
Greg Parker
Runtime Wrangler

Advanced Objective-C and
Garbage Collection Techniques

2

What You’ll Learn

• The two faces of Objective-C
• Language and Runtime techniques
• Block esoterica
• Optimizing garbage-collected memory

3

The Two Faces of Objective-C

4

One Language, Two Runtimes

• The Modern runtime
• The Legacy runtime

5

Platforms and Architectures

Legacy Modern

32-bit Mac OS
iPhone OS Simulator

64-bit Mac OS
iPhone OS devices

6

Platforms and Architectures

Legacy Modern

32-bit Mac OS

iPhone OS Simulator

64-bit Mac OS
iPhone OS devices

7

Why Do You Care?

• Mac OS: 32-bit apps use legacy runtime
■ Must be 64-bit only for some features

• iPhone OS: Simulator previously used legacy runtime
■ May now use new features everywhere

8

Language and Runtime Techniques

9

Advanced Techniques

• Writing code
• Not writing code
• Not executing code

10

Advanced Techniques

• Writing code
■ Class extensions

• Not writing code
■ @synthesized properties

• Not executing code
■ Weak-linked classes

11

What Is a Class Extension?

• An additional @interface
• Same @implementation
• Different header file

@interface MyClass ()
-(id)myInternalMethod;
@property id myInternalProperty;
@end

12

Hiding Methods in a Class Extension

PetShopView.h

@interface PetShopView : NSView

@property (readwrite) int puppyFood;

-(void) feedSnakeWith:(id)food;

@end

 @private
 NSArray *kittens;
 NSArray *puppies;
}

{

PetShopView *shop;
shop.puppyFood = 0;
[shop feedSnakeWith:shop.kittens];

13

@end

Hiding Methods in a Class Extension

PetShopView.h

@interface PetShopView : NSView

@property (readonly) int puppyFood;

PetShopView-Private.h

@interface PetShopView ()

-(void) feedSnakeWith:(id)food;

@end

 @private
 NSArray *kittens;
 NSArray *puppies;
}

{

@property (readwrite) int puppyFood;

14

@end

Hiding Methods in a Class Extension

PetShopView.h

@interface PetShopView : NSView

@property (readonly) int puppyFood;

PetShopView-Private.h

 @private
 NSArray *kittens;
 NSArray *puppies;
}

{@interface PetShopView ()

@end

@property (readwrite) int puppyFood;

-(void) feedSnakeWith:(id)food;

15

Ivars in Class Extensions

• @private by default
• Modern runtime only
• LLVM Compiler only

■ Preview: Other C Flags = -Xclang -fobjc-nonfragile-abi2

16

@end

@synthesize

PetShopView.h

@interface PetShopView : NSView

@property (readwrite) int puppyFood;

PetShopView.m

@implementation PetShopView

@synthesize puppyFood;

-(id) init {
 self = [super init];
 self->puppyFood = 10;
 return self;
}

@end

{
 @private
 int puppyFood;
}

17

@synthesize by Default

• Modern runtime only
• LLVM Compiler only

■ Preview: Other C Flags = -Xclang -fobjc-nonfragile-abi2

18

Alternatives to @synthesize

• Write accessor methods by hand
• @dynamic with message forwarding
• @dynamic with dynamic method resolution
• @dynamic with NSManagedObject

19

Weak Linking

if (NSDrawNinePartImage != NULL) {
 NSDrawNinePartImage(...);
} else {
 // draw something else
}

20

Weak Linking with NSClassFromString

Class popoverClass = NSClassFromString(@”UIPopoverController”);
if (popoverClass) {
 UIPopoverController *obj = [[popoverClass alloc] init];
} else {
 // do something else
}

@interface MyController : UIPopoverController
// crashes
@end

MyController *obj = [[MyController alloc] init];
// sorry

21

Weak Linking Simplified

if ([UIPopoverController class]) {
 UIPopoverController *obj = [[UIPopoverController alloc] init];
} else {
 // do something else
}

@interface MyController : UIPopoverController
// OK
@end

MyController *obj = [[MyController alloc] init];
if (obj) {
 // OK
}

22

Weak Linking of Objective-C Classes

• Simplify deployment to multiple OS versions
• Implementation forthcoming
• Compiler support

■ GCC and LLVM compilers in Xcode 4

• Runtime support
■ iPhone OS 3.1 and later
■ Not yet on Mac OS

• SDK support
■ Not yet on iPhone OS
■ Not yet on Mac OS

23

Block Esoterica

24

Block Esoterica

• Block memory in action
• Copying blocks
• __block storage variables

25

block2:
 const int captured = 10;

__block int shared;

int captured = 10;

block1:
 const int captured = 10;

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];

Copying

Heap

Stack

Function()

26

block2:
 const int captured = 10;
block1:
 const int captured = 10;

__block int shared;

int captured = 10;

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];

Copying

Heap

Stack

Function()

27

block2:
 const int captured = 10;
block1:
 const int captured = 10;

__block int shared;

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];

Copying

Heap

Stack

Function()

int captured = 10;int captured = 20;int captured = 20;

28

block3:
 const int captured = 10;

block1:
 const int captured = 10;

block2:
 const int captured = 10;

Copying

Heap

Stack

Function()

int captured = 20;

__block int shared;

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];

29

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

Copying

Heap

Stack

Function()

block2:
 const int captured = 10;

block3:
 const int captured = 10;

int captured = 20;

__block int shared;

block1:
 const int captured = 10;

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];

30

Copying

Heap

Stack

Function()

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

int captured = 20;

__block int shared;

block1:
 const int captured = 10;

block2 and block3:
 const int captured = 10;
block2:
 const int captured = 10;

31

Copying

Heap

Stack

Function()

int captured = 20;

__block int shared;

block1:
 const int captured = 10;

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

block2 and block3:
 const int captured = 10;
block2 and block3:
 const int captured = 10;

32

Cleanup

Heap

Stack

Function()

int captured = 20;

__block int shared;

block1:
 const int captured = 10;

block2 and block3:
 const int captured = 10;

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

33

Cleanup

Heap

Stack

Function()

int captured = 20;

__block int shared;

block1:
 const int captured = 10;

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

34

Cleanup

Heap

Stack

Function()

int captured = 20;

__block int shared;

block1:
 const int captured = 10;

captured = 10;
block1 = ^{
 shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

block2 and block3:
 const int captured = 10;

35

Cleanup

__block int shared;

Heap

Stack

Function()

block2 and block3:
 const int captured = 10;

36

Cleanup

Heap

Stack

Function()

37

Block Copies

• Outlive the creating function
• Runnable on another thread

■ GC: must copy even if you run it synchronously!

38

How to Copy

• [myBlock copy] and [myBlock release]
• Block_copy(myBlock) and Block_release(myBlock)
• Prefer the methods, not the functions

39

__block Basics

• __block is a storage class
• __block variables are mutable
• __block variables are shared

40

__block Basics

• __block variable values are not retained
• __block variables may be copied
• __block arrays are not allowed

41

__block Uses

• Send values between different calls to the same block
• Send values to the block’s caller
• Beware of thread synchronization

42

Optimizing
Garbage Collected Memory

43

Memory You Don’t Want

• Leak: an allocation that is no longer referenced
• Abandoned: an allocation that is referenced, but no longer used

44

Leak Detection

• Finds Leaked memory
• Does not find Abandoned memory

45

Garbage Collection

• Automatically deallocates Leaked memory
• Does not deallocate Abandoned memory

46

Abandoned Memory Examples

• Write-only cache
• Add-only container
• Pointer to current document
• Un-drained autorelease pool

47

Demo

48

Fixing Abandoned Memory

• Limit cache sizes
• Add explicit invalidation protocols
• Use __weak pointers
• Add well-placed autorelease pools

49

Optimizing Memory

• Use leak detectors to find leaked memory
■ GC: works with unmanaged and collector-disabled memory

• Use Heapshot to find abandoned memory
■ GC: set AUTO_USE_TLC = NO

50

Summary

• Runtime count reduced on iPhone OS
• Old language features given new twists
• Block objects demystified
• GC memory optimized

51

Michael Jurewitz
Developer Tools Evangelist
jurewitz@apple.com

Documentation
The Objective-C Programming Language
Objective-C Runtime Programming Guide
http://developer.apple.com/

Apple Developer Forums
http://devforums.apple.com

More Information

52

Advanced Memory Analysis with Instruments Presidio
Thursday 11:30AM

Introducing Blocks and Grand Central Dispatch on iPhone (Repeat) Pacific Heights
Friday 2:00PM

Related Sessions

53

Q&A

54

55

56

