
Daniel Steffen
Core OS

Simplifying iPhone App Development
with Grand Central Dispatch

2

What You’ll Learn

• Technology overview
• Simplifying multithreaded code
•Design patterns
•GCD objects in depth

3

Technology Overview

Application

Grand Central Dispatch

Kernel

UIKit

libSystem

Blocks

4

Technology Overview

•GCD is part of libSystem.dylib
•Available to all Apps

■ #include <dispatch/dispatch.h>
•GCD API has block-based and function-based variants

■ Focus today on block-based API

5

Grand Central Dispatch

• Blocks
■ dispatch_async()

•Queues
■ Lightweight list of blocks
■ Enqueue/dequeue is FIFO

• dispatch_get_main_queue()
■ Main thread/main runloop

• dispatch_queue_create()
■ Automatic helper thread

Introduction to GCD recap

6

Automatic Thread

Main Thread

 ^{ … }

Dispatch
Queue

Main
Queue

7

Simplifying Your Code with GCD

8

Simplifying Your Code with GCD
GCD advantages

• Efficiency
■ More CPU cycles available for your code

• Better metaphors
■ Blocks are easy to use
■ Queues are inherently producer/consumer

• Systemwide perspective
■ Only the OS can balance unrelated subsystems

GCD advantages

9

Simplifying Your Code with GCD

• Existing threading and synchronization primitives are 100% compatible
•GCD threads are wrapped POSIX threads

■ Do not cancel, exit, kill, join, or detach GCD threads

•GCD reuses threads
■ Restore any per-thread state changed within a block

Compatibility

10

Threads

11

Threads

•Why use threads on iPhone?
•App responsiveness

■ Free up main thread

•NSThread, pthread_create()
•Non-trivial cost

12

Threads

- (void)doTimeConsumingOperation:(id)operation {
 id t = [[NSThread alloc] initWithTarget:self
 selector:@selector(runHelperThread:)
 object:operation];
 [t run];
 [t autorelease];
}
- (void)runHelperThread:(id)operation {
 NSAutoreleasePool *p = [NSAutoreleasePool new];
 [operation doOperation];
 [p release];
}

13

Threads

- (void)doTimeConsumingOperation:(id)operation {
 dispatch_queue_t queue;
 queue = dispatch_queue_create("com.example.operation", NULL);
 dispatch_async(queue, ^{
 [operation doOperation];
 });
 dispatch_release(queue);
}

14

GCD Advantages
Convenient

• Less boilerplate
•No explicit thread management

15

GCD Advantages
Efficient

• Thread recycling
•Deferred based on availability

16

Locking

17

Locking

• Enforce mutually exclusive access to critical sections
• Serialize access to shared state between threads
• Ensure data integrity

18

Locking

- (void)updateImageCacheWithImg:(UIImage*)img {
 NSLock *l = self.imageCacheLock;
 [l lock];
 // Critical section
 if ([self.imageCache containsObj:img]) {
 [l unlock]; // Don't forget to unlock
 return;
 }
 [self.imageCache addObj:img];
 [l unlock];
}

19

Locking

- (void)updateImageCacheWithImg:(NSImage*)img {
 dispatch_queue_t queue = self.imageCacheQueue;
 dispatch_sync(queue, ^{
 // Critical section
 if ([self.imageCache containsObj:img]) {
 return;
 }
 [self.imageCache addObj:img];
 });
}

20

But wait, there’s even more…
Locking

21

Locking
Deferred critical section

- (void)updateImageCacheWithImg:(NSImage*)img {
 dispatch_queue_t queue = self.imageCacheQueue;
 dispatch_async(queue, ^{
 // Critical section
 if ([self.imageCache containsObj:img]) {
 return;
 }
 [self.imageCache addObj:img];
 });
}

22

GCD Advantages
Safe

TextCannot return without unlocking

23

More expressive
GCD Advantages

TextDeferrable critical sections

24

GCD Advantages
Efficient

TextWait-free synchronization

25

Inter-Thread Communication

26

Inter-Thread Communication

• Send messages between threads
•Wake up background threads
• Transfer data between threads

27

Inter-Thread Communication

– performSelectorOnMainThread:withObject:waitUntilDone:

– performSelector:onThread:withObject:waitUntilDone:

– performSelector:withObject:afterDelay:

– performSelectorInBackground:withObject:

Performing selectors

28

Inter-Thread Communication

// waitUntilDone: NO
dispatch_async(queue, ^{
 [myObject doSomething:foo withData:bar];
});

// waitUntilDone: YES
dispatch_sync(queue, ^{
 [myObject doSomething:foo withData:bar];
});

performSelector:onThread:withObject:waitUntilDone:

29

Inter-Thread Communication

dispatch_time_t delay;
delay = dispatch_time(DISPATCH_TIME_NOW, 50000 /* 50µs */);

dispatch_after(delay, queue, ^{
 [myObject doSomething:foo withData:bar];
});

performSelector:withObject:afterDelay:

30

Inter-Thread Communication

dispatch_queue_t queue = dispatch_get_global_queue(0, 0);

dispatch_async(queue, ^{
 [myObject doSomething:foo withData:bar];
});

performSelectorInBackground:withObject:

31

GCD Advantages

• Blocks
■ Can call any selector and multiple selectors
■ No need to pack and unpack arguments

Flexible

32

GCD Advantages

•Queues
■ Helper threads created/woken up
as needed

Efficient

33

Global Queues

34

Global Queues

• Enqueue/dequeue is FIFO
• Concurrent execution

■ Non-FIFO completion order

• dispatch_get_global_queue(priority, 0)

35

C = ^{ ... };B = ^{ ... };A = ^{ ... };

Automatic Thread

Your Thread

Automatic Thread

Global
Dispatch
Queue

36

Global Queues

•Global queues map GCD activity to real threads
• Priority bands

■ DISPATCH_QUEUE_PRIORITY_HIGH
■ DISPATCH_QUEUE_PRIORITY_DEFAULT
■ DISPATCH_QUEUE_PRIORITY_LOW

37

GCD Design Patterns

Shiva Bhattacharjee
Core OS

38

GCD Design Patterns

• Easy communication
■ dispatch_async()

•Queues are inherently producer/consumer
■ Blocks carry data between tasks

•Queues are lightweight and efficient
■ Automatic thread creation and recycling

One queue per task or subsystem

39

GCD Design Patterns

• Similar approach to UI
event-driven programming
•Don’t poll or block a thread
waiting for external events
■ Waiting on a socket
■ Polling for directory changes

•Dispatch sources
■ Monitor external OS events
■ Respond on-demand

Low-level event notifications

40

Dispatch Sources

41

Dispatch Sources

• Simple unified way to monitor low-level events
■ dispatch_source_create()

• Event handlers delivered to any queue
■ Monitoring and event handling is decoupled

• Event handler is not re-entrant
• Suspend and resume at will

■ Sources are created suspended, initial resume is required

42

int socket; // file-descriptor, set to be non-blocking

dispatch_source_t source = dispatch_source_create(
 DISPATCH_SOURCE_TYPE_READ, socket, 0, queue);

dispatch_source_set_event_handler(source, ^{
 size = read(socket, buffer, sizeof(buffer));
 if (size == -1 && errno == EAGAIN) {
 // non-blocking I/O returned no data
 // will get called again when more data available
 }
});

dispatch_resume(source);

Dispatch Sources
Creating a read source

43

 Automatic ThreadMain Thread

Read Source

UI Update
Dispatch
Queue

Main
Queue

44

Dispatch Sources

• Coalesce event data in background
■ While handling events or when source suspended
■ dispatch_source_get_data()

•High performance
■ Data coalesced with atomic operations
■ No ephemeral heap allocations

•Monitor all event types supported by BSD kqueue

45

Dispatch Sources
Source types and event data

Type Data Handle

DISPATCH_SOURCE_TYPE_READ count int (fd)

DISPATCH_SOURCE_TYPE_WRITE count int (fd)

DISPATCH_SOURCE_TYPE_VNODE bitmask int (fd)

DISPATCH_SOURCE_TYPE_TIMER count

DISPATCH_SOURCE_TYPE_DATA_ADD count

DISPATCH_SOURCE_TYPE_DATA_OR bitmask

46

Main Thread

Interval Timer

Main
Queue

4123

dispatch_resume()dispatch_suspend()

47

Source Cancellation

48

Source Cancellation

• Stops event delivery asynchronously
■ Does not interrupt event handler

•Optional cancellation handler
■ Required for filedescriptor-based sources
■ Opportunity to deallocate resources
■ Delivered only once

• Suspension defers cancellation handler

49

Canceling a read source
Source Cancellation

dispatch_source_t source = dispatch_source_create(
 DISPATCH_SOURCE_TYPE_READ, socket, 0, queue);
dispatch_source_set_event_handler(source, ^{
 if (dispatch_source_get_data(source) == 0 /* EOF */) {
 dispatch_source_cancel(source);
 return;
 }
 size = read(socket, buffer, sizeof(buffer));
});
dispatch_source_set_cancel_handler(source, ^{
 close(socket);
});
dispatch_resume(source);

50

Target Queues

51

Target Queues

• Target queue passed at creation time
• Changeable

■ dispatch_set_target_queue()

Sources

52

Queues
Target Queues

•Global queues map GCD activity to real threads
■ Ultimate location of block execution

• Can change target queue of queues you create
■ Specifies where blocks execute

•Default target queue
■ Global queue with DISPATCH_QUEUE_PRIORITY_DEFAULT

53

Target Queues

dispatch_queue_t queue, target;

queue = dispatch_queue_create(“com.example.test”, NULL);
target = dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_LOW, 0);

dispatch_set_target_queue(queue, target);

54

Low
Priority
Queue

High
Priority
Queue

Default
Priority
Queue

Main
Queue

Source A Source B

Queue

55

Target Queues

•Arbitrary hierarchies are supported
■ Creating loops is undefined

• Block ordering between different subqueues
■ Many blocks on subqueue ⇔ one block on target queue

56

Default
Priority
Queue

Queue
A

Queue
B

Queue
C

57

Target Queues

•Why stack your queues?
• For example

■ One subqueue per access type to global data structure
■ Can independently control each access type

58

GCD Objects

59

Queues
dispatch_queue_t

dispatch_queue_create
dispatch_queue_get_label
dispatch_get_main_queue
dispatch_get_global_queue
dispatch_get_current_queue
dispatch_main
dispatch_async
dispatch_async_f
dispatch_sync
dispatch_sync_f
dispatch_after
dispatch_after_f
dispatch_apply
dispatch_apply_f

Time
dispatch_time_t

dispatch_time
dispatch_walltime

Once
dispatch_once_t

dispatch_once
dispatch_once_f

Sources
dispatch_source_t

dispatch_source_create
dispatch_source_cancel
dispatch_source_testcancel
dispatch_source_merge_data
dispatch_source_get_handle
dispatch_source_get_mask
dispatch_source_get_data
dispatch_source_set_timer
dispatch_source_set_event_handler
dispatch_source_set_event_handler_f
dispatch_source_set_cancel_handler
dispatch_source_set_cancel_handler_f

Objects
dispatch_object_t

dispatch_retain
dispatch_release
dispatch_suspend
dispatch_resume
dispatch_debug
dispatch_get_context
dispatch_set_context
dispatch_set_finalizer_f
dispatch_set_target_queue

Groups
dispatch_group_t

dispatch_group_create
dispatch_group_enter
dispatch_group_leave
dispatch_group_wait
dispatch_group_notify
dispatch_group_notify_f
dispatch_group_async
dispatch_group_async_f

Semaphores
dispatch_semaphore_t

dispatch_semaphore_create
dispatch_semaphore_signal
dispatch_semaphore_wait

Not Objects

60

GCD Objects

•Dispatch objects are reference counted
■ dispatch_retain(object);
■ dispatch_release(object);

•GCD retains parameters to dispatch API as needed

61

Managing object lifetime

GCD Objects

• Ensure objects captured by blocks are valid when blocks are executed
■ Objects must be retained and released around asynchronous operations

•Objective-C objects captured by blocks are auto-retained and
auto-released
•Other objects captured by blocks must be retained by your code

■ CFRetain()/CFRelease()
■ dispatch_retain()/dispatch_release()

Managing object lifetime

62

Suspend and resume
GCD Objects

• Suspend and resume only affects queues and sources you create
■ Sources are created suspended

• Suspension is asynchronous
■ Takes effect between blocks

• Your queues can predictably suspend objects that target them

63

Application contexts
GCD Objects

•Applications can attach custom data to GCD objects
■ dispatch_set_context()/dispatch_get_context()

•Optional finalizer callback
■ dispatch_set_finalizer_f()
■ Allows attached context to be freed with object
■ Called on the target queue of the object

64

More Information
Michael Jurewitz
Developer Tools and Performance Evangelist
jurewitz@apple.com

Documentation
Concurrency Programming Guide
http://developer.apple.com

Open Source
Mac OS Forge > libdispatch
http://libdispatch.macosforge.org

Apple Developer Forums
http://devforums.apple.com

65

Introducing Blocks and Grand Central Dispatch on iPhone Russian Hill
Wednesday 11:30AM

Related Session

Introducing Blocks and Grand Central Dispatch on iPhone (R) Pacific Heights
Friday 2:00PM

66

Lab

Grand Central Dispatch Lab Core OS Lab A
Friday 11:30AM

67

68

69

