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Advanced Objective-C and 
Garbage Collection Techniques
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What You’ll Learn

• The two faces of Objective-C
• Language and Runtime techniques
• Block esoterica
• Optimizing garbage-collected memory

3



The Two Faces of Objective-C
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One Language, Two Runtimes

• The Modern runtime 
• The Legacy runtime
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Platforms and Architectures

Legacy Modern

32-bit Mac OS
iPhone OS Simulator

64-bit Mac OS
iPhone OS devices
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Why Do You Care?

• Mac OS: 32-bit apps use legacy runtime
■ Must be 64-bit only for some features

• iPhone OS: Simulator previously used legacy runtime
■ May now use new features everywhere
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Language and Runtime Techniques
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Advanced Techniques

• Writing code
• Not writing code
• Not executing code
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Advanced Techniques

• Writing code 
■ Class extensions

• Not writing code 
■ @synthesized properties

• Not executing code 
■ Weak-linked classes
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What Is a Class Extension?

• An additional @interface
• Same @implementation
• Different header file

@interface MyClass ()
-(id)myInternalMethod;
@property id myInternalProperty;
@end
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Hiding Methods in a Class Extension

PetShopView.h

@interface PetShopView : NSView

@property (readwrite) int puppyFood;

-(void) feedSnakeWith:(id)food;

@end

  @private
    NSArray *kittens;
    NSArray *puppies;
}

{

PetShopView *shop;
shop.puppyFood = 0;
[shop feedSnakeWith:shop.kittens];
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@end

Hiding Methods in a Class Extension

PetShopView.h

@interface PetShopView : NSView

@property (readonly) int puppyFood;

PetShopView-Private.h

@interface PetShopView ()

-(void) feedSnakeWith:(id)food;

@end

  @private
    NSArray *kittens;
    NSArray *puppies;
}

{

@property (readwrite) int puppyFood;
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@end

Hiding Methods in a Class Extension

PetShopView.h

@interface PetShopView : NSView

@property (readonly) int puppyFood;

PetShopView-Private.h

  @private
    NSArray *kittens;
    NSArray *puppies;
}

{@interface PetShopView ()

@end

@property (readwrite) int puppyFood;

-(void) feedSnakeWith:(id)food;
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Ivars in Class Extensions

• @private by default
• Modern runtime only
• LLVM Compiler only

■ Preview: Other C Flags = -Xclang -fobjc-nonfragile-abi2
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@end

@synthesize

PetShopView.h

@interface PetShopView : NSView

@property (readwrite) int puppyFood;

PetShopView.m

@implementation PetShopView

@synthesize puppyFood;

-(id) init {
    self = [super init];
    self->puppyFood = 10;
    return self;
}

@end

{
  @private
    int puppyFood;
}
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@synthesize by Default

• Modern runtime only
• LLVM Compiler only

■ Preview: Other C Flags = -Xclang -fobjc-nonfragile-abi2
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Alternatives to @synthesize

• Write accessor methods by hand
• @dynamic with message forwarding
• @dynamic with dynamic method resolution
• @dynamic with NSManagedObject
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Weak Linking

if (NSDrawNinePartImage != NULL) {
    NSDrawNinePartImage(...);
} else {
    // draw something else
}
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Weak Linking with NSClassFromString

Class popoverClass = NSClassFromString(@”UIPopoverController”);
if (popoverClass) {
    UIPopoverController *obj = [[popoverClass alloc] init];
} else {
    // do something else
}

@interface MyController : UIPopoverController
// crashes
@end

MyController *obj = [[MyController alloc] init];
// sorry
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Weak Linking Simplified

if ([UIPopoverController class]) {
    UIPopoverController *obj = [[UIPopoverController alloc] init];
} else {
    // do something else
}

@interface MyController : UIPopoverController
// OK
@end

MyController *obj = [[MyController alloc] init];
if (obj) {
    // OK
}
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Weak Linking of Objective-C Classes

• Simplify deployment to multiple OS versions
• Implementation forthcoming
• Compiler support

■ GCC and LLVM compilers in Xcode 4

• Runtime support
■ iPhone OS 3.1 and later
■ Not yet on Mac OS

• SDK support 
■ Not yet on iPhone OS 
■ Not yet on Mac OS
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Block Esoterica
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Block Esoterica

• Block memory in action 
• Copying blocks
• __block storage variables
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block2:
  const int captured = 10;

__block int shared;

int captured = 10;

block1:
  const int captured = 10;

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];

Copying

Heap

Stack

Function()
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block2:
  const int captured = 10;
block1:
  const int captured = 10;

__block int shared;

int captured = 10;

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];

Copying

Heap

Stack

Function()
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block2:
  const int captured = 10;
block1:
  const int captured = 10;

__block int shared;

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];

Copying

Heap

Stack

Function()

int captured = 10;int captured = 20;int captured = 20;
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block3:
  const int captured = 10;

block1:
  const int captured = 10;

block2:
  const int captured = 10;

Copying

Heap

Stack

Function()

int captured = 20;

__block int shared;

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];
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captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

Copying

Heap

Stack

Function()

block2:
  const int captured = 10;

block3:
  const int captured = 10;

int captured = 20;

__block int shared;

block1:
  const int captured = 10;

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block1 copy];
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Copying

Heap

Stack

Function()

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

int captured = 20;

__block int shared;

block1:
  const int captured = 10;

block2 and block3:
  const int captured = 10;
block2:
  const int captured = 10;
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Copying

Heap

Stack

Function()

int captured = 20;

__block int shared;

block1:
  const int captured = 10;

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

block2 and block3:
  const int captured = 10;
block2 and block3:
  const int captured = 10;
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Cleanup

Heap

Stack

Function()

int captured = 20;

__block int shared;

block1:
  const int captured = 10;

block2 and block3:
  const int captured = 10;

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];
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Cleanup

Heap

Stack

Function()

int captured = 20;

__block int shared;

block1:
  const int captured = 10;

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];
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Cleanup

Heap

Stack

Function()

int captured = 20;

__block int shared;

block1:
  const int captured = 10;

captured = 10;
block1 = ^{
  shared += captured;
};
captured = 20;
block2 = [block1 copy];
block3 = [block2 copy];

block2 and block3:
  const int captured = 10;
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Cleanup

__block int shared;

Heap

Stack

Function()

block2 and block3:
  const int captured = 10;
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Cleanup

Heap

Stack

Function()
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Block Copies

• Outlive the creating function
• Runnable on another thread

■ GC: must copy even if you run it synchronously!
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How to Copy

• [myBlock copy] and [myBlock release]
• Block_copy(myBlock) and Block_release(myBlock)
• Prefer the methods, not the functions
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__block Basics

• __block is a storage class
• __block variables are mutable
• __block variables are shared
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__block Basics

• __block variable values are not retained
• __block variables may be copied
• __block arrays are not allowed
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__block Uses

• Send values between different calls to the same block
• Send values to the block’s caller
• Beware of thread synchronization
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Optimizing 
Garbage Collected Memory
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Memory You Don’t Want

• Leak: an allocation that is no longer referenced 
• Abandoned: an allocation that is referenced, but no longer used
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Leak Detection

• Finds Leaked memory
• Does not find Abandoned memory
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Garbage Collection

• Automatically deallocates Leaked memory
• Does not deallocate Abandoned memory
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Abandoned Memory Examples

• Write-only cache
• Add-only container
• Pointer to current document
• Un-drained autorelease pool
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Demo
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Fixing Abandoned Memory

• Limit cache sizes
• Add explicit invalidation protocols
• Use __weak pointers
• Add well-placed autorelease pools
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Optimizing Memory

• Use leak detectors to find leaked memory
■ GC: works with unmanaged and collector-disabled memory

• Use Heapshot to find abandoned memory
■ GC: set AUTO_USE_TLC = NO
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Summary

• Runtime count reduced on iPhone OS
• Old language features given new twists
• Block objects demystified
• GC memory optimized
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Michael Jurewitz
Developer Tools Evangelist
jurewitz@apple.com

Documentation
The Objective-C Programming Language
Objective-C Runtime Programming Guide 
http://developer.apple.com/

Apple Developer Forums
http://devforums.apple.com

More Information
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Advanced Memory Analysis with Instruments Presidio
Thursday 11:30AM

Introducing Blocks and Grand Central Dispatch on iPhone (Repeat) Pacific Heights
Friday 2:00PM

Related Sessions
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Q&A
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