g

Advanced Memory
Analysis with Instruments

Daniel Delwood
Performance Tools Engineer

Memory Analysis m

What's the issue? I —

* Memory is critical to performance

* Limited resource

- Especially on iPhone OS

Memory Analysis
When to use Instruments

» Understand your app’s memory usage
* Reduce wasted memory

* Diagnose memory related crashes

* Be proactive about usage

= Avoid termination
- Better multitasking citizen

Memory Analysis

Eliminating
Leaks

-
S0

Eliminating Leaks
What constitutes a ‘leak’?

* Allocated memory that can no longer be reached

* No more pointers to it

- (id)init {
if (self = [super init]) {
name = [[NSString alloc] initWithFormat:...];
¥

return self;

MyObject
NSString *name;

}

NSString @

Eliminating Leaks
What constitutes a ‘leak’?

* Allocated memory that can no longer be reached

* No more pointers to it

- (void)dealloc {

l [super axdlloc];
¥

NSString @ missing: [name release];

Eliminating Leaks
How do you find them?

Eliminating Leaks
Leaks instrument

* |dentifies leaked memory

« Conservative memory analysis

* Misses some, but reliable

Stacks

=

Global Data

Heap Objects

Eliminating Leaks
Found the leaked object! Now what?

T
i

A ﬂ
‘ g

Eliminating Leaks
Allocations instrument

* Tracks all ‘malloc’ heap allocations
* C, Objective-C, C++
» Malloc/Free/Retain/Release/Autorelease

* Type statistics

* Call Trees
* |ncurs overhead

Finding/Fixing Leaks Demo

Daniel Delwood
Performance Tools Engineer

Eliminating Leaks
Can't just look at the allocation point!

» Allocation backtrace isn’t the whole story
* Framework-created objects can be leaked by app code
* Focus on a single instance to investigate

Leaked Object # Address
NSCFString 95 < multiple >
NSCFString 0x6e63390 -
NSCFString 0x6e620f0
NSCFString 0x6e61fc0

Memory Management Programming Guide for Cocoa
http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/MemoryMgmt/

Memory Analysis

- -
ce=—e—@

Abandoned
Memory

Abandoned Memory
What is it?

* Leaked memory

- “Allocated memory that can no longer be reached”
- Inaccessible—no more pointers to it

* Abandoned Memory

- “Accessible allocated memory that is never used again”
- Wasted or forgotten memory
» Occurs also when garbage collected

Abandoned Memory

Examples

* Extraneous information

— (void)updateBoardWithMove: (TicTacToeMovex)move {

[_previousGameStates addObject: [self currentGameStatel];

Abandoned Memory

Examples

* Extraneous information

NSMutableArray *_previousGameStates;

(N

Useless state (abandoned) Useful undo state

Abandoned Memory

Examples

* Faulty cache

- (NSImagex)_imageInDirectory: (NSURLx)url index: (NSUInteger)index {
NSImage ximage = [_imageCache objectForKey: [NSString stringWithFormat:@"%@, %lu", url, index]];
if ('image) {
NSURL ximageURL = [[[NSFileManager defaultManager] contentsOfDirectoryAtURL:url ...
image = [[[NSImage alloc] initWithContentsOfURL:imageURL] autoreleasel;

[_imageCache setObject:image forKey:[NSString stringWithFormat:@"%d, %lu", url, index]l];

}

return image;

Abandoned Memory

Examples

%

2000

R

QRN
X
N

N
N
SIS

* Faulty cache

- (NSImagex)_imageInDirectory: (NSURLx)url index: (NSUInteger)index {
NSImage ximage = [_imageCache objectForKey: [NSString stringWithFormat:@"%@, %lu", url, index]];
if ('image) {
NSURL ximageURL = [[[NSFileManager defaultManager] contentsOfDirectoryAtURL:url ...
image = [[[NSImage alloc] initWithContentsOfURL:imageURL] autoreleasel];
[_imageCache setObject:image forKey:[NSString stringWithFormat:@"%d, %lu", url, index]l];
b

return image;

Abandoned Memory

Examples

* Faulty cache

[NSString stringWithFormat:@"%@, %lu", url, index]

[NSString stringWithFormat:@"%d, %lu", url, index]

@"file://localhost/Library/Desktop%2@Pictures/Abstract/, 2" # @"1484592, 2"

Abandoned Memory

How to detect it

* Basic principle

- “Memory should not grow without bound when repeating
an operation that returns the user to the same state”

* For example:

- Pushing and popping a view controller
- Opening and closing a window
- Changing app preferences back and forth

Abandoned Memory

How to detect it

1. Get your application into a starting state
2. Perform an action and return to that state
3. Take a snapshot of the heap

W+ Allocations ici Heapshots % ~ All Heapshots
Heapshot Analysis Snapshot Heap Growth # Still Live Timestamp
Mark Heap - Baseline - 7.18 MB 2571 00:02.399
Heapshot 1 3.00 MB 1406 00:04.414
ﬂ? Heapshot 2 0 Bytes 0 00:06.742
9

Character set encodin...

I
‘ Chapter Il A Disapp... Heapshot 3 0 Bytes 0 00:10.742
A Heapshot 4 0 Bytes 0 00:12.294

Chapter Xill The Fell... . S — Heapshot 5 10.63 KB 225 00:25.847
. Heapshot 6 48 Bytes 1 00:31.99%9

% Book the First--Recall... Allocation Lifespan

«
i Chapter XXIIl Fire Rises .

Abandoned Memory Demo

Daniel Delwood
Performance Tools Engineer

Abandoned Memory
Heapshot details

Baseline

Abandoned Memory
Heapshot details

Baseline #1

Abandoned Memory

Heapshot details

Baseline #1

Abandoned Memory

Heapshot details

Baseline #1

Memory Analysis

Messages to
Deallocated
Objects

7 7
cO—e=—e

Victor Hernandez
Performance Tools Engineer

Exception Type: EXC_BAD_ACCESS (SIGBUS)
Exception Codes: KERN_PROTECTION_FAILURE at 0x00000010

Crashed Thread: 0

Thread 0 Crashed:
0 libobjc.A.dylib 0x0000286¢ objc_msgSend + 16
Foundation 0x0001219¢c -[NSString stringByAppendingFormat:] + 84
Reader 0x000031d4 -[RootViewController tableView:cellForRowAtindexPath:] + 32
UIKit 0x0007e18c -[UlTableView _createPreparedCellForGlobalRow:withindexPath:] + 492
UIKit 0x0007ded8 -[UlTableView(UITableViewinternal) _createPreparedCellForGlobalRow:] + 28

UIKit 0x000530e2 -[UlTableView(_UlTableViewPrivate) _updateVisibleCellsNow:] + 930
UIKit 0x000514da -[UlTableView layoutSubviews] + 134

UIKit 0x0000f874 -[UIView(CALayerDelegate) _layoutSublayersOfLayer:] + 20
CoreFoundation 0x000277f8 -[NSObject(NSObject) performSelector:withObject:] + 16

Messages to Deallocated Objects
Over-released objects

[[NSString alloc] initWithFormat:...];

N5Siriag @

[string release];

[string stringByAppendingFormat:...];

Messages to Deallocated Objects
NSObject =» NSZombie

[[NSString alloc] initWithFormat:...];

NSString @

[string release];

[string stringByAppendingFormat:...];

Messages to Deallocated Objects
Detect them with Zombies template

Reader.app : &
Target Inspection Range View ibrary Search

Instruments Joooco P

b k«»' 1 Allocations i |
M ' Zombie Messaged

. o
An Objective-C message was sent to a deallocated
object (zombie) at address: 0x5e220d0.

'Q

Zombies Demo

Victor Hernandez
Performance Tools Engineer

“A received object is normally guaranteed to remain
valid within the method it was received in (exceptions
include multithreaded applications and some
Distributed Objects situations, although you must also

take care if you modify an object from which you
received another object).”

Memory Management Programming Guide for Cocoa
http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/MemoryMgmt/

Messages to Deallocated Objects
Zombies template

* Causes memory growth—use iPhone/iPad Simulator
* Not suitable to be used with Leaks
* Last objc message is not always to blame

Memory Analysis

Responding to
Memory Warnings

Responding to Memory Warnings
A fact of life on iPhoneOS

* When system needs memory, notifications go out

* Multitasking increases memory demands
* Respond or be terminated

- (void)didReceiveMemoryWarning {
ks

- (void)applicationDidReceiveMemoryWarning:
(UIApplication *)app {

BE]

e

-
£

a5

= 4
¢ s

(

Responding to Memory Warnings
Deciding what memory to free

* Based on resident, dirty pages
* Instruments helps you identify that memory

0xfb0000

protection: rw-

Responding to Memory Warnings
Deciding what memory to free

* Based on resident, dirty pages
* Instruments helps you identify that memory

0xf00000 0xfb0000

Resident memory

protection: rw-

Responding to Memory Warnings
Deciding what memory to free

* Based on resident, dirty pages
* Instruments helps you identify that memory

0xf00000 0xfb0000

dirty page

Resident memory

s SR Ty)
¥
fi)
lmlall 1
minly

tokyo.tiff)
protection: rw-

Responding to Memory Warnings
Watching your Virtual Memory

6ECT-SIVP-61€9
T-3IDN-INY
-9€TZ-¥S-0

I 14 18

Responding to Memory Warnings
VM Tracker instrument

* Takes snapshots of virtual memory
* Similar to vmmap
* More granular than Activity Monitor instrument
* For each region and each page:
* Categorizes by type
* [dentifies protection

* Reports resident, dirty state

Responding to Memory Warnings
Checking your efforts

* Proactively check your work
* Use simulator to manually trigger a memory warning
* Use VM Tracker to see your app respond

VM Tracker Demo

Victor Hernandez
Performance Tools Engineer

Memory Analysis

Using Autorelease
Properly

/- /-
CO=—0—®

Daniel Delwood
Performance Tools Engineer

Using Autorelease Properly
Memory high-water mark matters

* Use Allocations and VM Tracker graphs to identify spikes

Using Autorelease Properly
Memory high-water mark matters

* Use Allocations and VM Tracker graphs to identify spikes
* Be careful of autoreleased allocations in loops

could return a new autoreleased object every time

for (i = 0; i < database.lastEmployee.number; ol mm@d@@@@y

Person xemployee = [database emplo

if ([[tableView selectedRowIndexes] containsIndex:employee.groupID]) {
[[groupListsByID objectForKey: [NSNumber numberWithInt:groupID]] addObject:employeel;

returns autoreleased NSNumber

Using Autorelease Properly
Memory high-water mark matters

* Use Allocations and VM Tracker graphs to identify spikes
* Be careful of autoreleased allocations in loops
* No magic! —autorelease is just a delayed -release

2 NSObject Retain 00:07.447 0 Foundation ~-[NSCFArray insertObject:atindex:)
3 NSObject Release 00:07.447 0 mallocman -[MallocMan mallocThread:)

4 m_—-mmm_ ~[MallocMan mallocThread:]

5 NSObject Release 00:07.492 0 mallocman -[MallocMan mallocThread:]

6 NSObject Release 00:07.524 0 Foundation {\1'0AU~~ov-- :l['(‘ @:jf"v'n

Summary

* Memory is a limited resource
* Instruments helps you avoid wasting/mis-using memory
* Be proactive and profile your app

More Information

Michael Jurewitz
Developer Tools Evangelist
jurewitz@apple.com

Instruments Documentation
Instruments User Guide
Xcode documentation

Apple Developer Forums
http://devforums.apple.com

Related Sessions

What’s New in Instruments

Presidio
Wednesday 11:30AM

Advanced Performance Analysis with Instruments

Mission
Thursday 9:00AM

Performance Optimization on iPhone OS

Presidio
Thursday 2:00PM

Advanced Performance Optimization on iPhone OS, Part 1

Mission
Thursday 3:15PM

Advanced Performance Optimization on iPhone OS, Part 2

Mission
Friday 11:30AM

Automating User Interface Testing with Instruments

Marina
Wednesday 2:00PM

Labs

iPhone OS Performance Lab

Application Frameworks Lab B
Wednesday 9:00AM - 11:15AM

Mac OS X Performance Lab

Developer Tools Lab A
Tuesday 4:30 — 6:30PM

iPhone OS Performance Lab

Developer Tools Lab A
Thursday 4:30PM - 6:00PM

iPhone OS Performance Lab

Developer Tools Lab A
Friday 9:00AM - 11:15AM

Mac OS X Performance Lab

Application Frameworks Lab C
Friday 11:30AM — 1:00PM

& WWDCI0

