
Adding Multiplayer to Your Game

Nathan Taylor
iPhone Development Engineer

Game Center Techniques, Part 2

2

What Is Game Center?

• Social gaming network
■ Built-in application
■ Framework
■ Online services

• Provides
■ Friend relationships
■ Leaderboards
■ Achievements
■ Multiplayer

3

• Brief overview of Game Center
• Quick look at Game Center Services
• In-depth discussion of multiplayer services

■ Authentication
■ Getting connected
■ Network communications
■ Player communications

What You’ll Learn

4

Account Management

Friends Management

Multiple Games

Game Center Overview

Game Center
Services

 Game Center App Your Game

Other Frameworks
(UIKit, OpenGL, etc.)

GameKit
General MultiplayerGame Center Only

Auto-Matching

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Authentication

Friends

Leaderboards

Achievements

5

Auto-Matching

Invitations

Multiplayer

Peer-to-Peer Networking

In-Game Voice Chat

6

Game Center Services

• Connect people
■ Route requests to devices
■ Establish global peer-to-peer connections

• Services available on WiFi and cellular
■ Great opportunity for social gaming
■ Lots of discovery through invites
■ People move around, connections come and go

7

Game Center Services
Offline considerations

• Players can come and go during game play
■ Take phone calls
■ Lose and regain connection
■ Switch game to background

• Important for game play to continue for others

8

Game Center Services
Setup considerations

• Version compatibility
■ Set up in iTunes Connect
■ Invitee’s device compares version to inviter’s

• Upgrades offered if necessary, but only to current version

9

Getting Started
GKLocalPlayer

• User of the device
• Responsible for authentication
• Provides friend list
• Invariant playerID

■ Save games
■ Cache data
■ Achievements

10

Getting Started
Authentication

• Authenticate as early as possible
• Other operations will return errors if not authenticated

GKLocalPlayer *localPlayer = [GKLocalPlayer localPlayer];

// Authenticate and enable Game Center functionality
[localPlayer authenticateWithCompletionHandler:^(NSError *error) {
if (error) {
// Disable Game Center features;

}
else {
// Enable Game Center features

}
}];

11

Multiplayer Services

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Auto-Matching

12

Multiplayer Services

Auto-Matching

GKMatchRequest

GKMatchmaker

GKMatchmakerViewController

13

Auto-Matching

14

Auto-Matching
Process

Game Center
Auto-Matching Services

15

Auto-Matching
Process

• Create a match request
• Send match request to server
• Server applies matchmaking logic

■ Player group
■ Player attributes

• Match returned
• Wait for players to connect
• Begin game!

16

Auto-Matching
Match request

• Set minimum players
• Set maximum players
• Assign player group
• Assign player attributes

17

Auto-Matching
Player groups

18

Game Center
Auto-Matching Services

Player groups
Auto-Matching

19

Auto-Matching
Player groups

• Arbitrary grouping based on in-game settings
• Used to match players with compatible in-game settings
• Ideas for player group assignment:

■ Difficulty setting (easy/normal/hard)
■ Game level or map
■ Game mode (capture the flag, deathmatch, etc.)
■ Region or realm

• Check activity for a player group to make sure there are others
to match with

20

Querying a player group
Auto-Matching

GKMatchmaker *matchmaker = [GKMatchmaker sharedMatchmaker];

[matchmaker queryPlayerGroupActivity:myPlayerGroup
 withCompletionHandler:^(NSInteger activity, NSError *error)
{
if (!error) {
// Indicate group activity to user

if (activity < MY_THRESHOLD) {
// Select a different player group

}
}

}];

21

Player attributes
Auto-Matching

Fighter
Mage
Cleric
Thief

22

Fighter
Mage
Cleric
Thief

Player attributes
Auto-Matching

Game Center
Auto-Matching

Services

23

Auto-Matching
Player attributes

• Optional 32-bit unsigned integer
• Logical OR operation
• Player group the AND operation
• Chosen based on player characteristics

■ Role-playing (fighter, cleric, mage, thief)
■ Band (guitar, bass, drums, vocals)
■ Sports (goalie, forward, defense)

• Match made with attributes combined to create 0xFFFFFFFF

24

Example

• Four-player dungeon crawl game

• Fighter

• Mage

• Cleric

• Thief

Match Request

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];
matchRequest.minPlayers = 4;
matchRequest.maxPlayers = 4;
matchRequest.playerGroup = level4DungeonGroup;

matchRequest.playerAttributes = MY_FIGHTER; // 0xFF000000

matchRequest.playerAttributes = MY_THIEF; // 0x000000FF

matchRequest.playerAttributes = MY_CLERIC; // 0x0000FF00

matchRequest.playerAttributes = MY_MAGE; // 0x00FF0000

25

Auto-Matching
Getting connected

• Peer-to-peer
■ Establishes communications directly between players
■ Send and receive data through API

• Server hosted
■ Separate server to host game
■ Player count less restricted
■ Custom network communications

26

Peer-to-peer or hosted
Auto-Matching

Game Center
Auto-Matching ServicesYour Game Server

27

Auto-Matching

28

Auto-Matching

GKMatchmakerGKMatchRequest

29

Auto-Matching
Match request

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];
matchRequest.minPlayers = 2;
matchRequest.maxPlayers = 4;
matchRequest.playerGroup = level4Dungeon;
matchRequest.playerAttributes = MY_FIGHTER;

GKMatchmakerGKMatchRequest

30

Auto-Matching
Peer-to-peer

GKMatchmakerGKMatchRequest

GKMatchmaker *matchmaker = [GKMatchmaker sharedMatchmaker];

[matchmaker createMatchForRequest:matchRequest
 withCompletionHandler:^(GKMatch *match, NSError *error) {
if (error) {
// Handle error

}
else {
match.delegate = self;

}
}];

31

Auto-Matching
Server hosted

GKMatchmakerGKMatchRequest

[matchmaker findPlayersForRequest:matchRequest
 withCompletionHandler:^(NSArray *players, NSError *error) {
if (error) {
// Handle error

}
else {
// Connect to the server and pass along player

}
}];

32

Auto-Matching
Summary

• Create a match request
■ Assign player group
■ Assign player attributes

• Request match
• Handle player state changes
• Wait for players to connect

33

Multiplayer Services

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Auto-Matching

34

Multiplayer Services

Invitations

GKMatchRequest

GKMatchmaker

GKInvite

GKMatchmakerViewController

35

Invitations
Inviter Invitee

36

Invitations
Inviter Invitee

37

Invitations
Inviter Invitee

38

Invitations
Inviter Invitee

39

Invitations
Inviter Invitee

40

Invitations
Inviter Invitee

41

Invitations
Inviter Invitee

42

Invitations
Inviter Invitee

43

Invitations

• Invite friends to play game
■ Standard UI
■ Directly from Game Center

• Push notification sent to friend’s device
■ Accept
■ Decline
■ Buy game

• Game launched

44

Invitations
Inviting friends

• Create match request
• Initialize GKMatchmakerViewController with request
• Show GKMatchmakerViewController

■ User will be able to invite players up to max players
■ Matchmaking will fill in the rest

• Get match

45

Invitations

46

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

47

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

GKMatchRequest *matchRequest = [[GKMatchRequest alloc] init];
matchRequest.minPlayers = 2;
matchRequest.maxPlayers = 4;
matchRequest.playerGroup = level4Dungeon;

48

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

GKMatchmakerViewController *controller = [[GKMatchmakerViewController
alloc] initWithMatchRequest:matchRequest];

controller.delegate = self;

[controller show];

49

- (void)matchmakerViewController:(GKMatchmakerViewController *)
viewController didCreateMatch:(GKMatch *)match
{
match.delegate = self;
// Start match

}

Delegate

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

50

Delegate

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

- (void)matchmakerViewController:(GKMatchmakerViewController *)
viewController didFindPlayers:(NSArray *)players
{
// Start communicating with server for hosted game

}

51

Delegate

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

- (void)matchmakerViewControllerWasCancelled:(GKMatchmakerViewController *)
viewController
{
// Handle cancellation

}

52

Delegate

Inviting friends
Invitations

GKMatchmakerViewControllerGKMatchRequest

- (void)matchmakerViewController:(GKMatchmakerViewController *)
viewController didFailWithError:(NSError *)error
{
// Handle error

}

53

Invitations
Handling invites

• Implement inviteHandler block
■ Called when user has accepted an invite
■ May be called immediately
■ Initialize GKMatchmakerViewController with invite

• Implement playersToInviteHandler block
• Called when user launches your game from Game Center app
• May be called immediately
• Initialize GKMatchmakerViewController with match request
and players

54

Handling invites
Invitations

GKMatchmakerViewControllerGKMatchmaker

55

Handling invites

inviteHandler GKInvite

Invitations

GKMatchmakerViewControllerGKMatchmaker

[GKMatchmaker sharedMatchmaker].inviteHandler = ^(GKInvite *invite) {
GKMatchmakerViewController *controller = [[GKMatchmakerViewController alloc]
initWithInvite:invite];
controller.delegate = self;
[controller show];
[controller autorelease];

};

56

Handling invites

playersToInviteHandler GKMatchRequest

Invitations

GKMatchmakerViewControllerGKMatchmaker

[GKMatchmaker sharedMatchmaker].playersToInviteHandler = ^(NSArray *players) {
GKMatchmakerViewController *controller = [[GKMatchmakerViewController alloc]
initWithMatchRequest:self.matchRequest playersToInvite:players];
controller.delegate = self;
[controller show];
[controller autorelease];

};

57

Invitations
Summary

• Create match request
• Present standard UI
• Handle invites

■ Called any time
■ May be called immediately

58

Multiplayer Services

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Auto-Matching

59

Multiplayer Services

GKMatch

Peer-to-Peer Networking

60

Peer-to-Peer Networking

• Game communications between players
■ Send data

■ Unreliable
■ Reliable

■ Receive data

• Player state changes
■ Wait for all players to connect
■ Handle disconnection mid-game

61

Peer-to-Peer Networking
Waiting for players to connect

- (void)match:(GKMatch *)match player:(GKPlayer *)player didChangeState:
(GKPlayerConnectionState)state
{
// Handle connection state changes (eg. show connected players)
switch (state) {
case GKPlayerStateConnected:
// Show that the player has connected
break;

case GKPlayerStateDisconnected:
// Handle player disconnection
break;

default:
break;

}

if (!self.gameStarted && match.expectedPlayers == 0) {
// Begin game once all players are connected

}

62

Peer-to-Peer Network
Sending data

NSArray *players = [NSArray arrayWithObject:destPlayer];

if (![self.match sendData:data toPlayers:players
withDataMode:GKMatchSendDataReliable error:&error]) {

// Handle error
}

63

Peer-to-Peer Network
Sending data

if (![self.match sendDataToAllPlayers:data
 withDataMode:GKMatchSendDataUnreliable
 error:&error])
{
// Handle error

}

64

Receiving data
Peer-to-Peer Network

- (void)match:(GKMatch *)match didReceiveData:(NSData *)data
fromPlayer:(GKPlayer *)player

{
// Parse data

}

65

Peer-to-Peer Network
Being a good network citizen

• Keep network traffic to minimum
■ Minimize size of data packets
■ Don’t send data for every frame
■ Don’t broadcast all data to all players

• Use common network strategies
■ Set up a client-hosted network
■ Set up a ring network
■ User a server-based network

66

Peer-to-Peer Networking
Client-hosted

• Nominate a host
■ Vote/coin-toss alogrithm
■ Compare playerID

• Send data to host
• Host maintains truth
• Host passes data to other clients

67

Auto-Matching
Full peer-to-peer mesh

68

Auto-Matching
Client-host topology

69

Auto-Matching
Ring topology

70

Hosting Your Own Server

• Choose correct API
• Use invitations and auto-matching
• Use playerID to track players
• Communicate matched players to server
• Implement your own networking

71

Hosting Your Own Server
Auto-Matching API

GKMatchmaker *matchmaker = [GKMatchmaker sharedMatchmaker];

[matchmaker findPlayersForRequest:myMatchRequest
 withCompletionHandler:^(NSArray *players, NSError *error) {
if (error) {
// Handle error

}
else {
// Connect to the server and pass along player

}
}];

72

Hosting Your Own Server
Invitations API

GKMatchmakerViewController * viewController = [[GKMatchmakerViewController
alloc] initWithMatchRequest:myMatchRequest];

viewController.hosted = YES;
viewController.delegate = self;

[viewController show];
[viewController release];

- (void)matchmakerViewController:(GKMatchmakerViewController *)
viewController didFindPlayers:(NSArray *)players
{
// Start communicating with server for hosted game

}

73

Peer-to-Peer Networking
Summary

• GKMatch provides API
• Handle player state changes
• Be a good network citizen
• Consider hosting on your own servers

74

Multiplayer Services

Invitations

Peer-to-Peer Networking

In-Game Voice Chat

Auto-Matching

75

Multiplayer Services

In-Game Voice Chat

GKMatch

GKVoiceChat

76

In-Game Voice Chat

• Allows players to communicate with each other
• Keeps players involved
• Enhances competition
• Easy to integrate
• Networking handled for you

77

In-Game Voice Chat
Features

• Multiple named chats
• Hear audio from selected chats
• Microphone is routed to single chat
• Adjust the volume of a chat

• Mute player in a chat
• Player state feedback via playerStateUpdateHandler

78

In-Game Voice Chat
Pre-setup

• Set audio session to play and record
• Make audio session active

AVAudioSession *audioSession = [AVAudioSession sharedInstance];

[audioSession setCategory:AVAudioSessionCategoryPlayAndRecord error:&error];

[audioSession setActive:YES error:&error];

79

Usage
In-Game Voice Chat

// Get separate channels for the game and team
GKVoiceChat *mainChat = [self.match voiceChatWithName:@”main”];
GKVoiceChat *teamChat = [self.match voiceChatWithName:@”redTeam”];

// Stop main chat
[mainChat stop];
// Start team chat
[teamChat start];

// Make the team chat active to route microphone
teamChat.active = YES;

// Provide audio and visual indicator that the microphone is active
[self indicateMicrophoneActive];

80

Handling player state changes
In-Game Voice Chat

teamChat.playerStateUpdateHandler = ^(GKPlayer *player,
GKVoiceChatPlayerState state) {
switch (state) {
case GKVoiceChatPlayerConnected:
// Indicate that the player has connected
break;

case GKVoiceChatPlayerDisconnected:
// Indicate that the player has disconnected
break;

case GKVoiceChatPlayerSpeaking:
// Indicate that the player has started speaking
break;

case GKVoiceChatPlayerSilent:
default:
// Indicate the the player has stopped speaking
break;

}
};

81

Notes on Testing

• Need to test on devices
■ Multiple devices
■ Multiple accounts

• Testing on simulator limited
■ Invitations are not available
■ In-game voice chat is disabled
■ No preemptive cache invalidation

82

Summary

• Authenticate the local player
• Define player group and attributes for match request
• Implement inviteHandler and playersToInviteHandler
• Use GKMatchmakerViewController
• Wait for all players to connect
• Integrate voice chat
• Preview now, available later this year

83

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Apple Developer Forums
http://devforums.apple.com

More Information

84

Related Sessions

Game Center Techniques Part 1 Pacific Heights
Tuesday 3:15PM

 Introduction to Game Center Pacific Heights
Tuesday 2:00PM

Game Design and Development for iPhone OS Part 1 (repeat) Presidio
Friday 9:00AM

Game Design and Development for iPhone OS Part 2 (repeat) Presidio
Friday 10:15AM

85

Game Center Lab Graphics & Media Lab B
Wednesday 2:00PM

Game Center Lab #2 Graphics & Media Lab D
Friday 12:30PM

Labs

Game Design for iPhone OS Lab #2 Graphics & Media Lab A
Friday 11:30AM

Game Design for iPhone OS Lab Graphics & Media Lab A
Wednesday 2:00PM

86

87

88

