s

Crafting Custom Cocoa Views

Building your own user interface elements

Troy Stephens

Cocoa Frameworks Engineer

Introduction

* Mac OS X frameworks provide many standard controls, but...
* Sometimes you need to invent...something new
* How to do the job right?

* A checklist sure would be handy!

Take Home Info

* Custom view implementor’s checklist

* New code sample

Craftsmanship

* Attention to detail

* Worth doing = Worth doing well
* Robustness

* Functional completeness

* Simplicity + Power = Elegance

* Use-appropriate design

Crafting Views

The basics

* Layout
* Drawing
* Event-handling

- Keyboard
- Mouse
= Trackpad, tablet, etc.

* Accessibility

* Support standard system features

Crafting Views

Refinements

* Appearance
* Planning for animation
* Responsiveness and scalability

Today’s Code Sample

TreeView

® Direct

Root Class: | NSResponder Background Line Width |1 Orthogonal

s~ NSColorPickerWheelView
)
20;
5= NSColorswatch
B Zosones

5. NSBrowser

304 bytes

J- NSButton
BN eones

NSCellView
200 bytes

NSColorWell
2

NSDatePicker
176 bytes

NSimageView
192 bytes

NSLabelView
176 bytes

NSLevelindicator

Show Subtree Frames

NSNavBrowser
304 bytes

NSDocumentDragButton
192 bytes

NSNavButton
176 bytes

NSNavScopeButton
184 bytes

NSPopUpButton
54 bytes

NSRuleEditorButton
176 bytes

NSStatusBarButton
176 bytes

NSToolbarButton
256

_NSThemeWidget - ~=
Tos e -] 5]

NSColorPanelColorWell
208 bytes

NSFontOptionsColorWell
208 bytes,

NSTextAttachmentimageView
192 bytes

_NSToolbaritemConfigWrapperim
200 bytes

NSThemeDocumentButton
200 bytes,

NSColorPickerColorSpacePopUp
184 bytes,
NSNavNodePopUpButton

216 bytes
NSRuleEditorPopupButton

184 bytes.

NSToolbarClippeditemsindicator
208 bytes,

_NSThemeCloseWidget
T84 bytes

Demo

TreeView
Presenting Tree-Graph Structures
developer.apple.com/wwdc/sessions/details/?id=141

Major Topic Areas

* Designing for animation
* Drawing

* Handling state changes
* Handling interaction

Designing for Animation

Designing for Animation

* Factor content to minimize redraw and relayout during animations
* Consider both layer-backed and window-backed operation

- Be robust to backing layer tree construction and teardown
- Leverage layerContentsRedrawPolicy _NQ,

it s

- Share/reuse repeated content efficiently
* Plan for scalability

Views or Non-Views?
How to factor your content?

* “Non-View Objects” = your own NSObjects/CALayers/etc.
* Different performance implications for layer-backed vs. window-backed
* Non-views can sometimes be more lightweight, in terms of
- Memory usage
- CPU usage
* However, factoring as views has benefits in layer-backed mode
- Caching of content in separate parts
- Animation versatility, [view animator] move/resize

*Views also provide culling, event-handling, and Accessibility benefits

TreeView Design Choices

* Nested View Subtrees

= Groups subtrees logically
- Simplifies relayout animation

- Caches content when layer-backed

TreeView

'SubtreeView

'SubtreeView o

NodeView

- NodeView |E—

- NodeView

- NodeView

{ NodeView |E—

- NodeView

- NodeView

Designing for Animation

* Make your custom view properties animatable where appropriate

- Override +defaultAnimationForKey:

+ (id)defaultAnimationForKey: (NSString *)key {
if ([key isEqualToString:@”borderColor”] ||
[key isEqualToString:@”borderWidth”]) {
return [CABasicAnimation animation];
} else {
return [super defaultAnimationForKey:keyl;
¥
¥

- Enables use of “animator” syntax with your custom property

[[view animator] setBorderColor: [NSColor blueColor]l];

Drawing

To Flip, or Not to Flip?
Overriding -isFlipped

* Determines origin and y-axis direction of your bounds (interior)
* Determines meaning/interpretation of your subviews’ frame origin

I

Subview

Unflipped Flipped

Subview
I—V ﬂ

* Nonrecursive (unlike CALayer’s “geometryFlipped”)

To Flip, or Not to Flip?

How to decide?

* Think about the natural growth direction for your content
* Choose accordingly

* Mostly a matter of convenience
- Which convention enables you to write simpler code?
» Affects pinning, if the documentView of an NSScrollView

Drawing
(and layout)

* Your basic responsibility: Override —drawRect: to draw your content

* Draw only what you need to

- Test for intersection with the NSRect passed to —drawRect:

- Use —needsToDrawRect: and/or —getRectsBeingDrawn: count:
* Invalidate only what you need to

- Use —setNeedsDisplayInRect:
in preference to —setNeedsDisplay:

* Be careful to invalidate the views that actually draw the
affected content

- Important in layer-backed mode! G

Layout

Positioning your content and subviews

* Consider using —viewWillDraw

- Allows resizing, addition, and removal of subviews just before draw time

- If you perform your layout this way, make sure view needs display
whenever layout is needed

- Always call up to [super viewWillDraw]
(before, after, or in the middle of doing your work)

Opaqgue View Optimization
Overriding -isOpaque

* Returns NO by default

* Override to return YES if your view guarantees to cover its entire
bounds rectangle with 100% opaque fill

*If your view isOpaque, but its alphaValue < 1.0, AppKit still does the
right thing

Geometry Calculations

* Use compatible units!
* Do the necessary conversions between views, to get compatible values

—convertPoint:fromView: nil -> window
—convertPoint:toView:

—convertSize:fromView:
—convertSize:toView:

—convertRect:fromView:
—convertRect:toView:

Geometry Calculations

* Perform pixel alignment in “base” space

- Yields appropriate results for both layer-backed and window-backed
operation

—convertPointToBase:
—convertPointFromBase:

—convertSizeToBase:
—convertSizeFromBase:

—convertRectToBase:
—convertRectFromBase:

Handling Printing (or PDF Output) Specially

Modifying your -drawRect: Method’s behavior

— (void)drawRect: (NSRect) rect {

// Draw background fill color only if we’re not printing.
if ([NSGraphicsContext currentContextDrawingToScreen]) {
[[self backgroundColor] set];
NSRectFill(rect);

Handling State Changes

Be prepared!

Entering/Exiting Layer-Backed Mode

If you need to react to this, override -setLayer:

- (void)setLayer:(CALayer *)newLayer {
[super setlLayer:newlLayer];
1f (newLayer != nil) {
// Becoming layer-backed, or
// just getting a different
// layer.
} else {
// Leaving layer-backed mode.

}

Leveraging Cocoa’s Layer-Backed Views St 201

Addition/Removal

...from a superview or window

—viewDidMoveToSuperview

—viewWillMoveToWindow:

Type here!

Cancel
¥ y

—-viewWillMoveToSuperview: —viewDidMoveToWindow

Being Hidden/Unhidden

Affects entire subtrees

—v\ieeWlddhhdde

Becoming/Resigning firstResponder
...in the application’s keyWindow

NSWindowDidBecomeKeyNotification
NSWindowDidResignKeyNotification

Type here!

—acceptsFirstResponder ?

—becomeFirstResponder
—-resignFirstResponder

Being Resized

* Can override —setFrameSize:
- Always call up to super

* Can override —-resizeWithOldSuperviewSize:and
—resizeSubviewsWithOldSize:

- Make sure autoresizesSubviews is on, if you want to receive these
- Good practice to call up to super

Being Archived/Unarchived

Enabling use in .xib/.nib files, and copying

— (void)encodeWithCoder: (NSCoder x)coder {
[super encodeWithCoder:coderl];
if ([coder allowsKeyedCodingl) £
[coder encodeObject:borderColor forKey:@"borderColor"];
[coder encodeFloat:cornerRadius forKey:@"cornerRadius"];

— (id)initWithCoder: (NSCoder x)decoder {
self = [super initWithCoder:decoder];
if (self) Ao
if ([decoder allowsKeyedCodingl) {
borderColor = [[decoder decodeObjectForKey:@"borderColor"] retain];
cornerRadius = [[decoder decodeFloatForKey:@"cornerRadius"] retain];

}

}

return self;

Handling Interaction

Input/Event Sources

Soooonoonooens BB Goos
[ELITITLIIIT] []
aan

onoeEEH

Keyboard Mouse

7

Tablet Accessibility Trackpad

Pressure sensitivity, erase Gestures and multitouch events

Supporting Accessibility @

* Enables assistive device access for users with disabilities

* Provides for automated user interface testing

Making a Custom View Accessible @

* Expose your view to Accessibility
- Expose substructure to Accessibility (e.g., ContainerView)
* Specify an appropriate NSAccessibility role for your view
* Return appropriate NSAccessibility attribute values for the role
* Support setting attribute values and actions for the appropriate role

Handle Keyboard Input

* If you want key events, ask to accept them

- Override —acceptsFirstResponder to return YES
* Override —keyDown:, and optionally —keyUp:, to handle key events
* Interesting NSEvent properties are

- characters
- charactersIgnoringModifiers
modifierFlags
- 1SARepeat
* Pass any key events you don't handle to super

Handle Keyboard Input

* Might want to respond to changes in modifier key state
- Override —flagsChanged:

- Inspect the event’s modifierFlags

Handle Keyboard Input

* Make your parts keyboard-navigable; support arrows, etc.
* Indicate you are focused when firstResponder in keyWindow

- Use NSSetFocusRingStyle() to draw focus around a shape
- UdeoidedkeRdrsaiN$Recu s®itngNeedsDisplayInRect: instead of

NSWindow *window = [self window]; , , , ,
—setheddislaas [Fi aytRaReaterWhenyouryiavinisoshowing afecusring
[NSGr phicsConEext sayeGraphicsStﬁte]' i i
- ImporKiafat BeGakise ForUs tings.camsmileuside clip

[[NSColor whiteColor] setl;
NSRectFill([self bounds]);
[NSGraphicsContext restoreGraphicsState];

Handling Mouse Button Events
Main mouse button

—mouseDown: —-mouseUp:

S e

—mouseDragged: — —mouseDragged:

Handling Mouse Button Events

—-rightMouseDown: —-rightMouselUp:

\ /'

—-rightMouseDragged:— -rightMouseDragged:

Handling Mouse Button Events
Other mouse buttons...

—otherMouseDown: —otherMouseUp:

\ /'

—otherMouseDragged:— -otherMouseDragged:

Handling Mouse Events
Main NSEvent Properties of Interest

buttonNumber
eclickCount
modifierFlags

e locationInWindow

— (void)mouseDown: (NSEvent x)theEvent {
NSPoint viewPoint =
[self convertPoint:[theEvent locationInWindow]
fromView:nill];

Handling Mouse Movement
Mouse motion

—mouseMoved:

A [window setAcceptsMouseMoved:YES]

Handling Mouse Movement
Consider other ways of responding

* Tool tips
 Cursor rects

* Tracking areas

Handle Gestures and Touch Events

e Gestures

* Don't need to “opt in”

- Just override one or more of
-—magnifyWithEvent:
-—rotateWithEvent:

- —swipeWithEvent:
- Might also be interested in

- —beginGestureWithEvent:
- —endGestureWithEvent:

Handle Gestures and Touch Events

* Touch events [LITTTITTT ﬁ@

- More complex, but arbitrarily powerful
- Opt in using

- —setAcceptsTouchEvents:

- —setWantsRestingTouches:
- Override all of

- —touchesBeganWithEvent:
- —touchesMovedWithEvent:
- —touchesEndedWithEvent:
- —touchesCancelledWithEvent:

- Important: Always call up to super!

Handling Tablet Input

Interaction with Inking

* By default, a pen down over your view
can start inking

* If you want to handle pen events, override
—shouldBeTreatedAsInkEvent:

» Return NO when you want to suppress
inking

« NSControl default is NO
- NSView default is YES

Handle Tablet Input

* Look for special Tablet Events

-—tabletProximity:
-—tabletPoint:

Handle Tablet Input

* Interesting tablet NSEvent properties

 locationInWindow
absoluteX, absoluteY, absoluteZ
“pressure

- rotation

-tilt

- tangentialPressure
* buttonMask

- 1IsEnteringProximity

Handle Tablet Input

* Interesting tablet NSEvent properties

pointingDeviceType
-pointingDevicelD
- capabilityMask

-vendorID

- tabletID

-systemTabletID
vendorPointingDeviceType
*pointingDeviceSerialNumber
uniquelD

Major Topic Areas Covered

* Designing for animation
* Drawing

* Handling state changes
* Handling interaction

Take-Home Thoughts

* With attention to detail and thought put into the design, you can craft
robust, polished custom views that fit naturally in the Mac Ul

* Refer to the TreeView code sample, and accompanying checklist, for
ideas when working on your own custom views

developer.apple.com/wwdc/sessions/details/?id=141

Related Documentation
developer.apple.com

* Cocoa View Programming Guide
* Cocoa Accessibility Guide

* Cocoa Drawing Guide

* Cocoa Event-Handling Guide

Related Sessions

Key Event Handling in Cocoa Applications

Russian Hill
Friday 11:30AM

Usable by Everybody: Design Principles for Accessibility on Mac OS X Toniny so0am
Cocoa Tips and Tricks a—
Marina

API Design for Cocoa and Cocoa Touch

Thursday 4:30PM

More Information

Bill Dudney

Application Frameworks Evangelist
dudney@apple.com

Apple Developer Forums
http://devforums.apple.com

& WWDCI0

