
Adding Multiplayer to Your Game

Nathan Taylor
iPhone Development Engineer

Game Center Techniques, Part 2
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What Is Game Center?

• Social gaming network
■ Built-in application
■ Framework
■ Online services

• Provides
■ Friend relationships
■ Leaderboards 
■ Achievements
■ Multiplayer
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• Brief overview of Game Center
• Quick look at Game Center Services
• In-depth discussion of multiplayer services

■ Authentication
■ Getting connected
■ Network communications
■ Player communications

What You’ll Learn

4



Account Management

Friends Management

Multiple Games

Game Center Overview

Game Center 
Services

      Game Center App Your Game

Other Frameworks
(UIKit, OpenGL, etc.)

GameKit
General MultiplayerGame Center Only 

Auto-Matching

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Authentication

Friends

Leaderboards

Achievements
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Auto-Matching

Invitations

Multiplayer

Peer-to-Peer Networking

In-Game Voice Chat
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Game Center Services

• Connect people
■ Route requests to devices
■ Establish global peer-to-peer connections

• Services available on WiFi and cellular
■ Great opportunity for social gaming
■ Lots of discovery through invites
■ People move around, connections come and go
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Game Center Services
Offline considerations

• Players can come and go during game play
■ Take phone calls
■ Lose and regain connection
■ Switch game to background

• Important for game play to continue for others
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Game Center Services
Setup considerations

• Version compatibility
■ Set up in iTunes Connect
■ Invitee’s device compares version to inviter’s

• Upgrades offered if necessary, but only to current version
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Getting Started
GKLocalPlayer

• User of the device
• Responsible for authentication 
• Provides friend list
• Invariant playerID

■ Save games
■ Cache data
■ Achievements
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Getting Started
Authentication

• Authenticate as early as possible
• Other operations will return errors if not authenticated

GKLocalPlayer *localPlayer = [GKLocalPlayer localPlayer];

// Authenticate and enable Game Center functionality
[localPlayer authenticateWithCompletionHandler:^(NSError *error) {
if (error) {
// Disable Game Center features;

}
else {
// Enable Game Center features

}
}];
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Multiplayer Services

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Auto-Matching
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Multiplayer Services

Auto-Matching

GKMatchRequest

GKMatchmaker

GKMatchmakerViewController
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Auto-Matching
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Auto-Matching
Process

Game Center 
Auto-Matching Services
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Auto-Matching
Process

• Create a match request
• Send match request to server
• Server applies matchmaking logic

■ Player group
■ Player attributes

• Match returned
• Wait for players to connect
• Begin game!
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Auto-Matching
Match request

• Set minimum players
• Set maximum players
• Assign player group
• Assign player attributes 
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Auto-Matching
Player groups
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Game Center 
Auto-Matching Services

Player groups
Auto-Matching
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Auto-Matching
Player groups

• Arbitrary grouping based on in-game settings
• Used to match players with compatible in-game settings
• Ideas for player group assignment:

■ Difficulty setting (easy/normal/hard)
■ Game level or map
■ Game mode (capture the flag, deathmatch, etc.)
■ Region or realm

• Check activity for a player group to make sure there are others 
to match with
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Querying a player group
Auto-Matching

GKMatchmaker *matchmaker = [GKMatchmaker sharedMatchmaker];

[matchmaker queryPlayerGroupActivity:myPlayerGroup
               withCompletionHandler:^(NSInteger activity, NSError *error) 
{
if (!error) {
// Indicate group activity to user

if (activity < MY_THRESHOLD) {
// Select a different player group

}
}

}];
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Player attributes
Auto-Matching

Fighter
Mage
Cleric
Thief
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Fighter
Mage
Cleric
Thief

Player attributes
Auto-Matching

Game Center 
Auto-Matching 

Services
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Auto-Matching
Player attributes

• Optional 32-bit unsigned integer
• Logical OR operation
• Player group the AND operation
• Chosen based on player characteristics

■ Role-playing (fighter, cleric, mage, thief )
■ Band (guitar, bass, drums, vocals)
■ Sports (goalie, forward, defense)

• Match made with attributes combined to create 0xFFFFFFFF
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Example

• Four-player dungeon crawl game

• Fighter

• Mage

• Cleric

• Thief

Match Request

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];
matchRequest.minPlayers = 4;
matchRequest.maxPlayers = 4;
matchRequest.playerGroup = level4DungeonGroup;

matchRequest.playerAttributes = MY_FIGHTER; // 0xFF000000

matchRequest.playerAttributes = MY_THIEF;   // 0x000000FF

matchRequest.playerAttributes = MY_CLERIC;  // 0x0000FF00

matchRequest.playerAttributes = MY_MAGE;    // 0x00FF0000
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Auto-Matching
Getting connected

• Peer-to-peer
■ Establishes communications directly between players
■ Send and receive data through API

• Server hosted 
■ Separate server to host game
■ Player count less restricted
■ Custom network communications
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Peer-to-peer or hosted
Auto-Matching

Game Center 
Auto-Matching ServicesYour Game Server
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Auto-Matching
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Auto-Matching

GKMatchmakerGKMatchRequest
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Auto-Matching
Match request

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];
matchRequest.minPlayers = 2;
matchRequest.maxPlayers = 4;
matchRequest.playerGroup = level4Dungeon;
matchRequest.playerAttributes = MY_FIGHTER;

GKMatchmakerGKMatchRequest
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Auto-Matching
Peer-to-peer

GKMatchmakerGKMatchRequest

GKMatchmaker *matchmaker = [GKMatchmaker sharedMatchmaker];

[matchmaker createMatchForRequest:matchRequest
            withCompletionHandler:^(GKMatch *match, NSError *error) {
if (error) {
// Handle error

}
else {
match.delegate = self;

}
}];
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Auto-Matching
Server hosted

GKMatchmakerGKMatchRequest

[matchmaker findPlayersForRequest:matchRequest
            withCompletionHandler:^(NSArray *players, NSError *error) {
if (error) {
// Handle error

}
else {
// Connect to the server and pass along player

}
}];
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Auto-Matching
Summary

• Create a match request
■ Assign player group
■ Assign player attributes

• Request match
• Handle player state changes
• Wait for players to connect
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Multiplayer Services

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Auto-Matching

34



Multiplayer Services

Invitations

GKMatchRequest

GKMatchmaker

GKInvite

GKMatchmakerViewController
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Invitations
Inviter Invitee
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Invitations
Inviter Invitee
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Invitations
Inviter Invitee
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Invitations
Inviter Invitee
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Invitations
Inviter Invitee
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Invitations
Inviter Invitee
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Invitations
Inviter Invitee
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Invitations
Inviter Invitee
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Invitations

• Invite friends to play game
■ Standard UI
■ Directly from Game Center

• Push notification sent to friend’s device
■ Accept
■ Decline
■ Buy game

• Game launched
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Invitations
Inviting friends

• Create match request
• Initialize GKMatchmakerViewController with request
• Show GKMatchmakerViewController

■ User will be able to invite players up to max players
■ Matchmaking will fill in the rest

• Get match
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Invitations
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Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest
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Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];
matchRequest.minPlayers = 2;
matchRequest.maxPlayers = 4;
matchRequest.playerGroup = level4Dungeon;
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Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

GKMatchmakerViewController *controller = [[GKMatchmakerViewController 
alloc] initWithMatchRequest:matchRequest];

controller.delegate = self;

[controller show];
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- (void)matchmakerViewController:(GKMatchmakerViewController *)
viewController didCreateMatch:(GKMatch *)match 
{
match.delegate = self;
// Start match

}

Delegate

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest
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Delegate

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

- (void)matchmakerViewController:(GKMatchmakerViewController *)
viewController didFindPlayers:(NSArray *)players
{
// Start communicating with server for hosted game

}
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Delegate

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

- (void)matchmakerViewControllerWasCancelled:(GKMatchmakerViewController *)
viewController
{
// Handle cancellation

}
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Delegate

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

- (void)matchmakerViewController:(GKMatchmakerViewController *)
viewController didFailWithError:(NSError *)error
{
// Handle error

}
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Invitations
Handling invites

• Implement inviteHandler block
■ Called when user has accepted an invite
■ May be called immediately
■ Initialize GKMatchmakerViewController with invite

• Implement playersToInviteHandler block
• Called when user launches your game from Game Center app
• May be called immediately
• Initialize GKMatchmakerViewController with match request 
and players
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Handling invites
Invitations

GKMatchmakerViewControllerGKMatchmaker
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Handling invites

inviteHandler GKInvite

Invitations

GKMatchmakerViewControllerGKMatchmaker

[GKMatchmaker sharedMatchmaker].inviteHandler = ^(GKInvite *invite) {
GKMatchmakerViewController *controller = [[GKMatchmakerViewController alloc] 
initWithInvite:invite];
controller.delegate = self;
[controller show];
[controller autorelease];

};
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Handling invites

playersToInviteHandler GKMatchRequest

Invitations

GKMatchmakerViewControllerGKMatchmaker

[GKMatchmaker sharedMatchmaker].playersToInviteHandler = ^(NSArray *players) {
GKMatchmakerViewController *controller = [[GKMatchmakerViewController alloc] 
initWithMatchRequest:self.matchRequest playersToInvite:players];
controller.delegate = self;
[controller show];
[controller autorelease];

};
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Invitations
Summary

• Create match request
• Present standard UI
• Handle invites

■ Called any time
■ May be called immediately
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Multiplayer Services

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Auto-Matching
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Multiplayer Services

GKMatch

Peer-to-Peer Networking
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Peer-to-Peer Networking

• Game communications between players
■ Send data

■ Unreliable
■ Reliable

■ Receive data

• Player state changes
■ Wait for all players to connect
■ Handle disconnection mid-game
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Peer-to-Peer Networking
Waiting for players to connect

- (void)match:(GKMatch *)match player:(GKPlayer *)player didChangeState:
(GKPlayerConnectionState)state 
{
// Handle connection state changes (eg. show connected players)
switch (state) {
case GKPlayerStateConnected:
// Show that the player has connected
break;

case GKPlayerStateDisconnected:
// Handle player disconnection
break;

default:
break;

}

if (!self.gameStarted && match.expectedPlayers == 0) {
// Begin game once all players are connected

}
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Peer-to-Peer Network
Sending data

NSArray *players = [NSArray arrayWithObject:destPlayer];

if (![self.match sendData:data toPlayers:players 
withDataMode:GKMatchSendDataReliable error:&error]) {

// Handle error
}
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Peer-to-Peer Network
Sending data

if (![self.match sendDataToAllPlayers:data
                         withDataMode:GKMatchSendDataUnreliable
                                error:&error]) 
{
// Handle error

}
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Receiving data
Peer-to-Peer Network

- (void)match:(GKMatch *)match didReceiveData:(NSData *)data 
fromPlayer:(GKPlayer *)player 

{
// Parse data

}
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Peer-to-Peer Network
Being a good network citizen

• Keep network traffic to minimum
■ Minimize size of data packets
■ Don’t send data for every frame
■ Don’t broadcast all data to all players

• Use common network strategies
■ Set up a client-hosted network
■ Set up a ring network
■ User a server-based network
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Peer-to-Peer Networking
Client-hosted

• Nominate a host
■ Vote/coin-toss alogrithm
■ Compare playerID

• Send data to host
• Host maintains truth
• Host passes data to other clients
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Auto-Matching
Full peer-to-peer mesh
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Auto-Matching
Client-host topology
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Auto-Matching
Ring topology
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Hosting Your Own Server

• Choose correct API
• Use invitations and auto-matching
• Use playerID to track players
• Communicate matched players to server
• Implement your own networking
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Hosting Your Own Server
Auto-Matching API

GKMatchmaker *matchmaker = [GKMatchmaker sharedMatchmaker];

[matchmaker findPlayersForRequest:myMatchRequest
            withCompletionHandler:^(NSArray *players, NSError *error) {
if (error) {
// Handle error

}
else {
// Connect to the server and pass along player

}
}];
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Hosting Your Own Server
Invitations API

GKMatchmakerViewController * viewController = [[GKMatchmakerViewController 
alloc] initWithMatchRequest:myMatchRequest];

viewController.hosted = YES;
viewController.delegate = self;

[viewController show];
[viewController release];

- (void)matchmakerViewController:(GKMatchmakerViewController *)
viewController didFindPlayers:(NSArray *)players
{
// Start communicating with server for hosted game

}
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Peer-to-Peer Networking
Summary

• GKMatch provides API
• Handle player state changes
• Be a good network citizen
• Consider hosting on your own servers
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Multiplayer Services

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Auto-Matching
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Multiplayer Services

In-Game Voice Chat

GKMatch

GKVoiceChat
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In-Game Voice Chat

• Allows players to communicate with each other
• Keeps players involved
• Enhances competition
• Easy to integrate
• Networking handled for you
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In-Game Voice Chat
Features

• Multiple named chats
• Hear audio from selected chats 
• Microphone is routed to single chat
• Adjust the volume of a chat

• Mute player in a chat 
• Player state feedback via playerStateUpdateHandler
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In-Game Voice Chat
Pre-setup

• Set audio session to play and record
• Make audio session active

AVAudioSession *audioSession = [AVAudioSession sharedInstance];

[audioSession setCategory:AVAudioSessionCategoryPlayAndRecord error:&error];

[audioSession setActive:YES error:&error];

79



Usage
In-Game Voice Chat

// Get separate channels for the game and team
GKVoiceChat *mainChat = [self.match voiceChatWithName:@”main”];
GKVoiceChat *teamChat = [self.match voiceChatWithName:@”redTeam”];

// Stop main chat
[mainChat stop];
// Start team chat
[teamChat start];

// Make the team chat active to route microphone
teamChat.active = YES;

// Provide audio and visual indicator that the microphone is active
[self indicateMicrophoneActive];
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Handling player state changes
In-Game Voice Chat

teamChat.playerStateUpdateHandler = ^(GKPlayer *player, 
GKVoiceChatPlayerState state) {
switch (state) {
case GKVoiceChatPlayerConnected:
// Indicate that the player has connected 
break;

case GKVoiceChatPlayerDisconnected: 
// Indicate that the player has disconnected
break;

case GKVoiceChatPlayerSpeaking:
// Indicate that the player has started speaking
break;

case GKVoiceChatPlayerSilent:    
default:
// Indicate the the player has stopped speaking
break;

}
};
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Notes on Testing

• Need to test on devices
■ Multiple devices
■ Multiple accounts

• Testing on simulator limited
■ Invitations are not available
■ In-game voice chat is disabled
■ No preemptive cache invalidation
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Summary

• Authenticate the local player
• Define player group and attributes for match request
• Implement inviteHandler and playersToInviteHandler
• Use GKMatchmakerViewController
• Wait for all players to connect
• Integrate voice chat
• Preview now, available later this year
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Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Apple Developer Forums
http://devforums.apple.com

More Information
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Related Sessions

Game Center Techniques Part 1 Pacific Heights
Tuesday 3:15PM

 Introduction to Game Center Pacific Heights
Tuesday 2:00PM

Game Design and Development for iPhone OS Part 1 (repeat) Presidio
Friday 9:00AM

Game Design and Development for iPhone OS Part 2 (repeat) Presidio
Friday 10:15AM
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Game Center Lab Graphics & Media Lab B
Wednesday 2:00PM

Game Center Lab #2 Graphics & Media Lab D
Friday 12:30PM

Labs

Game Design for iPhone OS Lab #2 Graphics & Media Lab A
Friday 11:30AM

Game Design for iPhone OS Lab Graphics & Media Lab A
Wednesday 2:00PM
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