«
Introducing Blocks and
Grand Central Dispatch on iPhone

Kevin van Vechten
Core OS

Technology Stack

Grand Central Dispatch

Blocks

Bill Bumgarner

(lambda (a) (add a d))

,.»ﬁ\\

10 timesRepeat:[pen turn:d; draw] SmallTalk

z.each {|val| puts(val + d.to_s)}

repeat (10, ~{ putc('Q0'+ d); });

Objective-C

N

Objective-C++

Objective-C

N~

Objective-C++

Basic Blocks

Block Literals

[mySet objectsPassingTest:”~(id obj, BOOL *stop) {
return [obj testValue: valuel;

s

dispatch_async(main_queue, ~{
[viewController displayNewStuff];
F);

Block Literal Syntax

Return

e Arguments Body

~/BOOL (id item) { return [item length] > 20; }

~ void (id item) { [item doOneGoodThing]; }

~ (id item) { [item doOneGoodThing]; }

~ void (void) { [local doTwoGoodThings]; }
~ { [local doTwoGoodThings]; }

Blocks as Data

Function Pointers

void (*callable) (void);

Block Pointers

void (~callable) (void):

Ugly Block Pointers

char x(”~worker) (char =*a,
BOOL (~done) (int));

Typedefs Are Your Friend

typedef BOOL (~doneBlk_t) (int);

char *x(~workB) (char xa,
doneBlk_t d);

Blocks in Practice

Worker Block

typedef void (“workBlk_t) (int i);

Work Block Consumer

vgpddef void (“workBlk_t)(int i);
repeat(int n, workBlk_t aBlock) {
for (int i = 0; i < n; ++i)
aBlock(1i);

Putting It Together

int d = 2;

workBlk_t w = ~(int 1){
printf(“sd\n", i *x d);

i

repeat(5, w);

Clear

;

i0S 4 i0S 4

9 CCTW

Motion Telephony

ver [IOUTATIS

Grand Central

Multitasking Foundation Dispatch

Four Common Patterns

Synchronous Execution

[mySet objectsPassingTest: ~(id obj, BOOL *stop) {
return [obj testValue: valuel;

1

[aDictionary enumerateKeysAndObjectsUsingBlock: ~(id k, id v, BOOL xstop) {
NSLog(@"%@ => %@", k, V);
H;

Callbacks

[application beginBackgroundTaskWithExpirationHandler: ~{
/*x expiration handler callback code x/

1

[anOperation setCompletionBlock: ~{
/* handle operation completion x/

s

Asynchronous Execution

[operationQueue addOperationWithBlock: ~{
/* hard work is hard x/
5

dispatch_async(main_queue, ~{
[viewController displayNewStuff];
F);

Lockless Exclusion

// thread a
dispatch_async(queue, ~{ ... });

// thread b
dispatch_sync(queue, ~{ ... });

// main thread
dispatch_async(queue, ~{ ... });

Blocks in Detail

Block Object Details

* Blocks are Objective-C objects
* Block objects start out on the stack

- Copied to the heap using [aBlock copy] or Block_copy()
- Release with [aBlock release] or Block release()

* Blocks have private const copy of stack (auto) variables
- Object references are retained
* Mutable variables must be declared with __block keyword

- Shared with all other blocks that use that variable
- Shared with the scope of declaration
- __block Object references are not retained

Block Lifetime lllustrated

Start on Stack

__block int shared;

int captured = 10;

Stack

blockl = ~{

shared += captured;
Ir?
block2 = [blockl copyl;
block3 = [blockl copyl;

Function()

Capture State

__block int shared;

int captured = 10;

block1l:
const int captured = 10;

Stack

blockl = ~{

shared += captured;
Ir?
block?2 [blockl copyl;
block3 = [blockl copyl;

Function()

Copies State to Heap

__block int shared;

int captured = 10; block2:
const int captured = 10;

block1l:
const int captured = 10;

Stack

blockl = ~{

shared += captured;
Ir?
block?2 [blockl copyl;
block3 = [blockl copyl;

Function()

/AMay Produce Multiple Copies/\

__block int shared;

int captured = 10; block2:
const int captured

blockl:

const int captured = 10; block3:

const int captured

Stack

blockl = ~{

shared += captured;
Ir?
block?2 [blockl copyl;
block3 = [blockl copyl;

Function()

Avoid Copies

__block int shared;

int captured = 10; block2:
const int captured = 10;

block1l:
const int captured = 10;

Stack

blockl = ~{
shared += captured;
}i

block?2 [blockl copyl;
block3 [blockl copyl;

Function()

Bump Retain Count

__block int shared;

int captured = 10; block2 & block3:
const int captured = 10;

block1l:
const int captured = 10;

Stack

blockl = ~{
shared += captured;
}i

block?2 [blockl copyl;
block3 [blockl copyl;

Function()

block2 / block3 Finish First

__block int shared;

int captured = 10; block2 & block3:
const int captured = 10;

block1l:
const int captured = 10;

Stack

blockl = ~{

shared += captured;
Ir?
block?2 [blockl copyl;
block3 = [blockl copyl;

Function()

block2 / block3 Finish First

__block int shared;

int captured = 10;

block1l:
const int captured = 10;

Stack

blockl = ~{

shared += captured;
Ir?
block?2 [blockl copyl;
block3 = [blockl copyl;

Function()

Function()/block1 Finishes First

__block int shared;

int captured = 10; block2 & block3:
const int captured = 10;

block1l:
const int captured = 10;

Stack

blockl = ~{

shared += captured;
Ir?
block?2 [blockl copyl;
block3 = [blockl copyl;

Function()

Function()/block1 Finishes First

__block int shared;

block2 & block3:
const int captured = 10;

Stack

blockl = ~{

shared += captured;
Ir?
block?2 [blockl copyl;
block3 = [blockl copyl;

Function()

Grand Central Dispatch

Shiva Bhattacharjee
(@] (=N ON)

Grand Central Dispatch

* Threading is hard

* Using GCD makes it simple and fun
* No explicit thread management

* Extremely efficient under the hood
* GCD and Blocks are a powerful duo

Grand Central Dispatch

Keeping your app responsive

All hall libdispatch

Can't wait to use GCD in my App

GCD is awesome!

GCD and Blocks rule!

| can't believe it's not Threads!

Hacking our App live to use GCD

You had me at 'Hello World

GCD is my copilot

Can't wait to use GCD In my App

GCD FTW |

Shiva Bhattacharjee

Keeping Your App Responsive

* Do not block the main thread
* Move work to another thread
* Update Ul back on main thread

GCD

Keeping Your App Responsive

— (void)addTweetWithMsg: (NSString*)msg url: (NSURLx)url {
// Controller UI callback on main thread
DTweet xtw = [[DTweet alloc] initWithMsg:msg];
[tweets addTweet:tw display:YES];
dispatch_async(image_queue, "~{
tw.img = [imageCache getImgFromURL:url];
dispatch_async(main_queue, ~{
[tweets updateTweet:tw display:YES];
});
});

[tw releasel;

A updateTweet: }

Image

A{ getimgFromURL: }

Keeping Your App Responsive

* Do not block the main thread
* Move work to another thread
* Update Ul back on main thread

dispatch_async()

GCD Queues

Daniel Steffen
Core OS

GCD Queues

* Lightweight list of blocks

* Enqueue/dequeue is FIFO

* Enqueue with dispatch_async()

* Dequeue by automatic thread or main thread

Main Queue

Main Queue

* Executes blocks one at a time on main thread
* Cooperates with the UIKit main run loop
* dispatch_get_main_queue()

Main Queue

- (void)addTweetWithMsg: (NSStringx)msg url: (NSURL*x)url {
// Controller UI callback on main thread
DTweet *tw = [[DTweet alloc] initWithMsg:msg];
[tweets addTweet:tw display:YES];
tw.img = [imageCache getImgFromURL:url];
[tweets updateTweet:tw display:YES];
[tw releasel];

Main Queue

(void)showTweetWithMsg: (NSStringx)msg url: (NSURLx)url {
// Controller networkIO callback on background thread
id d = [NSDictionary dictionaryWithObjectsAndKeys:
msg, @"msg", url, @"url", nill;

[self performSelectorOnMainThread:
@selector(updateTWDisplay:) withObject:d
waitUntilDone:NO];

(void)updateTWDisplay: (NSDictionaryx)d {
[self addTweetWithMsg: [d objectForKey:@"msg"]
url: [d objectForKey:@"url"]1;

Main Queue

(void) showTweetWithMsg: (NSStringx)msg url: (NSURL*x)url {
// Controller networkIO callback on background thread
ddsdatcliNSPyot {dnapgtdhichebnaayWithBbgédtsAddKeys:
msg, @"msg", url, @"'url", nill;

Iself performSelectorOnMainThread:
@selector(updateTWDisplay:) withObject:d
waitUntilDone:NO];

(void)updateTWDisplay: (NSDictionaryx)d {
[self addTweetWithMsg: [d objectForKey:@"msg"]
url: [d objectForKey:@"url"11;

Creating Your Own Queues

Creating Your Own Queues

* Execute blocks one at a time
* On automatic helper thread
* “Queue up” background work

Creating Your Own Queues

dispatch_queue_t queue;
queue = dispatch_queue_create("com.example.purpose", NULL);

dispatch_release(queue);

Creating Your Own Queues

But wait, there’s even more...

Queues Instead of Locks

* Enqueuing is thread-safe

* Execution is serial

* Protect access to shared data
* Queues are lightweight

Queues Instead of Locks

queue = dispatch_queue_create(“com.example.tweets”, NULL);

// Main Thread
dispatch_async(queue, ~{

[tweets removelLastTweet];

});

__block NSArray *a;
dispatch_sync(queue, ~{

a = [tweets copyTweets];

});

dispatch_release(queue);

// Background Thread

dispatch_async(queue, ~{
[tweets addTweet:tw];

});

Background Thread

A{ copyTweets } A{ addTweet: }

Dispatch
Queue

Managing Queue Lifetime

Managing Queue Lifetime

* Queues are reference counted
- dispatch_retain() / dispatch_release()
* GCD retains parameters to dispatch APl as necessary
* Ensure correct queue lifetime across asynchronous operations

Managing Queue Lifetime

- (void)asyncParseData: (NSData x)data
queue: (dispatch_queue_t)queue
block: (void (~)(id result))block {
dispatch_retain(queue);
dispatch_async(self.parse_queue, "{
id result = [self parseData:datal;
dispatch_async(queue, ~{
block(result);
});
dispatch_release(queue);

});

Managing Object Lifetime

* Ensure objects captured by blocks are valid when blocks are executed
* Objective-C objects are auto-retained/released
* Other objects must be retained by your code

 CFRetain() / CFRelease()

App Design with Queues

App Design with Queues

* One queue per task or subsystem

* Communicate with dispatch_async()
* Queues are lightweight and efficient
 Automatic thread recycling

App Design with Queues

Demo app tasks

1. Receive and parse network stream
2. Maintain message history

3. Fetch and cache images

4. Display user interface

App Design with Queues

dispatch_async(network_queue, ~{
NSData *d = [twitterStream receiveDatal];
DTweet xtw = [[DTweet alloc] initWithData:d];
dispatch_async(tweets_queue, ~{
[tweets addTweet:tw];
dispatch_async(main_queue, ~{
[viewController displayTweet:twl];
});
dispatch_async(image_queue, ~{
tw.img = [imageCache getImgFromURL:tw.url];
dispatch_async(main_queue, ~{
[viewController updateTweetDisplay:tw];
});
});
});

[tw releasel;

App Design with Queues
Pitfalls

* Avoid blocking per-subsystem queues

* Be careful when waiting
* Blocked worker threads consume resources

Dispatch

Queue

Responding to External Events

Responding to External Events
Dispatch sources

* Monitor external events
- Files, Network Sockets, Directories, Timers
* Event handlers can be delivered to any queue
* Use sources to replace polling or blocking API calls
* See session:
- Simplifying iPhone App Development with Grand Central Dispatch

Responding to External Events

dispatch_asyncénstwoekegtehandtér(network_source, ~{
NSData *d = [twitterStream receiveDatal;
DTweet xtw = [[DTweet alloc] initWithData:d];
dispatch_async(tweets_queue, ~{
[tweets addTweet:tw];
dispatch_async(main_queue, ~{
[viewController displayTweet:tw];
});
dispatch_async(image_queue, ~{
tw.img = [imageCache getImgFromURL:tw.url];
dispatch_async(main_queue, ~{
[viewController updateTweetDisplay:twl];
});
});
});
[tw releasel;

});

Where Do | Find GCD ?

Where Do | Find GCD ?

* GCD is part of libSystem.dylib
* Available to all apps

#include <dispatch/dispatch.h>

* Open Source

- http://libdispatch.macosforge.org/
- libdispatch-dev@lists.macosforge.org

More Information

Michael Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
Concurrency Programming Guide
http://developer.apple.com

Open Source
Mac OS Forge > libdispatch
http://libdispatch.macosforge.org

Apple Developer Forums
http://devforums.apple.com

Related Sessions

Simplifying iPhone App Development with Grand Central Dispatch

Mission
Friday 10:15AM

Working Effectively with Objective-C on iPhone OS

Pacific Heights
Wednesday 9:00AM

Advanced Obijective-C and Garbage Collection Techniques

Pacific Heights
Friday 11:30AM

Labs

Objective-C and Garbage Collection Lab

Application Frameworks Lab B
Wednesday 2:00PM

Grand Central Dispatch Lab

Core OS Lab A
Wednesday 4:30PM

Grand Central Dispatch Lab

Core OS Lab A
Thursday 9:00AM

Grand Central Dispatch Lab

Core OS Lab A
Friday 11:30AM

& WWDCI0

