection *)connection didReceiveData: (NSData)
data{ [d appendData:datal; }

— (void)connection: (NSURLConnection *)connection didFailWithError: (NSError
x)error { /*x Handle error x/ }

— (void)connectionDidFinishLoading: (NSURLConnection *)connection {
/* Use downloaded data in d... */ }

Responsiveness
Spikes in memory usage may cause delays

 To accommodate high memory usage, code is evicted
» Code must be read back in from storage to proceed

128

Background

Responsiveness
CPU optimization

* Use Time Profiler to find hot spots

* Vector processing can speed up G Can 1 (Eaell ~ oo s

CPU-bound tasks R

Instruments

lime rronier

« Process several elements at once
* Easier using Accelerate framework |H—————

.4 Time Profiler = Call Tree + Samples inflate inflate

Sample Perspective
rl, rid
rl, [sp, #+36]
13 r3, [r8,
Call Tree 33 Bxeed c r3, #@
"I Separate by Thread 133) @x1351c3d58
38 r3, #18 ; @x12
@x1351c3eB2
r2, [sp, #+48]
r2, #9 ; 0x@
inflate+8x10@
r3,. [rl,
rl, [sp,
1345 e r2, #1
Specific Data Mining 346 r3, [r1]
Active Thread 34 e r3, #18
1348 £l [5p,
All Threads 5)| 1340 | +Bxf@B r2, Isp,
3 +BxT@a -\ @x1351c3e

_ Flatten Recursic
Call Tree Constraints

ré, [rB,
re, #0

Responsiveness
Don’t make your users wait

* Measuring

* Launch delays

* Interaction delays
* CPU optimization

Power and Battery Life

Peter Handel
iOS Power

Power Consumption
What we’'ll cover

Se

Core Location CPU/GPU

Power Consumption é
Radios: 3G

* Very expensive to send data

* 3G networks require phones stay in high-power state for a few seconds
after last packet is sent or received

Data
Transfer

Power Consumption é
Radios: 3G

* Optimizing 3G transmissions

- Use Instruments—Activity Monitor
- Coalesce data into large chunks, rather than thin stream
- Do not poll: Use Apple Push Notification service
- Minimize amount of data transmitted—Use compact data formats!
- Be careful reusing legacy or third party code!
- They often assume ethernet

* Poor networking frequently causes drain!
* 3G radio chip: Let that chip idle!

Power Consumption
Radios: Wi-Fi

* Wi-Fi uses less power than 3G
- ...but it still uses a fair bit!
 Wi-Fi radios idle immediately after transmission

* Detect when you're on Wi-Fi versus cell

- Example: more extreme data coalescence over cell

From SystemConfiguration:
if (flags & kSCNetworkReachabilityFlagsIsWWAN) {

Power Consumption
Radios: Wi-Fi vs. 3G vs. 2G

*2G

- Power consumption is between
3G and Wi-Fi

- 2G network allows radios to idle
immediately after data transfer

= ...much slower!

Power Consumption
What we’'ll cover

e Radio
* Core Location
* CPU/GPU

Power Consumption
Core Location

* Lots of apps use Core Location

* Lets you know where device is to
varying degrees of accuracy

CLLocationManager *locationManager = [[CLLocationManager alloc] init];
locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;
locationManager.distanceFilter = 100;

[locationManager startUpdatinglLocation];

[locationManager stopUpdatinglLocation];

* Use least amount of accuracy—default is kCLLocationAccuracyBest

- GPS: kCLLocationAccuracyBest, BestForNavigation
- GPS: kCLLocationAccuracyNearestTenMeters

- Wi-Fi: kCLLocationAccuracyHundredMeters

- Cell/Wi-Fi: kCLLocationAccuracyKilometer, ThreeKilometers

CLLocationManager *locationManager = [[CLLocationManager alloc] init];

locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;
locationManager.distanceFilter = 100;

[locationManager startUpdatinglLocation];
[locationManager stopUpdatinglLocation];

Power Consumption
, P e
Core Location

» distanceFilter—dictates how often you receive location
changed notifications

- Set it appropriately

- The default (kCLDistanceFilterNone) receives all movement updates
- Can result in unnecessary events = higher CPU usage

CLLocationManager *locationManager = [[CLLocationManager alloc] init];

locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;
locationManager.distanceFilter = 100;

[locationManager startUpdatinglLocation];
[locationManager stopUpdatinglLocation];

Power Consumption
Core Location

» Call stopUpdatinglocation after reaching desired accuracy

» CoreLocation manages GPS power for you

- ...s0 call stopUpdatinglLocation as soon as you're finished
* GPS chip: Let that chip idle!

CLLocationManager *locationManager = [[CLLocationManager alloc] init];
locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;
locationManager.distanceFilter = 100;

[locationManager startUpdatinglLocation];

[locationManager stopUpdatinglLocation];

Power Consumption
Core Motion

s

* Same is true for Core Motion
= After start{Accelerometer,DeviceMotion,Gyro}Updates,
be sure to call stop{Accelerometer,DeviceMotion,Gyro}Updates
- If your app is backgrounded, turn off the sensors

CMMotionManager *motionManager = [[(MMotionManager alloc] init];
[motionManager startDeviceMotionUpdates];

[motionManager stopDeviceMotionUpdates];

Power Consumption
Core Location

* Use new i0OS 4 API

- Significant location changed
(startMonitoringSignificantLocationChanges)

- Region monitoring (startMonitoringForRegion)

Power Consumption
What we’'ll cover

CPU/GPU

Power Consumption
CPU: Performance

* Improving performance results in better battery life

- Fast code = less CPU time = less power
- CPU: Let that chip idle!

Power Consumption
CPU: Polling vs. events

*i0S 4 is event-based
- You might want to poll a condition—don't!
* Subscribe to events whenever possible
* If you must poll, use a timer with a low frequency

* Accelerometer: Use Shake APl (UIResponder) rather than
UlAccelerometer

- (void)motionEnded: (UIEventSubtype)motion withEvent:(UIEvent *)

event {
1f (motion == UIEventSubtypeMotionShake) {

Power Consumption
CPU: Be bursty

* Be bursty! Consolidate CPU usage into short bursts
= Allows CPU to enter idle state

- May require code restructuring or different algorithm
- Use Instruments: Time Profiler to check CPU activity level

- Audio playback schedules its work in bursts
- Allows CPU to idle for long periods between work

Power Consumption
CPU: Procrastinate

* Delay work, possibly forever?

- Example:When should a game write its state?

Power Consumption
GPU

* When using OpenGL ES/GPU

- Pick a fixed frame rate—30 fps—using CADisplayLink rather
than NSTimer

- Minimizes appearance of dropped frames—frame limiting!

- If frame hasn’t changed, don’t redraw
- Example: chess game

Power Consumption
Tools

* Use Instruments—Energy diagnostics tool (see Session 309)

Instruments1

All Processes ~ 00:00:34 6 || DO &2 0 LM

“ >
Target Inspection Range il y
. . R e T

Vie Library Search
T amma e - o

G i Display Brightness
¥ i Sleep/Wake
G i Bluetooth

sy CPU Activity B8 CPU Activity ¢

Time vity | Foreground App Activity Audio Processing Graphics
00:01.541 - 00:04.552 0%) 16.6%
00:04.548 - 00:07.553 2.6% 0% 6 17%
00:07.534 - 00:09.506 0% % 3
00:09.444 - 00:11.278 53% % 21.8%
00:11.363 - 00:14.372 23.6% 24.3%
00:14.363 - 00:17.322 7.8%

Power Consumption
Summary

* Radios
= Data transmission is expensive
- Coalesce/compress data

* Core Location

- Use least amount of accuracy you need
- Unsubscribe from notifications when finished

* CPU/GPU
- Optimizing for performance = optimizing for power
- Be bursty, procrastinate

- GPU: Use fixed frame rate (30fps), don’t unnecessarily
redraw frames

* Let those chips idle!

Summary

* Use knowledge about system to come up with creative solutions
* Always measure baseline and changes

* Fewer pixels to render means smoother animations

* Prepare and render quickly for smoother scrolling

* Don't block the main thread

* Let those chips idle

Related Sessions

Advanced Performance Optimization on iPhone OS, Part 2

Mission
Friday 11:30AM

Optimizing Core Data Performance on iPhone OS

Presidio
Thursday 4:30PM

The Accelerate Framework for iPhone OS

Nob Hill
Tuesday 11:30AM

Advanced Performance Analysis with Instruments

Mission
Thursday 9:00AM

Performance Optimization on iPhone OS

Presidio
Thursday 2:00PM

Core Animation in Practice, Part 2

Nob Hill
Thursday 2:00PM

Labs

Core Animation Lab

Graphics and Media Lab D
Thursday 3:15PM

Animation Lab

Application Frameworks Lab C
Thursday 4:30PM

iPhone OS Performance Lab

Developer Tools Lab A
Thursday 4:30PM

iPhone OS Performance Lab

Developer Tools Lab A
Friday 9:00AM

More Information

Michael Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Bill Dudney

Application Frameworks Evangelist
dudney@apple.com

Apple Developer Forums
http://devforums.apple.com

& WWDCI0

