
Part 1: Animations, responsiveness, and battery life

David Chan
iOS Performance

Peter Handel
iOS Power

2

John Gruber, Daring Fireball

3

• Great performance is all about creating an outstanding experience
• This session is for our most advanced developers

■ Part 2 covers memory, data, and I/O

• Solving your application’s performance challenges
■ Learn about the system
■ Think creatively
■ Measure progress

4

• Animation and scrolling
• Responsiveness
• Power and battery life

5

6

• Behind the scenes
• Responsive animations
• Smooth animations
• Smooth scrolling
• Device considerations

7

1. Create animation and update view hierarchy
2. Prepare and commit animation (layoutSubviews, drawRect:)

3. Render each frame

Stages of an animation

8

view = [[InsideView alloc] initWithFrame:frame];

view.transform = CGAffineTransformMakeScale(
1 / width, 1 / height);

[UIView beginAnimations:nil context:nil];

[UIView setAnimationDuration:0.5];

[self addSubview:view];

view.transform = CGAffineTransformIdentity;

[UIView commitAnimations];

9

1. Create new views or change properties
in an animation block

2. The animation is prepared for
commit by calling layoutSubviews
and drawRect on each new view

10

Application Render server

11

Text

1. Updates render
tree for current
time according
to animations

3. Generates
commands to
render updated
region

2. Calculates
screen regions
to be updated

4. Presents rendered
update to display

12

• Behind the scenes
• Responsive animations
• Smooth animations
• Smooth scrolling
• Device considerations

13

Finding the delay

Animation duration

1. Create animation and update view hierarchy

2. Prepare and commit animation (layoutSubviews, drawRect:)

Delay

3. Render each frame

14

Draw less while preparing

• Only invalidate views that need to be updated
■ Only call setNeedsDisplay on visible views
■ Only implement drawRect:when absolutely needed

• Invalidate smaller regions of large views
■ Implement a smart drawRect:and use
setNeedsDisplayInRect: instead

■ Decompose views into static and dynamic parts

15

Dealing with images

• Only use sizes and formats appropriate for the device
■ Decompress and rescale big images sparingly
■ iPhone-optimized PNGs, JPEGs, and TIFFs

• Avoid copying of custom CGImages by using UIGraphics functions
■ Detect using “Color Copied Images” debug option

16

• Rendering each frame
• Reduce view blending
• Reduce offscreen rendering
• Dynamic flattening

17

Rendering each frame

• Server tries to render each frame of
your animation 60 times per second

• Fewer pixels to render means
smoother animations
■ Fewer input pixels
■ Fewer output pixels
■ Fewer rendering passes

18

Measuring improvements

• Core Animation Instrument
• Always measure baseline
and changes

• Reported fps is a count, not a rate
■ e.g., 18 frames/300 ms = 60 fps

• Lengthen animation over a few
seconds for a better measurement

19

What’s being rendered?

• Flash Updated Regions
• Parts of your application will flash
yellow when the renderer is
invoked to update that region

• Simplify structure of view hierarchy
• Remove unnecessary or
invisible views

20

• Rendering each frame
• Reduce view blending
• Reduce offscreen rendering
• Dynamic flattening

21

Reduce view blending

• Color Blended Layers
• Opaque regions shaded green
• Blended regions shaded red

■ Deeper blending darkens red

22

Reduce view blending

• Graphics system can perform certain number of pixel operations per
frame to maintain smooth frame rate
■ Blending requires more operations per on-screen pixel

• Graphics system supports efficient hidden surface removal
■ Only avoids views that are completely occluded by opaque views

23

Reduce view blending

Approximate pixel operations per frame at 60 fps

24

UIGraphicsBeginImageContextWithOption
s(CGSizeMake(320, 480),
/*opaque*/ YES,
/*scale*/ 0.0);

CGImageRef img =
[UIGraphicsGetImageFromCurrentImageCo
ntext() CGImage];
UIGraphicsEndImageContext();

- (id)initWithFrame:(CGRect)frame {
…
self.opaque = NO;
…

}
- (void)drawRect:(CGRect)rect {
…

}

Reduce view blending

• Contents determine blending
• Keep views opaque
• Use image assets without alpha
• Create opaque CGImages
using UIGraphics

25

• Rendering each frame
• Reduce view blending
• Reduce offscreen rendering
• Dynamic flattening

26

Reduce offscreen rendering

• Color Offscreen-Rendered Yellow
• Regions shaded yellow when
compositor used a temporary
offscreen region to render the
final result

• Switching between main and
offscreen contexts stalls pipeline

• Necessary to achieve some effects
• Avoiding requires creative
solutions

27

Reduce offscreen rendering

• Example: Fade opacity of image with
a background color

• To composite correctly, the image must
be composited over the color offscreen
and then blended

UIImageView *view = [[UIImageView alloc]
initWithImage:image];
view.backgroundColor = [UIColor brownColor];
[UIView beginAnimations:nil context:nil];
view.alpha = 0;

[UIView commitAnimations];

28

Reduce offscreen rendering

• Workaround: Composite background
color and image together in drawRect:

- (void)drawRect:(CGRect)rect {
 [[UIColor brownColor] setFill];
 UIRectFill(rect);
 [image drawInRect:rect];
}

29

Reduce offscreen rendering

• Workaround: If fading over a static background,
try fading in background over view instead

UIView *view = [[UIView alloc]
initWithFrame:self.bounds];
view.backgroundColor = [UIColor blackColor];
view.alpha = 0;

[UIView beginAnimations:nil context:nil];
[UIView setAnimationDuration:0.2];
view.alpha = 1;
[UIView commitAnimations];

30

Reduce offscreen rendering

• Example: Animating view with
rounded corner mask

• Subviews must be composited
together before any complex masking

view.layer.cornerRadius = 10.0;

view.layer.masksToBounds = YES;

31

Reduce offscreen rendering

• Workaround: Mask background in drawRect:

- (void)drawRect:(CGRect)rect {
 [[UIBezierPath bezierPathWithRoundedRect:rect
cornerRadius:10.0] addClip];
 [image drawInRect:rect];
}

32

Reduce offscreen rendering

• Workaround: Decompose rounded
corners into separate views

- (void)drawRect:(CGRect)rect {

 // …

 CGContextBeginPath(c);

 CGContextAddArc(c, r, r, r, M_PI, 3*M_PI_2, 0);

 CGContextAddLineToPoint(c, 0, 0);

 CGContextClosePath(c);

 CGContextClip(c);

 [[UIColor blackColor] setFill];

 UIRectFill(rect);

}

33

• Rendering each frame
• Reduce view blending
• Reduce offscreen rendering
• Dynamic flattening

34

Dynamic flattening

• Animating changes to a complex
view hierarchy can be choppy

• Renders hierarchy on every frame
• Animations smoother with a
flattened hierarchy…

• Now you can flatten without
changing the view hierarchy
using shouldRasterize

35

Dynamic flattening

• CALayer property shouldRasterize
• Turn on before animation
• Turn off after animation

view.transform = CGAffineTransformMakeScale(…);

view.layer.shouldRasterize = YES;

[self addSubview:view];

[UIView animateWithDuration:0.3

 animations:^{ view.transform = CGAffineTransformIdentity; }

 completion:^(BOOL finished) { view.layer.shouldRasterize = NO; }

];

36

Cached

Dynamic flattening

• Hint compositor to render view
hierarchy offscreen and cache

• Offscreen rendering for good
• Can hurt more than help!
• Limited cache size
• Cache thrown away if
anything in hierarchy changes

37

• Rendering each frame
• Reduce view blending
• Reduce offscreen rendering
• Dynamic flattening

38

• Each frame of scrolling is a
little animation
■ Calculate new scroll position
■ Prepare and commit animation
■ Compositor renders new frame

• Animation advice applies
■ Prepare cells quickly
■ Render quickly

39

~16ms

1. Calculate new scroll position

2. Prepare and commit animation (cell layout and drawing)

3. Render frame

40

Prepare cells quickly

• Always reuse table cells
■ dequeueReusableCellWithIdentifier:
■ Save time creating objects and backing stores
■ Use unique identifiers for similar cells
■ Save time laying out views

• Flatten view hierarchy…to a point
■ Balance cell drawing time with rendering time
■ Consider flattening rasterized elements
(text, paths, etc.), but let the renderer
composite images

■ Measure and experiment

41

Render quickly

• Fewer pixels to render means smoother scrolling too
• Recall lessons from smooth animations

■ Simplify structure of view hierarchy
■ Remove unnecessary or invisible views
■ Reduce view blending
■ Reduce offscreen rendering
■ Dynamic flattening

42

iPhone 3G
iPod touch (2008)

iPhone 3GS
iPod touch (2009)

iPad iPhone 4

43

• Behind the scenes
• Responsive animations
• Smooth animations
• Smooth scrolling
• Device considerations

44

45

Don’t make your users wait

• Measuring
• Launch delays
• Interaction delays
• CPU optimization

46

Measuring

• Time Profiler Instrument
■ New in iPhone SDK 4

• Great overview during scenario
■ Measure first
■ Find the problem

• Shows time spent on CPU
• “All Thread States” shows time
spent blocking

47

Measuring

• Measure problem scenarios
■ Baseline and improvements

• Simply time start and end using
CFAbsoluteTimeGetCurrent
■ Wall clock time

NSTimeInterval start = CFAbsoluteTimeGetCurrent();
// ...
NSLog(@"It took %f seconds.", CFAbsoluteTimeGetCurrent() -
start);

48

Launch delays

• Tricky to measure total launch
■ Time between start of main and
applicationDidFinishLaunching:

• Launch timing using Time Profiler
can be useful relative measurement

• Figure out what your application is
doing on launch

49

Launch delays

• Do only what’s necessary on launch
■ Can you defer?
■ Could you do it on demand?

• Reduce number of linked
frameworks

• When using libraries, look out for:
■ Static initializers

■ DYLD_PRINT_STATISTICS=1
■ DYLD_PRINT_INITIALIZERS=1

■ Weak exports (WEAK_DEFINES)
■ otool -hv (your binary)

50

Interaction delays

• Do not block the main thread
• Long-running tasks should be spun off into background
• Factor into executable units of work so you can show progress
• Remember to make UI updates on the main thread
• Now even easier with NSOperationQueue and blocks…

51

Background tasks

NSOperationQueue *q = [[NSOperationQueue alloc] init];
[q addOperationWithBlock:^{
UIGraphicsBeginImageContextWithOptions(rect.size, YES, 0.0);
…
UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
[[NSOperationQueue mainQueue] addOperationWithBlock:^{
UIImageView *imageView = [[UIImageView alloc]
initWithImage:image];
[window addSubview:imageView];
[imageView release];

}];
}];
[q release];

[[NSOperationQueue mainQueue] addOperationWithBlock:^{

[q addOperationWithBlock:^{

52

Make URL requests asynchronously
d = [NSURLConnection sendSynchronousRequest:[NSURLRequest
requestWithURL:url] returningResponse:&response error:&error];

d = [NSMutableData data];
c = [NSURLConnection connectionWithRequest:[NSURLRequest
requestWithURL:url] delegate:self]];

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)
data{ [d appendData:data]; }

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError
)error { / Handle error */ }

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
/* Use downloaded data in d... */ }

53

Spikes in memory usage may cause delays

• To accommodate high memory usage, code is evicted
• Code must be read back in from storage to proceed

0

32

64

96

128

Code

Application

Background

Wired

54

CGFloat x[n], s = 0;
vDSP_sve(x, 1, &s, n);

Vectorized summationCGFloat x[n], s = 0;
for (int i = 0; i < n; i++)
 s += x[i];

Traditional summation

CPU optimization

• Use Time Profiler to find hot spots
• Vector processing can speed up
CPU-bound tasks
■ Process several elements at once

• Easier using Accelerate framework

55

Don’t make your users wait

• Measuring
• Launch delays
• Interaction delays
• CPU optimization

56

Peter Handel
iOS Power

57

What we’ll cover

Radio Core Location CPU/GPU

58

Radios: 3G

• Very expensive to send data
• 3G networks require phones stay in high-power state for a few seconds
after last packet is sent or received

Power

Time

3G

Data
Transfer

59

Radios: 3G

• Optimizing 3G transmissions
■ Use Instruments—Activity Monitor
■ Coalesce data into large chunks, rather than thin stream

■ Do not poll: Use Apple Push Notification service
■ Minimize amount of data transmitted—Use compact data formats!
■ Be careful reusing legacy or third party code!

■ They often assume ethernet

• Poor networking frequently causes drain!
• 3G radio chip: Let that chip idle!

60

Radios: Wi-Fi

• Wi-Fi uses less power than 3G
■ …but it still uses a fair bit!

• Wi-Fi radios idle immediately after transmission

• Detect when you’re on Wi-Fi versus cell
■ Example: more extreme data coalescence over cell

From SystemConfiguration:
if (flags & kSCNetworkReachabilityFlagsIsWWAN) {

61

Radios: Wi-Fi vs. 3G vs. 2G

• 2G
■ Power consumption is between
3G and Wi-Fi

■ 2G network allows radios to idle
immediately after data transfer

■ …much slower!

Time

3G

Data
Transfer

Time

2G

Data Transfer

Power

Time

WiFi

Data
Transfer

Power

Power

62

What we’ll cover

• Radio
• Core Location
• CPU/GPU

63

Core Location

• Lots of apps use Core Location
• Lets you know where device is to
varying degrees of accuracy

CLLocationManager *locationManager = [[CLLocationManager alloc] init];
locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;
locationManager.distanceFilter = 100;
[locationManager startUpdatingLocation];
[locationManager stopUpdatingLocation];

64

Core Location

• Use least amount of accuracy—default is kCLLocationAccuracyBest
■ GPS: kCLLocationAccuracyBest, BestForNavigation
■ GPS: kCLLocationAccuracyNearestTenMeters
■ Wi-Fi: kCLLocationAccuracyHundredMeters
■ Cell/Wi-Fi: kCLLocationAccuracyKilometer, ThreeKilometers

CLLocationManager *locationManager = [[CLLocationManager alloc] init];
locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;
locationManager.distanceFilter = 100;
[locationManager startUpdatingLocation];
[locationManager stopUpdatingLocation];

65

Core Location

• distanceFilter—dictates how often you receive location
changed notifications
■ Set it appropriately
■ The default (kCLDistanceFilterNone) receives all movement updates

■ Can result in unnecessary events = higher CPU usage

CLLocationManager *locationManager = [[CLLocationManager alloc] init];
locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;
locationManager.distanceFilter = 100;
[locationManager startUpdatingLocation];
[locationManager stopUpdatingLocation];

66

Core Location

• Call stopUpdatingLocation after reaching desired accuracy

• CoreLocation manages GPS power for you
■ …so call stopUpdatingLocation as soon as you’re finished

• GPS chip: Let that chip idle!

CLLocationManager *locationManager = [[CLLocationManager alloc] init];
locationManager.desiredAccuracy = kCLLocationAccuracyHundredMeters;
locationManager.distanceFilter = 100;
[locationManager startUpdatingLocation];
[locationManager stopUpdatingLocation];

67

Core Motion

• Same is true for Core Motion
■ After start{Accelerometer,DeviceMotion,Gyro}Updates,
be sure to call stop{Accelerometer,DeviceMotion,Gyro}Updates

■ If your app is backgrounded, turn off the sensors

CMMotionManager *motionManager = [[CMMotionManager alloc] init];
[motionManager startDeviceMotionUpdates];
...
[motionManager stopDeviceMotionUpdates];

68

Core Location

• Use new iOS 4 API
■ Significant location changed
(startMonitoringSignificantLocationChanges)

■ Region monitoring (startMonitoringForRegion)

69

What we’ll cover

Radio Core Location CPU/GPU

70

CPU: Performance

• Improving performance results in better battery life
■ Fast code = less CPU time = less power
■ CPU: Let that chip idle!

Power

Time

71

CPU: Polling vs. events

• iOS 4 is event-based
■ You might want to poll a condition—don’t!

• Subscribe to events whenever possible
• If you must poll, use a timer with a low frequency

• Accelerometer: Use Shake API (UIResponder) rather than
UIAccelerometer

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)
event {
 if (motion == UIEventSubtypeMotionShake) {

72

CPU: Be bursty

• Be bursty! Consolidate CPU usage into short bursts
■ Allows CPU to enter idle state
■ May require code restructuring or different algorithm
■ Use Instruments: Time Profiler to check CPU activity level
■ Audio playback schedules its work in bursts

■ Allows CPU to idle for long periods between work

73

CPU: Procrastinate

• Delay work, possibly forever?
■ Example: When should a game write its state?

74

GPU

• When using OpenGL ES/GPU
■ Pick a fixed frame rate—30 fps—using CADisplayLink rather
than NSTimer
■ Minimizes appearance of dropped frames—frame limiting!

■ If frame hasn’t changed, don’t redraw
■ Example: chess game

75

Tools

• Use Instruments—Energy diagnostics tool (see Session 309)

76

Summary

• Radios
■ Data transmission is expensive
■ Coalesce/compress data

• Core Location
■ Use least amount of accuracy you need
■ Unsubscribe from notifications when finished

• CPU/GPU
■ Optimizing for performance = optimizing for power
■ Be bursty, procrastinate
■ GPU: Use fixed frame rate (30fps), don’t unnecessarily

redraw frames

• Let those chips idle!

77

• Use knowledge about system to come up with creative solutions
• Always measure baseline and changes
• Fewer pixels to render means smoother animations
• Prepare and render quickly for smoother scrolling
• Don’t block the main thread
• Let those chips idle

78

Advanced Performance Optimization on iPhone OS, Part 2 Mission
Friday 11:30AM

Advanced Performance Analysis with Instruments Mission
Thursday 9:00AM

The Accelerate Framework for iPhone OS Nob Hill
Tuesday 11:30AM

Core Animation in Practice, Part 2 Nob Hill
Thursday 2:00PM

Optimizing Core Data Performance on iPhone OS Presidio
Thursday 4:30PM

Performance Optimization on iPhone OS Presidio
Thursday 2:00PM

79

Animation Lab Application Frameworks Lab C
Thursday 4:30PM

Core Animation Lab Graphics and Media Lab D
Thursday 3:15PM

iPhone OS Performance Lab Developer Tools Lab A
Thursday 4:30PM

iPhone OS Performance Lab Developer Tools Lab A
Friday 9:00AM

80

Michael Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Apple Developer Forums
http://devforums.apple.com

81

82

83

84

