
Designing and debugging your driver

Thane Norton
I/O Kit Team Member

2

• Driving your hardware from user space or the kernel
• The kinds of drivers that have to be in the kernel
• Ways to debug kernel level code
• Special challenges involved in creating your own IOUserClient

3

A set of frameworks for driving hardware

User Space

Kernel

4

• Device driver model for Mac OS X
• Framework for applications to
access devices

• I/O Kit is not available in the
iPhone SDK
■ See session:
Developing Apps that Work with
iPhone Accessories

5

The place you want to be

• If you only need to support your own
application, build support into your app

• Requires only IOKit.framework
• Drag and drop install of app
• Multiple apps can share access
using I/O Kit

6

The place you want to be

• If multiple applications need to share
device support code, create a
framework

• Can still be built into an application
• Will need an installer otherwise

7

The place you want to be

• If you need to supply services, create
a daemon or background application

• Can use launchd to be launch
on demand

• See also:
■ `man launchd.plist`
■ See also session:
Launch-on-Demand

8

The place you want to be

• Easier to debug
• More robust
• More access to system services
• Better logging
• Should not cause panics

9

• Nearly full access to hardware
through I/O Kit user clients
■ Almost any USB device can
be supported

• Better memory management
• Identical control over thread priority

■ Kernel tasks are not treated specially

10

Testing matrix

i386 or x86_64 PowerPC or PowerPC64

10.6

10.5

10.4

11

Not possible when…

• Your client is in the kernel
• You require access to other
kernel resources

• You need to respond directly
to primary interrupts
■ PCI drivers must be kexts

12

a.k.a. kext (kernel extension)

• Read the “Kernel Extension
Programming Topics”
■ One day of work can get you a pretty
good workflow

• Memory allocated by kexts is pre-wired
• Memory from user space is not

■ You must prepare memory from user
space before performing physical I/O

13

a.k.a. kext (kernel extension)

• Logging is limited
■ Uses ring buffers
■ Flooding the log will cause messages
to drop and be garbled

■ Can’t use Apple System Log
■ Can use kprintf() for FireWire logging

■ See `man fwkpfv`

14

a.k.a. kext (kernel extension)

• Test cycle often requires reboot
• Debugging

■ Requires advance preparation
■ Requires two machines
■ Connected via Ethernet or FireWire
■ Use the Kernel Debug Kit for
your kernel

• Read the “Kernel Extension
Programming Topics”
■ Also see “man fwkdp”

15

a.k.a. kext (kernel extension)

• Must test kext on all supported
kernels every release

• Must match kernel architecture
■ i386 compilation for 32-bit
Intel kernel

■ x86_64 compilation for
64-bit kernel

■ 32-bit PowerPC compilation for
a Leopard PowerPC kernel

16

Testing matrix

x86_64 i386 PowerPC

10.6

10.5

10.4

17

The art and skill of multi-architecture compilation

• Memory descriptors changed on
10.5 to support x86_64 user processes
■ Kernel was 32-bit only

• Use conditional compilation and
availability macros
■ Weak linking not (yet) supported

18

The art and skill of multi-architecture compilation

• kexts can be nested to ease
packaging

• Can easily support all Leopard or
better kernels with one kext
■ Support for earlier kernels
is possible

• From WWDC09 see session:
Creating I/O Kit Drivers for
Multiple Architectures and
OS Versions

19

Panics

• Harder to debug
• Two-machine debugging works well

■ If you have it set up

• Setting machines up to “dump core”
can be a big boon
■ See TN2118 and `man fwkdp`

• Covered in depth by TN2063

20

Summary

• Closer access to hardware
• More challenging than user space
• New class of defects (panics)
• Limited system resources

21

• Custom interface across the
user/kernel boundary

• Even harder to debug than a kext
■ Must debug two processes in
different instruction/memory spaces

• There is almost always a better choice

22

• Code running in the kernel
is trusted

• IOUserClient allows you to penetrate
the trust boundary

• If you make a custom user client, you
become the gatekeeper

23

• Must validate…
■ All data coming in
■ All connections from applications

■ See initWithTask and
clientHasPrivilege for more info

• See also:
■ SimpleUserClient
■ AppleSamplePCI

24

x86_64 i386 PowerPC

10.6

10 510.5

10 410.4

x86_64 client

i386 client

PowerPC 32 client

x86_64 client

i386 client

PowerPC 64 client

PowerPC 32 client

x86_64 client

i386 client

PowerPC 64 client

PowerPC 32 client

25

x86_64 i386 PowerPC

10.6

10 510.5

10 410.4

x86_64 client

i386 client

PowerPC 32 client

x86_64 client

i386 client

PowerPC 64 client

PowerPC 32 client

x86_64 client

i386 client

PowerPC 64 client

PowerPC 32 client

Without Rosetta

26

Thane Norton
I/O Kit Team Member

27

• Preferred interrupt technique (less interrupt sharing)
• MSIs allow additional interrupt sources available via IOService

■ Index 0 is reserved for the legacy pin based shared interrupt
Pin = IOFilterInterruptEventSource::filterInterruptEventSource
 (this, interruptHandler, interruptFilter, provider, 0);

■ MSI interrupts do not need a filter, and have indices > 0
MSI = IOInterruptEventSource::interruptEventSource
 (this, interruptHandler, provider, 1);

• Enabing an MSI source disables legacy pin interrupt source
• Supported on all Intel hardware running 10.4.7 or later

28

User space

• Better performance = better battery life
• Improving performance is the number one thing you can do
• Periodic activity is worse than batching
• Reduce sporadic disk access
• Use System Load Advisory API to guide background behavior
• Use System Power messages from IOKit.framework to discover system
power state changes

• Use IOPMAssertion APIs to prevent idle sleep when necessary
• Should not do anything different for SafeSleep

29

Kernel and kext

• Any sleep can become a SafeSleep if power is lost
■ Should not do anything different for SafeSleep

• Use IOService APIs to join power tree
■ Let you request and be notified of PM state changes
■ kexts only implement mechanism; policy belongs in user space

• Maintenance Wake
■ New for Snow Leopard added for Bonjour network presence
■ Brief, partial wake with screen and audio off

■ Triggered in Bonjour Sleep Proxy server is active
■ Limited to 30 seconds

30

Dean Reece
I/O Kit Team Manager

31

• How to take a driver from prototype to product
• How to deliver your driver to your customers
• What resources are available to help you

32

• A simple checklist can catch many common errors before your driver
gets into the field
■ Basic correctness checks
■ Common transition cycling
■ Memory footprint analysis

• Keep records of results for comparing between releases

33

Examine your Info.plist

• Is “IOKitDebug” absent or set to “0”?
• Did you advance your version number?
• Is your “CFBundleIdentifier” correctly formed?

com.yourcompany…

• Remember “OSBundleCompatibleVersion” is only used for libraries!
• Check your use of “OSBundleRequired”

34

Kext bundle structure

• Run “find” on the kext and make sure every file is expected
• Doublecheck owner and permissions

■ Files should be root:wheel 644
■ Folders should be root:wheel 755

• Run “kextutil -tn” on kext and investigate any warnings or errors
■ Prior to SnowLeopard, use “kextload -tn”
■ Use “kextlibs” to help fix issues with OSBundleLibraries

35

Kext bundle binary

• Make sure Xcode build configuration is set to “release”
• Verify correct architectures are present (use “file” command)

■ Expect i386, x86_64, and possibly ppc

• Run “nm” on the kext binary to see what symbols are present
■ Use C++filt and grep to make results more readable:

nm driver.kext/Contents/MacOS/driver | c++filt | grep -v " U "

■ Are all global symbols properly prefixed?
com_yourcompany_…

36

Loading and running the kext

• Watch system.log and kernel.log while loading and starting your kext
■ Are debugging log messages present?
■ Investigate any warnings reported by IOKit or kext management

• Unload your kext and verify it unloads cleanly
■ Failure to unload can indicate reference leaks

• Things to verify
■ System sleeps/wakes correctly while driver is in use
■ Driver unloads after device is removed (if applicable)
■ Driver behaves correctly on SafeBoot (hold shift key down)

37

Cycling

• Use available tools to monitor resource usage while cycling:
■ ioclasscount, ioalloccount, zprint, and top
■ Observe values at start and watch for steady ramp in consumption

• Things to exercise:
■ kext load/unload
■ Device attach/detach
■ Driver open/close
■ System sleep/wake (use SleepX)
■ Common product-specific transitions

• Set goals for each cycler (1,000 cycles) as a quality metric

38

• You can use PackageMaker.app to create a software installation
bundle for Installer.app

• Automatically follows the correct steps to install kexts correctly
■ Permissions correctly managed
■ No need to touch Extensions folder

• This is fully described on the Apple Developer website:
■ Packaging a Kernel Extension for Distribution and Installation

39

• Install drivers in /System/Library/Extensions
■ Do not install them in /Library/Extensions
■ Can be located in app bundle if loaded explicitly by the app

• If delivering multiple kexts as a single product, you can nest them one
level deep inside the PlugIns folder of a single kext

• Always touch the extensions folder after adding, updating, or removing
kexts: touch /System/Library/Extensions
■ You should not directly manage the kext caches

• To install a kext without requiring a restart, see Technical Q&A QA1319

40

If you use an alternate distribution format,
make sure that…

• The installed kext matches your built kext (files, contents, permissions)
• The Extensions folder is touched even after an upgrade install
• Old kext bundle contents don’t survive an upgrade install

41

Apple’s developer website is your hub

• Hardware & Drivers page: http://developer.apple.com/hardwaredrivers

• Developer Forums: http://developer.apple.com/devforums

■ 64-Bit migration forum

• Darwin and other mail lists
■ darwin-kernel, darwin-drivers, darwin-development
■ usb, firewire, ata-scsi-dev

• Bug Reporter: http://developer.apple.com/bugreporter

• DTS Incident

42

Craig Keithley
I/O Technology Evangelist
keithley@apple.com

Documentation
http://developer.apple.com/hardwaredrivers

Apple Developer Forums
http://devforums.apple.com

43

Mac OS X Kernel Lab Core OS Lab B
Wednesday 4:30PM

USB and FireWire Lab Core OS Lab A
Wednesday 9:00AM

Bluetooth Lab Core OS Lab B
Wednesday 9:00AM

iPhone OS Accessories Lab Core OS Lab B
Tuesday 2:00PM

USB and FireWire Lab Core OS Lab B
Thursday 2:00PM

USB and FireWire Lab Core OS Lab A
Friday 9:00AM

44

45

46

47

