
Security lifecycle

Matt Murphy
Product Security Engineer

2

Why are you here?

• Avoid the consequences of security issues
■ Negative press, lost revenue, etc.

• Realize that security is complicated
■ Trend toward highly connected environments

• Determine optimal ways to prevent security issues
■ Maximize benefits with available resources
■ Mistakes are expensive to fix later

3

In this part of the presentation

• Design for security
• Security tools
• Tips to avoid frequently seen security issues
• Later: Common Objective C / Cocoa security mistakes

4

• Design
• Code
• Test

■ Automated tools
■ Manual testing/auditing

• Maintain
■ Fix bugs, deliver fixes
■ Not covered here

5

• Support privilege separation
• Run with reduced privilege
• Avoid setuid
• Protect data in transit
• More tips in the Secure Coding Guide

6

Support privilege separation

• Don’t use AuthorizationExecuteWithPrivileges
■ Factor privileged code into background daemon

• Use launchd(8) and service management APIs
■ SMJobBless, SMJobSubmit, etc.
■ See “SampleD” example

7

• Support privilege separation
• Run with reduced privilege
• Avoid setuid
• Protect data in transit

8

Run with reduced privilege

• Test as a standard user!
■ Your app should “just work”
■ If it doesn’t: you found a bug!

• Don’t rely on special capabilities of administrators
■ Don’t work for standard users
■ May break for administrators in the future

9

Avoid writing to…

• /Applications
■ Including your app bundle

• /Applications/Utilities
• /Library and sub-directories

■ /Library/Application Support
■ /Library/Preferences
■ Etc.

10

Registration (serial number, license key, …) Prompt at install time, while running with privilege

Global preferences, other privileged functionality Use a launchd(8) job, protect with authorization
as necessary

Custom installer
Use Installer.app if possible
Use installer(8) command
Install a launchd(8) job, remove when install completes

11

• Support privilege separation
• Run with reduced privilege
• Avoid setuid
• Protect data in transit

12

• setuid/setgid is an attacker’s dream
■ Control file descriptors, environment, etc.
■ Bugs in your own code, or lower-level APIs

• Don’t write “self-repairing” privileged tools
■ Local user can alter binary
■setuid bit may elevate malicious code to root!

■ Use installer packages and RootAuthorization

13

setuid tool

Trust Boundary

Command-line arguments

Environment variables

Working directory
File descriptors

File mode mask

√

Interval timers

Signal mask
Mach ports
…

I/O

User

14

• Support privilege separation
• Run with reduced privilege
• Avoid setuid
• Protect data in transit

15

Protect data in transit

• Assume users of your apps are mobile
■ MacBook, iPhone, iPod touch, iPad
■ Be suspicious of DNS, local network

• Protect sensitive data with SSL
■ NSURLConnection with https: URL
■ CFReadStream with SSL extensions

16

CFDictionarySetValue(
securityDictRef,
kCFStreamSSLValidatesCertificateChain,
kCFBooleanFalse);

CFReadStreamSetProperty(
streamRef,
kCFStreamPropertySSLSettings,
securityDictRef);

Protect data in transit

• Don’t disable chain validation!

• Sign code, packages, etc.
■ Verify signing certificate

17

• Design
• Code
• Test

■ Automated tools
■ Manual testing/auditing

• Maintain
■ Fix bugs, deliver fixes
■ Not covered here

18

• Safe file handling
• Permissions
• Bounds checking
• Integer overflows
• More in the Secure Coding Guide

19

Safe file handling

• Use safe temporary/cache directories
■confstr
■NSTemporaryDirectory

• Avoid world-writable directories
■ /tmp, /Library/Caches

• If you must use them, be careful
■ Higher level APIs (writeToFile:, NSFileManager, …) aren’t safe
■ Only create files, always use O_EXCL

20

• Safe file handling
• Permissions
• Bounds checking
• Integer overflows

21

Permissions

• Files are world-readable by default
■ Not appropriate for every file
■ Set tighter permissions where appropriate

• Avoid creating world-writable files
■ Subject to race conditions
■ Unprivileged user may damage file
■ Use a daemon to manage access

22

• Safe file handling
• Permissions
• Bounds checking
• Integer overflows

23

Bounds checking

• Buffer overflows
■ Data too large for memory buffer allocated
■ Perform sanity checks
■ Use safe string functions

24

strcat, strcpy strlcat, strlcpy

strncat, strncpy strlcat, strlcpy

sprintf, vsprintf snprintf, vsnprintf

gets fgets

25

L A R G E

L A R G \0

L A R G E R \0

char destination[5]; char *source = “LARGER”;

strcpy(destination, source);

strncpy(destination, source, sizeof(destination));

strlcpy(destination, source, sizeof(destination));

26

• Safe file handling
• Permissions
• Bounds checking
• Integer overflows

27

Integer overflows

• Arithmetic operation produces value larger than integer type

struct binDataStruct {
unsigned int nEntries;
struct entry entryData[0];

};

struct binDataStruct *inputData = [someUntrustedData bytes];
NSData *copiedEntries = [NSMutableData dataWithLength:

inputData->nEntries * sizeof(struct entry)];

for (i=0; i < inputData->nEntries; i++)
memcpy([copiedWidgets mutableBytes] + i*sizeof(struct entry),

&inputData->entryData[i],
sizeof(struct entry));

28

Integer overflows

• Use checkint API on untrusted integer operations

NSData *copiedEntries = [NSMutableData dataWithLength:
inputData->nEntries * sizeof(struct entry)];

0000000A

1 00000004

1999999Asizeof(struct entry)
inputData->nEntries
inputData->nEntries * sizeof(struct entry)

29

Integer overflows: checkint

#include <checkint.h>
struct binDataStruct {
unsigned int nEntries;
struct entry entryData[0];

};
...
struct binDataStruct *inputData = [someUntrustedData bytes];
int intErr = CHECKINT_NO_ERROR;
unsigned int allocSize = check_uint32_mul(inputData->nWidgets,

sizeof(struct widget), &intErr);
if (intErr != CHECKINT_NO_ERROR) goto fail;
NSData *copiedEntries = [NSMutableData dataWithLength:

allocSize];

for (i=0; i < inputData->nEntries; i++)
memcpy([copiedWidgets mutableBytes] + i*sizeof(struct entry),

&inputData->entryData[i],
sizeof(struct entry));

30

• Design
• Code
• Test

■ Automated tools
■ Manual testing/auditing

• Maintain
■ Fix bugs, deliver fixes
■ Not covered here

31

• Static analysis
• Fuzzing

32

• Developer Tools now include a static analyzer
■ Run with the “Build and Analyze” menu item

• Checks code for common bugs:
■ Memory management issues
■ Small subset of buffer overflows
■ Some non-security bugs (dead store, etc.)

• Detailed warnings document data flow
• Rules aren’t very detailed, but improving

33

Example

34

• Use often for best results
■ Frequent runs catch regressions
■ New rules added in Developer
Tools updates

• Project configuration option
■ Runs analyzer with every build

35

• Subtly alter valid program inputs
■ File data
■ Network traffic

• Doesn’t have to be complicated
• Program crash = bug
• CrashWrangler can help you prioritize

■ Run with crash logs, live targets
■ Heuristic for identifying exploitable bugs
■ Available as a download from connect.apple.com

36

37

David Remahl
Product Security Engineer

38

39

Both magical and revolutionary

• Supports some well-formed Atom feeds
• Ground-breaking feature: Document based!
• Opens (emerging) industry-standard naive: URLs
• 512×512 icon
• Crashes: “It’s a feature, not a bug!”

40

Naïveté features

41

[]

[]

[]

[]

[]

[]

[]

Score Card

Cross-Site Scripting

Local URLs

Trojan protection

Document serialization

Format strings

Reference counting

Fuzzing

42

Understanding the attack surface

• Entry points
■ naive: URLs (from Safari, etc)
■ Documents
■ Feeds
■ Enclosures

43

Understanding the attacks

• WebView
■ Document origin
■ Cross-site scripting (JavaScript injection)
■ External links
■ …

• URL handlers
■ Input validation

• Serialization format
■ …

• API documentation and Secure Coding Guide

44

Naïveté attacks

45

[]

[]

[]

[]

[]

[]

[]

Score Card

Cross-Site Scripting

Local URLs

Trojan protection

Document serialization

Format strings

Reference counting

Fuzzing

46

Some lessons

• file: URLs are special
• Understand your APIs
• Applications that download files should use File Quarantine

■ Opt-in for all files created by the app
■ …or just for some, using LSSetItemAttribute()

47

Playing safe

• Document formats have two layers
■ Semantic content (high-level)
■ Serialization format (low-level)

• What signifies a secure serialization format?
■ Simple and predictable
■ Small attack surface
■ Proper input validation

48

Naïveté’s document format

49

[]

[]

[]

[]

[]

[]

[]

Score Card

Cross-Site Scripting

Local URLs

Trojan protection

Document serialization

Format strings

Reference counting

Fuzzing

50

Safe for untrusted data Unsafe for untrusted data

NSArchiver
NSKeyedArchiver

NSSerialization
(deprecated 10.2)

XML Property Lists
Binary Property Lists

NSXML

Use for document formats,
network protocols,

shared data

OK for preference files,
internal storage, frozen code,

trusted IPC

Core Data

51

Static analysis and implementation issues

52

[]

[]

[]

[]

[]

[]

[]

Score Card

Cross-Site Scripting

Local URLs

Trojan protection

Document serialization

Format strings

Reference counting

Fuzzing

53

More lessons

• Static analysis helps, but does not catch everything
• Be careful with format strings
• Reference counting and weak references are hard

■ Garbage Collection avoids some pitfalls

54

Fuzzing is easy and effective

• pluzz.py—A simple property list fuzzer in less than an hour
■ Enumerates the hierarchy of a plist
■ Replaces objects in plist with other types and boundary values
■ Writes a copy for each permutation into a numbered file

• Run with CrashWrangler

55

Property list fuzzing

56

[]

[]

[]

[]

[]

[]

[]

Score Card

Cross-Site Scripting

Local URLs

Trojan protection

Document serialization

Format strings

Reference counting

Fuzzing

57

More on testing

• Fuzzing is an important part of the testing strategy
• Try multiple fuzzers

■ binary, random values, boundary values, dumb, guided, …

• Also use:
■ Unit testing (focus on edge cases)
■ Penetration testing (try to break it)

58

• Think about security throughout
the development process

• Be aware of the security properties
of the APIs you use

• Understand the attacks that affect
your problem space

• Take advantage of hardening
techniques and security APIs

59

• Visit the Dev Forums Security section
• Read the Secure Coding Guide
• Run the Static Analyzer
• Fuzz your app

Your App

60

Launch-on-Demand Russian Hill
Thursday 4:30PM

Network Apps for iPhone OS, Part 1 Pacific Heights
Wednesday 2:00PM

Securing Application Data Marina
Thursday 11:30AM

61

 iPhone OS and Mac OS X Security Lab Core OS Lab A
Thursday 2:00PM

TextText

62

63

64

