
Building your own user interface elements

Crafting Custom Cocoa Views

Troy Stephens
Cocoa Frameworks Engineer

2

Introduction

• Mac OS X frameworks provide many standard controls, but…
• Sometimes you need to invent…something new
• How to do the job right?

■ A checklist sure would be handy!

3

Take Home Info

• Custom view implementor’s checklist
• New code sample

4

Craftsmanship

• Attention to detail
• Worth doing = Worth doing well
• Robustness
• Functional completeness
• Simplicity + Power = Elegance
• Use-appropriate design

5

Crafting Views
The basics

• Layout
• Drawing
• Event-handling

■ Keyboard
■ Mouse
■ Trackpad, tablet, etc.

• Accessibility
• Support standard system features

6

Crafting Views
Refinements

• Appearance
• Planning for animation
• Responsiveness and scalability

7

Today’s Code Sample

8

TreeView

9

Demo

TreeView
Presenting Tree-Graph Structures
developer.apple.com/wwdc/sessions/details/?id=141

10

Major Topic Areas

• Designing for animation
• Drawing
• Handling state changes
• Handling interaction

11

Designing for Animation

12

Designing for Animation

• Factor content to minimize redraw and relayout during animations
• Consider both layer-backed and window-backed operation

■ Be robust to backing layer tree construction and teardown
■ Leverage layerContentsRedrawPolicy
■ Share/reuse repeated content efficiently

• Plan for scalability

13

Views or Non-Views?
How to factor your content?

• “Non-View Objects” = your own NSObjects/CALayers/etc.
• Different performance implications for layer-backed vs. window-backed
• Non-views can sometimes be more lightweight, in terms of

■ Memory usage
■ CPU usage

• However, factoring as views has benefits in layer-backed mode
■ Caching of content in separate parts
■ Animation versatility, [view animator] move/resize

• Views also provide culling, event-handling, and Accessibility benefits

14

TreeView

TreeView Design Choices

• Nested View Subtrees
■ Groups subtrees logically
■ Simplifies relayout animation
■ Caches content when layer-backed

SubtreeView SubtreeView NodeView

NodeView
NodeView

NodeView

SubtreeView NodeView

NodeView
NodeView

15

Designing for Animation

• Make your custom view properties animatable where appropriate
■ Override +defaultAnimationForKey:

■ Enables use of “animator” syntax with your custom property

[[view animator] setBorderColor:[NSColor blueColor]];

+ (id)defaultAnimationForKey:(NSString *)key {
 if ([key isEqualToString:@”borderColor”] ||
 [key isEqualToString:@”borderWidth”]) {
 return [CABasicAnimation animation];
 } else {
 return [super defaultAnimationForKey:key];
 }
}

16

Drawing

17

To Flip, or Not to Flip?
Overriding -isFlipped

• Determines origin and y-axis direction of your bounds (interior)
• Determines meaning/interpretation of your subviews’ frame origin

• Nonrecursive (unlike CALayer’s “geometryFlipped”)

Unflipped Flipped

Subview

Subview

18

To Flip, or Not to Flip?
How to decide?

• Think about the natural growth direction for your content
• Choose accordingly
• Mostly a matter of convenience

■ Which convention enables you to write simpler code?

• Affects pinning, if the documentView of an NSScrollView

19

Drawing
(and layout)

• Your basic responsibility: Override -drawRect: to draw your content
• Draw only what you need to

■ Test for intersection with the NSRect passed to -drawRect:
■ Use -needsToDrawRect: and/or -getRectsBeingDrawn:count:

• Invalidate only what you need to
■ Use -setNeedsDisplayInRect:

in preference to -setNeedsDisplay:

• Be careful to invalidate the views that actually draw the
affected content
■ Important in layer-backed mode!

20

Layout
Positioning your content and subviews

• Consider using -viewWillDraw
■ Allows resizing, addition, and removal of subviews just before draw time
■ If you perform your layout this way, make sure view needs display
whenever layout is needed

■ Always call up to [super viewWillDraw]
(before, after, or in the middle of doing your work)

21

Opaque View Optimization
Overriding -isOpaque

• Returns NO by default
• Override to return YES if your view guarantees to cover its entire
bounds rectangle with 100% opaque fill

• If your view isOpaque, but its alphaValue < 1.0, AppKit still does the
right thing

22

Geometry Calculations

• Use compatible units!
• Do the necessary conversions between views, to get compatible values

-convertPoint:fromView:
-convertPoint:toView:

-convertSize:fromView:
-convertSize:toView:

-convertRect:fromView:
-convertRect:toView:

nil -> window

23

Geometry Calculations

• Perform pixel alignment in “base” space
■ Yields appropriate results for both layer-backed and window-backed
operation

-convertPointToBase:
-convertPointFromBase:

-convertSizeToBase:
-convertSizeFromBase:

-convertRectToBase:
-convertRectFromBase:

24

Handling Printing (or PDF Output) Specially
Modifying your -drawRect: Method’s behavior

- (void)drawRect:(NSRect)rect {

 // Draw background fill color only if we’re not printing.
 if ([NSGraphicsContext currentContextDrawingToScreen]) {
 [[self backgroundColor] set];
 NSRectFill(rect);
 }

 ...

}

25

Be prepared!
Handling State Changes

26

Entering/Exiting Layer-Backed Mode

Leveraging Cocoa’s Layer-Backed Views WWDC 2008
Session 401

If you need to react to this, override -setLayer:

- (void)setLayer:(CALayer *)newLayer {
 [super setLayer:newLayer];
 if (newLayer != nil) {
 // Becoming layer-backed, or
 // just getting a different
 // layer.
 } else {
 // Leaving layer-backed mode.
 }
}

27

Addition/Removal
…from a superview or window

-viewWillMoveToSuperview:

-viewWillMoveToWindow:

-viewDidMoveToSuperview

-viewDidMoveToWindow

28

Being Hidden/Unhidden
Affects entire subtrees

-viewDidHide-viewDidUnhide

29

Becoming/Resigning firstResponder
…in the application’s keyWindow

-acceptsFirstResponder ?
-becomeFirstResponder

-resignFirstResponder

NSWindowDidBecomeKeyNotification
NSWindowDidResignKeyNotification

30

Being Resized

• Can override -setFrameSize:
■ Always call up to super

• Can override -resizeWithOldSuperviewSize:and
 -resizeSubviewsWithOldSize:
■ Make sure autoresizesSubviews is on, if you want to receive these
■ Good practice to call up to super

31

Being Archived/Unarchived
Enabling use in .xib/.nib files, and copying

- (void)encodeWithCoder:(NSCoder *)coder {
 [super encodeWithCoder:coder];
 if ([coder allowsKeyedCoding]) {
 [coder encodeObject:borderColor forKey:@"borderColor"];
 [coder encodeFloat:cornerRadius forKey:@"cornerRadius"];
 ...
 }
}

- (id)initWithCoder:(NSCoder *)decoder {
 self = [super initWithCoder:decoder];
 if (self) {
 if ([decoder allowsKeyedCoding]) {
 borderColor = [[decoder decodeObjectForKey:@"borderColor"] retain];
 cornerRadius = [[decoder decodeFloatForKey:@"cornerRadius"] retain];
 ...
 }
 }
 return self;
}

32

Handling Interaction

33

Input/Event Sources

Tablet
Pressure sensitivity, erase

Accessibility Trackpad
Gestures and multitouch events

Keyboard Mouse

34

Supporting Accessibility

• Enables assistive device access for users with disabilities
• Provides for automated user interface testing

35

Making a Custom View Accessible

• Expose your view to Accessibility
■ Expose substructure to Accessibility (e.g., ContainerView)

• Specify an appropriate NSAccessibility role for your view
• Return appropriate NSAccessibility attribute values for the role
• Support setting attribute values and actions for the appropriate role

36

Handle Keyboard Input

• If you want key events, ask to accept them
■ Override -acceptsFirstResponder to return YES

• Override -keyDown:, and optionally -keyUp:, to handle key events
• Interesting NSEvent properties are

■ characters
■ charactersIgnoringModifiers
■ modifierFlags
■ isARepeat

• Pass any key events you don’t handle to super

37

Handle Keyboard Input

• Might want to respond to changes in modifier key state
■ Override -flagsChanged:
■ Inspect the event’s modifierFlags

38

Handle Keyboard Input

- (void)drawRect:(NSRect)rect {
 NSWindow *window = [self window];
 if ([window firstResponder] == self && [window isKeyWindow]) {
 [NSGraphicsContext saveGraphicsState];
 NSSetFocusRingStyle(NSFocusRingAbove);
 [[NSColor whiteColor] set];
 NSRectFill([self bounds]);
 [NSGraphicsContext restoreGraphicsState];
 }
 ...
}

• Make your parts keyboard-navigable; support arrows, etc.
• Indicate you are focused when firstResponder in keyWindow

■ Use NSSetFocusRingStyle() to draw focus around a shape
■ Use -setKeyboardFocusRingNeedsDisplayInRect: instead of
-setNeedsDisplayInRect: when your view is showing a focus ring
■ Important because focus rings can spill outside clip

39

Handling Mouse Button Events
Main mouse button

-mouseDown:

-mouseDragged: -mouseDragged:

-mouseUp:

40

Handling Mouse Button Events

-rightMouseDown:

-rightMouseDragged:

-rightMouseUp:

-rightMouseDragged:

41

Handling Mouse Button Events
Other mouse buttons…

-otherMouseDown:

-otherMouseDragged:

-otherMouseUp:

-otherMouseDragged:

42

Handling Mouse Events
Main NSEvent Properties of Interest

•buttonNumber
•clickCount
•modifierFlags
•locationInWindow

- (void)mouseDown:(NSEvent *)theEvent {
 NSPoint viewPoint =
 [self convertPoint:[theEvent locationInWindow]
 fromView:nil];

43

Handling Mouse Movement
Mouse motion

-mouseMoved:

[window setAcceptsMouseMoved:YES]

44

Handling Mouse Movement
Consider other ways of responding

• Tool tips
• Cursor rects
• Tracking areas

45

• Gestures
■ Don’t need to “opt in”
■ Just override one or more of

■ -magnifyWithEvent:
■ -rotateWithEvent:
■ -swipeWithEvent:

■ Might also be interested in
■ -beginGestureWithEvent:
■ -endGestureWithEvent:

Handle Gestures and Touch Events

46

Handle Gestures and Touch Events

• Touch events
■ More complex, but arbitrarily powerful
■ Opt in using

■ -setAcceptsTouchEvents:
■ -setWantsRestingTouches:

■ Override all of
■ -touchesBeganWithEvent:
■ -touchesMovedWithEvent:
■ -touchesEndedWithEvent:
■ -touchesCancelledWithEvent:

■ Important: Always call up to super!

47

Handling Tablet Input
Interaction with Inking

• By default, a pen down over your view
can start inking

• If you want to handle pen events, override
-shouldBeTreatedAsInkEvent:
■ Return NO when you want to suppress
inking

■ NSControl default is NO
■ NSView default is YES

48

Handle Tablet Input

• Look for special Tablet Events
■ -tabletProximity:
■ -tabletPoint:

49

Handle Tablet Input

• Interesting tablet NSEvent properties
■ locationInWindow
■ absoluteX, absoluteY, absoluteZ
■ pressure
■ rotation
■ tilt
■ tangentialPressure
■ buttonMask
■ isEnteringProximity

50

Handle Tablet Input

• Interesting tablet NSEvent properties
■ pointingDeviceType
■ pointingDeviceID
■ capabilityMask
■ vendorID
■ tabletID
■ systemTabletID
■ vendorPointingDeviceType
■ pointingDeviceSerialNumber
■ uniqueID

51

Major Topic Areas Covered

• Designing for animation
• Drawing
• Handling state changes
• Handling interaction

52

Custom View Implementorʼs Checklist
WWDC 2010 Session 141, “Crafting Custom Cocoa Views”
Last Update June 8, 2010

Following is a list of essential considerations to keep in mind when crafting your own custom views.
By working through this checklist, you can ensure that your views are functionally complete and
integrate well with AppKit and the rest of the system.

Skim the bolded headings for the essential points, and look to the accompanying text for details,
explanations, and recommendations.

For more detailed information on the topics summarized here, see the “View Programming Guide for
Cocoa”, “Cocoa Event-Handling Guide”, “Cocoa Drawing Guide”, “Accessibility Overview”, and
“Accessibility Programming Guidelines for Cocoa”.

� Is your viewʼs content Accessible?

Make sure your view describes its content meaningfully to the Accessibility system, and that users
can interact with its content using assistive applications and technologies. This makes your view
usable by people with visual and other impairments, and, as an added benefit, enables you to
perform automated user interface testing using the Accessibility API.

� Is the text your view displays localized?

If your view displays any static text that's specified in code, make provisions for that text to be
localized by indirection through a .strings file. (See the NSBundle method -
localizedStringForKey:value:table:.)

In cases where you use .nib/.xib files that contain text labels, be sure to provide a localized copy of
each .nib/.xib file, for each localization you plan to support.

� Should your view be flipped, or unflipped?

If you want your view to be flipped, you must override -isFlipped to return YES.

Both conventions are fine, but the decision will impact much of your content layout and drawing code,
so itʼs one youʼll want to make early on.

A viewʼs flippedness affects the origin and orientation of its interior (bounds) coordinate system, and
the interpretation of its subviewsʼ frame origins. A “flipped” view has its bounds origin at the top-left,
with its +y axis pointing downward. An “unflipped” view has its bounds origin at the bottom-left, with
its +y axis pointing upward.

Choose whichever convention enables you to write simpler code. Usually, the natural growth
direction of your content determines the better choice.

If your view is used as the documentView of an NSScrollVIew, its flippedness also determines
pinning behavior (which corner will remain stationary during ScrollView resize).

� Can your view declare itself opaque?

For optimal performance, if your view guarantees to cover its entire bounds rectangle with 100%
opaque fill, override -isOpaque to return YES. (Your viewʼs alphaValue is irrelevant to this
determination, and is taken into account separately by AppKit.)

This is an easy optimization that can greatly improve performance in window-backed mode, as it
allows AppKit to skip drawing of content behind your view (including window background fill) that the
view would simply paint over entirely.

� Are you drawing correctly and efficiently?

Override -drawRect: to draw your content. Invoke [super drawRect:] if you want to inherit
drawing done by a superclass.

Your view should always be prepared to redraw its content on demand. If you do any “out-of-band”
drawing into your view (such as using -lockFocus / draw / -unlockFocus techniques during user
interaction) you should be able to reproduce the same drawn results when your -drawRect: method is
invoked, according to your viewʼs current state. Out-of-band drawing doesnʼt work in layer-backed
mode, so is generally discouraged in favor of scheduling all your drawing using -
setNeedsDisplay… and -drawRect:.

The NSRect parameter that AppKit passes to -drawRect: bounds the area youʼre being asked to
draw. For optimal performance, test objects for intersection with this NSRect before you bother to
draw them. NSIntersectsRect() and -needsToDrawRect: are useful for this.

If your content is very expensive to draw, it may be worth testing for intersection with an exact
description of the area being drawn. -needsToDrawRect: will do this for you, or you can use -
getRectsBeingDrawn:count: to retrieve the list of rectangles being drawn.

If you need to know whether youʼre being asked to draw for in-window display or printing purposes,
you can use [[NSGraphicsContext currentContext] isDrawingToScreen], or
NSGraphicsContextʼs equivalent +currentContextDrawingToScreen convenience method. The
AppKit and Quartz drawing APIs are designed to enable you to use the same code for printing and
drawing to a screen, but you may in some cases want to customize your drawing as appropriate for
the destination.

If you need to pixel-align elements of your content, make sure you perform your rounding/
integralization calculations in a pixel-unit coordinate space. Take advantage of NSViewʼs -convert
(Point/Size/Rect)(To/From)Base: methods, added in Mac OS X 10.5, which provide a working space
thatʼs appropriate for pixel rounding, independent of whether the view is window-backed or layer-
backed:

- (NSPoint)convertPointToBase:(NSPoint)aPoint;
- (NSPoint)convertPointFromBase:(NSPoint)aPoint;
- (NSSize)convertSizeToBase:(NSSize)aSize;
- (NSSize)convertSizeFromBase:(NSSize)aSize;
- (NSRect)convertRectToBase:(NSRect)aRect;
- (NSRect)convertRectFromBase:(NSRect)aRect;

� Do you need to do work just-in-time, right before drawing?

Override -viewWillDraw if you need a just-in-time opportunity to do some work (such as content
layout computations) before -drawRect: is sent to your view.

Always invoke [super viewWillDraw] (before, after, or in the middle of doing your work) to allow
recursion to your descendant views.

From -viewWillDraw, you may add, remove, and resize subviews, and use the -
setNeedsDisplay… methods to mark additional view areas as needing drawing.

� Do you schedule drawing, instead of demanding immediate display?

Whenever you donʼt absolutely need immediate redraw of your viewʼs content, schedule display
using one of the -setNeedsDisplay… methods, instead of invoking a -display… method. This
approach generally improves efficiency, by enabling AppKit to coalesce drawing requests and
service the net result when control returns to your appʼs main runloop.

� Do you mark affected areas for redisplay as needed, when your viewʼs content or state
changes?

Any property setter or other method that affects what your view draws should mark the affected areas
of the view as needing display, so that the needed redraw will be assured to happen and the user will
see the update. @synthesized property setter methods don't furnish this invalidation, so for
properties that affect your view's appearance, you should write your own setter methods that perform
it.

Use -setNeedsDisplayInRect: in preference to -setNeedsDisplay:, when doing so may save
you significant unnecessary redraw work.

Choose the correct views to invalidate. In layer-backed mode, each view draws into its own backing
store, which may reveal bugs in invalidation code that just happens to work in window-backed mode.
(Invalidating a view that happens to overlap your view no longer causes your view to redraw its
content; the cached backing layer content is simply re-composited.)

� Does your view handle being resized appropriately?

The autoresizing mechanism, as implemented using the autoresizingMask and autoresizesSubviews
properties, is adequate for many user interface layout needs, but sometimes you need to perform
programmatic layout.

Some views override -setFrameSize: to programmatically adjust layout of their subviews or other
content (after calling up to [super setFrameSize:]). This is OK to do.

If you override -resizeSubviewsWithOldSize: and/or -resizeWithOldSuperviewSize:
instead, you must ensure that autoresizesSubviews is set to YES on the appropriate views, or these
messages will never be delivered to your view.

AppKit automatically marks affected window/layer areas as needing display, when your viewʼs frame
size changes. (This has been true since Mac OS X 10.5; prior to that, you needed to explicitly
invalidate areas when resizing views programmatically.)

� Does your view need to respond to being moved to a different superview or window?

This isnʼt required, but if thereʼs work you want to do in such cases, you can override one or more of -
viewWillMoveToWindow:, -viewWillMoveToSuperview:, -viewDidMoveToSuperview, and -
viewDidMoveToWindow.

Calling up to super is not strictly required when subclassing NSView directly, but is a good general
practice for these methods.

� Does your view need to respond to being hidden or unhidden?

Also not required, but if thereʼs work you want to do on becoming hidden or unhidden, you can
override one or both of -viewDidHide and -viewDidUnhide.

-setHidden: is not a good override point, since your view may become, or cease to be, effectively
hidden because an ancestor view received a -setHidden: message.

� Does your view operate correctly in both window-backed and layer-backed mode?

A view can choose to always be layer-backed, by setting its own wantsLayer property to YES, but a
view may also become layer-backed involuntarily, because an ancestor in the view hierarchy has its
wantsLayer property set to YES. (Layer-backing applies to entire view subtrees.)

Therefore, any view whose usage context you donʼt entirely control (for example, a view provided for
other apps to use as part of a framework) should be made capable of operating both window-backed
and layer-backed nowadays.

In many cases -- especially those involving simple, control-like custom views -- no changes will be
necessary to accommodate the possibility of running one way or the other.

If you do need to respond to a change in rendering mode, -setLayer: is a useful and appropriate
override point. AppKit invokes this method with a non-nil parameter when assigning your view a
backing layer, and invokes it with a nil parameter when removing your viewʼs backing layer.

-setWantsLayer: is not a good override point, since your view may become, or cease to be, layer-
backed because an ancestor view received a -setWantsLayer: message.

� Does your view know how to archive and unarchive itself?

If thereʼs any possibility youʼll want to put instances of your view class in .xib/.nib files, or if you might
want to use archiving to duplicate instances of your view class at runtime, override -
encodeWithCoder: and -initWithCoder: to save and restore your viewʼs persistent state.

Keyed coding has been around since Mac OS X 10.2, and is the preferred norm nowadays.

� Does your view want to receive keyboard events?

If so, override -acceptsFirstResponder to return YES.

Override -keyDown:, and optionally -keyUp:, to be notified of ordinary key press and release
events.

Override -flagsChanged: if youʼre interested in modifier key press and release events.

Always pass any events you donʼt handle to super, to give another responder the chance to handle
them.

� Does your view want to receive mouse events?

Almost certainly yes, in which case:

No special action is required to opt into receiving click-related events, although you may want to
override -acceptsFirstMouse to indicate that a click on your view should always be delivered to it,
even if itʼs the activating click in an inactive window.

Clicks of the main mouse button result in a -mouseDown: message, possibly followed by a series of -
mouseDragged: messages (if the mouse is moved while the button is held), and ending with a -
mouseUp: message.

As an alternative to separating their mouse click / drag / release handling into separate methods,
some views enter a “modal tracking loop” on -mouseDown:, looping and pulling mouse events off the
event queue until the terminating NSLeftMouseUp event arrives.

Factoring your mouse tracking logic into separate -mouseDown:, -mouseDragged:, and -mouseUp:
messages typically requires that you provide a place to store tracking state thatʼs shared by all of
them (usually in the view instance), but is the preferred modern approach, as it prevents other
runloop processing from being blocked during handling of the mouse click / drag / release sequence.

For clicks of the secondary mouse button, the sequence is -rightMouseDown:, -
rightMouseDragged:, -rightMouseUp:.

For other buttons, the messages to look for are -otherMouseDown:, -otherMouseDragged:, -
otherMouseUp:.

If your view wants -mouseMoved: events, you must opt its window into receiving them by doing
[window setAcceptsMouseMoved:YES]. To avoid unnecessary overhead, this feature is off by
default. Consider using alternative, and generally more efficient, mechanisms such as Tool Tips,
Cursor Rects, and Tracking Areas when possible.

� Does your view want to handle trackpad gestures?

If so, consider overriding one or more of -beginGestureWithEvent:, -magnifyWithEvent:, -
rotateWithEvent:, -swipeWithEvent:, or -endGestureWithEvent:.

Always provide equivalent means to access the same functionality, since not all users have multi-
touch trackpads.

You may also want to consider handling arbitrary multi-touch events.

Take-Home Thoughts

• With attention to detail and thought put into the design, you can craft
robust, polished custom views that fit naturally in the Mac UI

• Refer to the TreeView code sample, and accompanying checklist, for
ideas when working on your own custom views

developer.apple.com/wwdc/sessions/details/?id=141

53

Related Documentation
developer.apple.com

• Cocoa View Programming Guide
• Cocoa Accessibility Guide
• Cocoa Drawing Guide
• Cocoa Event-Handling Guide

54

Related Sessions

Key Event Handling in Cocoa Applications Russian Hill
Friday 11:30AM

Usable by Everybody: Design Principles for Accessibility on Mac OS X Nob Hill
Tuesday 9:00AM

Cocoa Tips and Tricks Marina
Tuesday 2:00PM

API Design for Cocoa and Cocoa Touch Marina
Thursday 4:30PM

55

Bill Dudney
Application Frameworks Evangelist
dudney@apple.com

Apple Developer Forums
http://devforums.apple.com

More Information

56

57

58

59

