«

Network Apps for iPhone OS

Part 2

Quinn “The Eskimo!”
Developer Technical Support

“The difference between theory and
practice is a lot greater in practice than

it is in theory.”

Brian Bechtel

Practical Matters

* Asynchrony
* Debugging

* Common anti-patterns mistakes

Common
Mistakes

Debugging

Asynchrony

L

Asynchrony

)

Asynchrony

* The basics
* Run loops
* State management

L

Asynchrony

)

Asynchrony

* The basics
* Run loops
* State management

Synchronous vs Asynchronous

- (void)start { (void)start {
[self runRequestl]; [self startRequestl];
[self processResultsl];
[self runRequest2]; (void) requestlDone {
[self processResults2]; [self processResultsl];
[self runRequest3]; [self startRequest2];
[self processResults3];
(void) request2Done {
[self processResults2];
[self startRequest3];

(void) request3Done {
[self processResults3];

Synchronous vs Asynchronous

- (void)start { (void)start {
[self runRequestl]; [self startRequestl];
[self processResultsl];
[self runRequest2]; (void) requesti1Done {
[self processResults2]; [self processResultsl];
[self runRequest3]; [self startRequest2];
[self processResults3];
(void) request2Done {
[self processResults2];
[self startRequest3];

(void) request3Done {
[self processResults3];

Why Asynchronous?

Synchronous + Main Thread = Death

Recognize a Watchdog Crash
Look for “ate bad food”

Exception Type: 00000020
Exception Codes: 0x8badf0od
Highlighted Thread: 0

Documentation:

TN2151 Understanding and Analyzing iPhone OS Application Crash Reports
http://developer.apple.com/iphone/library/technotes/tn2008/tn2151.html

See Session:
Understanding Crash Reports on iPhone OS

Watchdog and Synchronous Networking

Operation Approximate Timeout*

Watchdog 20 seconds
DNS 30 seconds
TCP Connection 75 seconds

NSURLConnection 60 seconds

*Default timeouts; subject to change

Synchronous + Main Thread = Death

Hidden Synchronous Networking

« Utility methods
—initWithContentsOfURL:
+stringWithContentsOfURL:

* DNS

gethostbyname

gethostbyaddr
NSHost (Mac OS X)

+sendSynchronousRequest: returningResponse:error:
* Synthetic synchronous

Synthetic Synchronous

* Call an asynchronous API
» Wait for it to complete
- Typically running the run loop

[self startRequestl];
while (! [self isFinished]) {
[self wait];

}

[self processResultsl];

* Helpful in some circumstances
* Not a miracle cure

Attaining Asynchrony

Threads Threads Are Evil™

GCD The Future™

Runloop Recommended by nine out of ten Quinns™

iIPhone OS Networking

Foundation

CFNetwork

Darwin Foundation

Attaining Asynchrony

Threads Threads Are Evil™

GCD The Future™

Runloop Recommended by nine out of ten Quinns™

Why Are Threads Evil?

* Locking

* Cancellation
* Timeouts

* Bidirectional
* Resource use

NSOperation

* Encapsulates asynchrony
* Mix and match CPU and I/O operations

= Standard for CPU tasks
= Concurrent for network tasks

* Concurrent operations tricky
* LinkedlmageFletcher

Hidden Threads

* NSOperation
- Even concurrent operations
*GCD

—performSelectorInBackground:withObject:

Asynchrony

* The basics
* Run loops
* State management

Asynchrony

)

Run Loop Factoids

* One run loop per thread
* Event dispatch mechanism
* Event sources
- Each with associated callback
* Run loop must be run explicitly
= Monitors event sources
- Calls callbacks
* UIKit runs main thread’s run loop

Run Loops

Main Thread Run Loop

Secondary Thread Run Loop

Secondary Thread Run Loop

...and so on

Run Loops

Main Thread

Thread

Run Loops

VAN

Source 1

Source 2

Source 3

Run Loops

EEEE——
_ “%.,h
.

%\\

Thread < Run Loop /

""“37‘“1‘_-,_.: — e

]

Timer Source Stream Source Conn Source

| | |

NSTimer NSStream NSURLConn

Explicit Scheduling

NSInputStream * stream;

[netService getInputStream:&stream outputStream:NULL];

[stream scheduleInRunLoop: [NSRunLoop currentRunLoop]
forMode:NSDefaultRunLoopMode] ;

[stream setDelegate:self];

[stream openl];

—(void)stream: (NSStream *)stream handleEvent: (NSStreamEvent)e
{
}

Implicit Scheduling

NSURLConnection * conn;

conn = [NSURLConnection connectionWithRequest: req
delegate:self];

— (void)connection: (NSURLConnection *)conn
didReceiveResponse: (NSURLResponse *)resp

{

b

Making It Explicit

NSURLConnection * conn;

conn = [[NSURLConnection alloc] initWithRequest:req
delegate:self
startImmediately:NO];

[conn scheduleInRunLoop: [NSRunLoop currentRunLoop]
forMode:NSDefaultRunLoopMode];

[conn start];

— (void)connection: (NSURLConnection *)conn
didReceiveResponse: (NSURLResponse x)resp

{
by

Run Loop Modes

* Event sources added in a mode
* Run loop runs in a mode

= Monitors event sources in that mode
- Other event sources ignored

Run Loop Modes

e
e a"”"“»“m,

%\\

Thread < Run Loop /

-

""“37‘“1‘_-,_.: — e

]

Timer Source Stream Source Conn Source

| | |

NSTimer NSStream NSURLConn

Run Loop Modes

Thread

.
%“o

_—

Default

Tracking

Timer Source

Stream Source

Conn Source

NSTimer

NSStream

NSURLConn

Run Loop Modes

e
e a"”"“»“m,

%\\

Thread < Run Loop /

-

""“37‘“1‘_-,_.: — e

.

Default Tracking

/SN T~

Timer Source Stream Source Conn Source

NSTimer NSStream NSURLConn

Run Loop Modes

e
e a"”"“»“m,

%\\

Thread < Run Loop /

-

""“37‘“1‘_-,_.: — e

S

Default Tracking

—

Timer Source Stream Source Conn Source

NSTimer NSStream NSURLConn

Why Run Loop Modes?

* |t's all about recursion
* Synthetic synchronous

= To run async APIs sync
= Schedule in custom mode
= Run in custom mode

* Ul tracking

Run Loop Modes

Thread

.
%“o

_—

Default

Tracking

Timer Source

Stream Source

Conn Source

NSTimer

NSStream

NSURLConn

My Mode

Run Loop Modes

Thread

" Runloop

-

Default

Tracking

s

FD Source

Timer Source

Stream Source

Conn Source

CFFileDesc

NSTimer

NSStream

NSURLConn

Run Loop Modes

Thread Run Loop

e 4
-

N
N
~

.
.
~

My Mode Default Tracking

/

FD Source Timer Source Stream Source Conn Source

CFFileDesc NSTimer NSStream NSURLConn

Ul Tracking

* Tracking scroll view

» Specific form of synthetic synchronous
- Needs touch events, but not others
-UITrackingRunLoopMode

* Common modes

*NSRunLoopCommonModes
- Meta mode when scheduling
- Default, tracking mode, and so on

* Context issues

Run Loop Tips

* No create or destroy
* Invalidate your sources
* Avoid cross thread scheduling
* No recursion in default mode on main thread
* Serialization implies latency
- Single secondary networking thread
* Beware hidden threads

Beware Hidden Threads

[self performSelectorInBackground:@selector(doStuff) withObject:nil];

- (void)doStuff
{
. do stuff ...
(void) [NSTimer scheduledTimerWithTimeInterval:1.0
target:self
selector:@selector(doMoreStuff:)
userInfo:nil
repeats:NO

Asynchrony

* The basics

* Run loops
* State management

Asynchrony

)

State Management, Unsolicited

State Management, Solicited

Apple

Yy \
‘ www.apple.com/ \ {)

State Management Tips

* Asynchrony implies state management
* Don't fear it, plan for it!

* Hide irrelevant states

* Model notifications

Asynchrony

* The basics
* Run loops
* State management

Debugging

Don’t Write Bugs

Don’t Write Bugs

* Design

* Compiler warnings
» Static analyzer

* Asserts

* Zombies

Debugging

Debugging

* Logging
 Packet trace
* Simulator

Debugging

Debugging

* Logging
 Packet trace
* Simulator

Travel in Time & Space

* Time
- Non-deterministic
- Real time
- Replay time
* Space
- In-the-field debugging

Logging Done Right

* Present but disabled
* User accessible
* Persistent
- Limit your disk usage
* Easy to retrieve
* Apple System Log (Mac OS X)

Debugging

Debugging

* Logging
» Packet trace
* Simulator

Packet Trace Benefits

* Divide and conquer
* Comparison
* Verification
- “Leaks” for the network
* Turn off TLS

Documentation

QA1176 Getting a Packet Trace
http://developer.apple.com/mac/library/qa/qa2001/qa1176.html

Debugging

Debugging

* Logging
 Packet trace
» Simulator

The Simulator

* Improved with 3.0

* Mac OS X debugging tools
= DTrace!

* Uses the Mac OS X kernel

= Obvious limitations

Documentation
DTrace
http://www.sun.com/bigadmin/content/dtrace/index.jsp

Debugging

* Don't write bugs

* Logging
Debugging Packet trace
 Simulator

Asynchrony

Common
Mistakes

Debugging

Asynchrony

Common
Mistakes

Debugging

Asynchrony

Common Mistakes

* Main thread synchronous
* Threads

* Interface lifecycle

* Reachability

* Interface type

* Timeouts

Common
Mistakes

Debugging

Asynchrony

Common Mistakes

* Main thread synchronous
* Threads

* Interface lifecycle

* Reachability

* Interface type

* Timeouts

Common
Mistakes

Debugging

Asynchrony

Common Mistakes

* Main thread synchronous
* Threads

* Interface lifecycle

* Reachability

* Interface type

* Timeouts

“Networking is hard enough without
having to deal with threads as well.”

Common
Mistakes

Debugging

Asynchrony

Common Mistakes

* Main thread synchronous
* Threads

* Interface lifecycle

* Reachability

* Interface type

* Timeouts

Interface

Interface Lifecycle

Goes Up Goes Down

Bluetooth

Bonjour resolve On idle

CFSocketStream connect, On idle, unless held up by
other services other service

Complex

Wi-Fi Interface Lifecycle

* Comes up

= Known networks

- “Ask to Join Networks”
= UIRequiresPersistentWiFi

* Goes down
- 30 minutes after Wi-Fi app
- Screen lock
- System sleep

* Captive networks

Common
Mistakes

Debugging

Asynchrony

Common Mistakes

* Main thread synchronous
* Threads

* Interface lifecycle

* Reachability

* Interface type

* Timeouts

Preflight Guide your Ul

Interface type Trigger retries

Interface specific connectivity

Reachability Tips

* Asynchronous
* Reachability sample
- 2.0 or later

Sample Code

Reachability
http://developer.apple.com/iphone/library/samplecode/Reachability

Common
Mistakes

Debugging

Asynchrony

Common Mistakes

* Main thread synchronous
* Threads

* Interface lifecycle

* Reachability

* Interface type

* Timeouts

“What type of interface am | on?”

J Random Developer

“What type of cellular am | on?”

J Random Developer

“What speed is this network?”

J Random Developer

“If you need to know the speed,
measure it.”

Common
Mistakes

Debugging

Asynchrony

Common Mistakes

* Main thread synchronous
* Threads

* Interface lifecycle

* Reachability

* Interface type

* Timeouts

Timeouts

* Don't lower the timeouts

- 60 second range
- Critical on WWAN

» Cancellation Ul for solicited operations
* Let unsolicited operations time out

Common
Mistakes

Debugging

Asynchrony

Common Mistakes

* Main thread synchronous
* Threads

* Interface lifecycle

* Reachability

* Interface type

* Timeouts

Common
Mistakes

Debugging

Asynchrony

Summary

* Networking is still hard

* Good architecture is the key
* Understand asynchrony

* Plan for debugging

* Avoid the common mistakes

More Information

Quinn “The Eskimo!”

Developer Technical Support
eskimo1@apple.com

Paul Danbold

Dogsbody Evangelist
danbold@apple.com

Documentation

Networking
http://developer.apple.com/networking/

Apple Developer Forums
http://devforums.apple.com

More Information

Sample Code

SimpleNetworkStreams, SimpleURLConnections, AdvancedURLConnections, SimpleFTPSample,

Reachability, WiTap, BonjourWeb
iPhone Dev Center > iPhone Reference Library > Sample Code

Sample Code

CocoaHTTPServer, CocoakEcho, UDPEcho, SimplePing
Mac Dev Center > Mac OS X Reference Library > Sample Code

Sample Code

LinkedimageFetcher
WWDC attendee site

Related Sessions

Network Apps for iPhone OS, Part 1

Pacific Heights
Wednesday 2:00PM

Core OS Networking

Pacific Heights
Tuesday 9:00AM

Simplifying Networking Using Bonjour

Nob Hill
Wednesday 10:15AM

Creating Secure Applications

Russian Hill
Tuesday 4:30PM

Understanding Crash Reports on iPhone OS

Nob Hill
Friday 9:00AM

Labs

Networking Lab

Core OS Lab B
Thursday 9:00AM

Networking Lab

Core OS Lab B
Friday 9:00AM

iPhone OS and Mac OS X Security Lab

Core OS Lab A
Thursday 2:00PM

& WWDCI0

